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O(2)-model and Berezinskii-Kosterlitz—Thouless transition
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re 1. O(2)-model and BKT



O(2)-model

We will often consider the models in two-dimensional space-time with the action

N
S[n] = % /d2z(aun)2, n?=3n2=1, (1)
=1

which are called n-field models or O(N)-models.
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=1

which are called n-field models or O(N)-models.
In this lecture we consider the N = 2 case. Let

n1 = Cos g, no = sin .
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O(2)-model

We will often consider the models in two-dimensional space-time with the action

N
S[n] = % /d2z(aun)2, n?=3n2=1, (1)
=1

which are called n-field models or O(N)-models.
In this lecture we consider the N = 2 case. Let

n1 = Cos g, no = sin .

Then

Sle] = % [ 2@, (2)
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O(2)-model

We will often consider the models in two-dimensional space-time with the action

N
S[n] = % /d2z(aun)2, n?=3n2=1, (1)
=1

which are called n-field models or O(N)-models.
In this lecture we consider the N = 2 case. Let

n1 = Cos g, no = sin .
Then
1
Slel = - [ o @0, 2)
g
p(@) ~ p(x) + 2. (3)
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O(2)-model

We will often consider the models in two-dimensional space-time with the action

N
S[n] = % /d2z(aun)2, n?=3n2=1, (1)
=1

which are called n-field models or O(N)-models.
In this lecture we consider the N = 2 case. Let

n1 = Cos g, no = sin .
Then
1
Slel = - [ o @0, 2)
g
p(@) ~ p(x) + 2. (3)

It looks like a free field with (p(z')p(x)) = — 4% log(—(a' — x)?).
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O(2)-model

We will often consider the models in two-dimensional space-time with the action

N
S[n] = % /d2z(aun)2, n?=3n2=1, (1)
=1

which are called n-field models or O(N)-models.
In this lecture we consider the N = 2 case. Let

n1 = Cos g, no = sin .
Then
1
Slel = - [ o @0, 2)
g
p(@) ~ p(x) + 2. (3)

It looks like a free field with (p(z')p(x)) = — 5% log(—(z’ — x)?). If it were the
case, we would have for operators consistent with (3) the power-like behavior:

<eimap(g¢/>ez’mp(x)> ~ (—(:E/ _ x)Q)ﬁmn , m,n € 7. (4)




O(2)-model

We will often consider the models in two-dimensional space-time with the action

N
S[n] = % /d2z(aun)2, n?=3n2=1, (1)
=1

which are called n-field models or O(N)-models.
In this lecture we consider the N = 2 case. Let

n1 = Cos g, no = sin .
Then
1
Slel = - [ o @0, 2)
g
p(@) ~ p(x) + 2. (3)

It looks like a free field with (p(z')p(x)) = — 5% log(—(z’ — x)?). If it were the
case, we would have for operators consistent with (3) the power-like behavior:

<eimap(g¢/>ez’mp(x)> ~ (—(:E/ _ x)Q)ﬁmn , m,n € 7. (4)

What can break this behavior?




Vortices in the Euclidean plane

Consider the classical equation of motion in the Euclidean plane

V2<p =0. (5)
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Vortices in the Euclidean plane

Consider the classical equation of motion in the Euclidean plane
V2o =o0.

It admits the solutions

n
z—z
wgz( anlmlog zZ— za) ZqQ— -, qa € Z.

a—1 Z—Za

(6)
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Vortices in the Euclidean plane

Consider the classical equation of motion in the Euclidean plane

V2p =0. (5)
It admits the solutions
" Ga z—2z
FE Imlog(z — = 1o = € Z. 6
SDq azl qa g a g % g Z_z, da ( )
For n =1 assuming z — z1 = ret® we have
z=a' +ix? =z! —770,
z) = q10, .
Paren (@) = @ z=2a! —ix? =2 +2°.

which is a vortex at the point xj.
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Vortices in the Euclidean plane

Consider the classical equation of motion in the Euclidean plane

V2p =0. (5)
It admits the solutions
" Ga Z -z
FE Imlog(z — = — = € Z. 6
SDq azl qa g a g % Z = da ( )
For n =1 assuming z — z1 = ret® we have
z=a' +iz? =2t —2°
z) = q10, .
Pare1 (@) = @1 F=al —ix? =zl 42

which is a vortex at the point xj.
The solution (6) is a solution to (5) even at the points = zq4.
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Vortices in the Euclidean plane

Consider the classical equation of motion in the Euclidean plane

V2p =0. (5)
It admits the solutions
" Ga Z -z
FE Imlog(z — = — = € Z. 6
SDq azl qa g a g % Z = da ( )
For n =1 assuming z — z1 = ret® we have
=zl +iz? =2 — .770,
z) = q10, .
Para (@) = @1 z=2a' —iz? =z + 2°.

which is a vortex at the point xj.
The solution (6) is a solution to (5) even at the points z = z4. Indeed,

1 z z? ¥ 1
Iz Z_9, 0" - _ — M d
0,0 5 log i 0, 0" arctg o €Oy o = 0,0y log e
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Vortices in the Euclidean plane

Consider the classical equation of motion in the Euclidean plane

V2p =0. (5)
It admits the solutions
" Ga Z -z
FE Imlog(z — = — = € Z. 6
SDq azl qa g a g % Z = da ( )
For n =1 assuming z — z1 = ret® we have -
=z +1?.T2:T1—.770,
z) = q10, .
gz (T) = @1 5 L s R

which is a vortex at the point xj.
The solution (6) is a solution to (5) even at the points z = z4. Indeed,

1 z z? ¥ 1
Iz Z_9, 0" - _ — M d
0,0 5 log i 0, 0" arctg o €Oy o = 0,0y log e

Then for any smooth, bounded and decreasing fast enough function ¢(z) we have

1
- /dQl” (" 9u0up(a)) log — = 0,
'

IR\

/de o(z )BMQ“ log

since the integral of logr converges at x = 0.
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Vortices in the Euclidean plane

Consider the classical equation of motion in the Euclidean plane

V2p =0. (5)
It admits the solutions
" Ga Z -z
FE Imlog(z — = — = € Z. 6
SDq azl qa g a g % Z = da ( )
For n =1 assuming z — z1 = ret® we have -
=z +1?.T2:T1—.770,
z) = q10, .
gz (T) = @1 5 L s R

which is a vortex at the point xj.
The solution (6) is a solution to (5) even at the points z = z4. Indeed,

1 z z? ¥ 1
Iz Z_9, 0" - _ — M d
0,0 5 log i 0, 0" arctg o €Oy o = 0,0y log e

Then for any smooth, bounded and decreasing fast enough function ¢(z) we have

1
- /dQl” (" 9u0up(a)) log — = 0,
'

IR\

/de o(z )BMQ“ log

since the integral of logr converges at x = 0. We immediately obtain

/d2x 0" Oupgz = 0. (7)
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ssical action of verti

Let us calculate the classical action on the vertex solution:

2 _
Slegz] = ;/d% Opgz Opgz
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ssical action of verti

Let us calculate the classical action on the vertex solution:

Slegs] = /d x Bpgz 890qa:: / Z da

(2 — 2a)(Z — 2p)
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Let us calculate the classical action on the vertex solution:

o _
0= —, 0=
Slpgz] = / d*x dpgz Opgs = / Z L_ 0z’

Sl

(2 — 2a)(Z — 2p)

zqa/‘mp
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Let us calculate the classical action on the vertex solution:

a=2 5.9

(z — za) z—zb)

1 Az 2= 22— %)+ (Z—24)(2 — 2
7 ;q5/m+2qaqb/d2x( )E = 2) + (2~ Za)(z — )

a<b |2 = za?|z — 2|2
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Let us calculate the classical action on the vertex solution:

a=2 5.9

(2 — za) z—zb)

1 Az 2= 22— %)+ (Z—24)(2 — 2
7 ;ﬁ/Ezﬁ+Z%%ﬂm( )E = 2) + (2~ Za)(z — )

Z [~ zalPlz — 22

d? Rd R
/‘73522”/ —T:27rlog—,
|z — zq|? o T o

where R and rg are infrared and ultraviolet cutoff parameters.

The first integral is
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Let us calculate the classical action on the vertex solution:

a=2 5.9
S[Qﬂq‘f] /d m&p 8‘qu: = / Z qadp =3 =%

(2 — 2a)(Z — 2p)

d?x (2 —24)(Z— %) + (22— Za)(2 — 2p)
§ 2 2 : 2 a a
- d
- qa/\zfzaP + qa%/ * |2 — 2a]2|2 — 2|2

a<b

The first integral is

d? Rd R
/‘73522”/ —T:27rlog—,
|z — zq|? o T o

where R and rg are infrared and ultraviolet cutoff parameters. The second integral

is
/de (z—za)(i—ib):-(2—2;)(2—%) — 9rlog R? N
|z = za|?[z — 2] |za — 2|
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Let us calculate the classical action on the vertex solution:

a=2 5.9
Slpgz] = — /dr&p &pqz: / ZL_ =3 =5

(2 — 2a)(Z — 2p)

d*x (2—2a)(Z—2) + (2 — Za)(2 — 2p)
qu/ +anqb/d2x
- |z — 2zq|2

Z [~ zalPlz — 22

The first integral is

d? Rd R
/‘73522”/ —T:27rlog—,
|z — zq|? o T o

where R and rg are infrared and ultraviolet cutoff parameters. The second integral
is

/de (z—za)(i—ib):-(2—2;)(2—%) — 9rlog R? N
|z = za|?|2 — 2| |za — 2b]
Hence
1 R? 2
Slel = 55 (7t lon g +27 3 aunlog s ®
9 0 a<b | Zb‘

2
™ 1
=2 (Z qa> log R% — an ogrd + Z qaqp 27 log Pt
a a

a<b




ssical action of verti

So we have

2
T ™ 1
Slegz] = 2% (Z Qa) log R? — 2 Zqi logr2 + 2 Z qaqp 2 log
a a

a<b |za _Zb‘Q'

(9)
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So we have

2
T g 1
Slegz] = % <§ Qa) log R? — 2% E qzlogrd + 2 § qaqp 2 log
a a

a<b |le _Zb‘2'

(9)

Since R — oo, the action is only finite if the first term vanishes:

Z‘Ia =0. (10)
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ssical action of verti

So we have

2
T g 1
Slegz] = % <§ Qa) log R? — 2% E qzlogrd + 2 § qaqp 2 log
a a

a<b |le _Zb‘2'

(9)

Since R — oo, the action is only finite-if the first term vanishes:
D da=0. (10)
a

The second term is the sum of ‘energies’ of the cores of vortices.
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So we have

2
T T 1
Stearl = 2 (z qa) g B2~ 25" tlogrd + 1 3" guay 210
a a

a<b |le _Zb‘2'

(9)

Since R — oo, the action is only finite-if the first term vanishes:
D da=0. (10)
a

The second term is the sum of ‘energies’ of the cores of vortices. It becomes finite
in a regularized version of the theory, e.g. the |¢|* model:

stel = [ @ (10,07 = (o - )2
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So we have

2
T g 1
Slegz] = % <§ Qa) log R? — 2% E qzlogrd + 2 § qaqp 2 log
a a

a<b |le _Zb‘2'

(9)

Since R — oo, the action is only finite-if the first term vanishes:
D da=0. (10)
a

The second term is the sum of ‘energies’ of the cores of vortices. It becomes finite
in a regularized version of the theory, e.g. the |¢|* model:

stel = [ @ (10,07 = (o - )2

We will see that the behavior of the gas of vortices depends on g rather than on rg.
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

Z[J] = Z To Z /d2m1---d2xn /Dxefs[xﬂpﬁ]*(ﬁx+wq~f). (11)
n=0

n!
Q1 qn#0
a1+ +an=0
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Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

Z[J] = Z To Z /d2m1---d2xn /Dxefs[xﬂpﬁ]*(ﬁx+wq~f). (11)
n=0

n!
Q1 qn#0
a1+ +an=0

Here n is the number over vortices,
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

Z[J] = Z To Z /d2m1---d2xn /Dxefs[xﬂpﬁ]*(ﬁx+wq~f). (11)
n=0

n!
Q1 qn#0
q1+ - Fan=0

Here n is the number over vortices; g; are vorticities,
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Functional integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

Z[J] = Z To Z /d2m1---d2xn /Dxefs[xﬂpﬁ]*(ﬁx+wq~f). (11)
n=0

n!
Q1 qn#0
a1+ +an=0

Here n is the number over vortices, g; are vorticities, x; are position of vortices,
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
[(1,9) = [ o f(2)g(a)

y e~ SIxteazl=(Ixteas) (11)

—2n

=3 "0 > [,
n=0

n!
Q1 qn#0
a1+ +an=0

Here n is the numbe vortices, g; are vorticities, x; are position of vortices,
and the field xTuns all configurations without the identification X ~s¢=27.
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

Z[J] = Z To Z /d2m1---d2xn /Dxefs[xﬂpﬁ]*(ﬁx+wq~f). (11)
n=0

n!
Q1 qn#0
a1+ +an=0

Here n is th¢ number over vortices, g; are vorticities, x; are position of vortices,
and the fieJd x runs all configurations without the identification y~=<=27. The
factor 1/n! is caused by the fact that configurations of vortices are permutation
invariant.
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
[(1,9) = [ o f(2)g(a)

Z[J] = Z Z /d2x1---d2xn /Dxefs["*"’fff]’(]’x**’ﬁ). (11)
n=0

Q1 qn#0
a1+ +aqn=0

T72n

Here n is the numker over vortices, g; are vorticities, x; are position of vortices,
and the field x runs\all configurations without the identification y~=<=27. The
factor 1/n! is caused by the fact that configurations of vortices are permutation
invariant. The factor ry n g necessary to nondimensionolize the integrals. We
may think that every vortex lives in a cell of size rg.
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

Z[J] = Z To Z /d2m1---d2xn /Dxefs[xﬂpﬁ]*(ﬁx+wq~f). (11)
n=0

n!
Q1 qn#0
a1+ +an=0

Here n is the number over vortices, g; are vorticities, x; are position of vortices,
and the field x runs all configurations without the identification y~=<=27. The
factor 1/n! is caused by the fact that configurations of vortices are permutation
invariant. The factor ry 2" is necessary to nondimensionolize the integrals. We
may think that every vortex lives in a cell of size rg.

The action is given by

1
SIx + pgz] = Slegz] + SIx] + 7 /dQﬂU O X Oppgz-
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum
over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

Z[J] = Z To Z /d2m1---d2xn /Dxefs[xﬂpﬁ]*(ﬁx+wq~f). (11)
n=0

n!
Q1 qn#0
a1+ +an=0

Here n is the number over vortices, g; are vorticities, x; are position of vortices,
and the field x runs all configurations without the identification y~=<=27. The
factor 1/n! is caused by the fact that configurations of vortices are permutation
invariant. The factor ry 2" is necessary to nondimensionolize the integrals. We
may think that every vortex lives in a cell of size rg.

The action is given by

S[x + gzl = Slegz] + SIX] +M

‘We have seen that the last term vanishes.
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onal integral

Now we want to calculate the functional integral over ¢. We split it into a sum

over vortex configurations: - R N
o [(£.9) = | @a f(@)g(x)

o0
r
Z[J] = Z 0 Z /d2m1---d2xn /Dxe*S[X+<P§£]*(J7X+4P§i‘). (11)
n!
n=0 q1,---,9n#0
a1+ +an =0

Here n is the number over vortices, g; are vorticities, x; are position of vortices,
and the field x runs all configurations without the identification X~=s¢=27. The
factor 1/n! is caused by the fact that configurations of vortices are permutation
invariant. The factor ry 2" is necessary to nondimensionolize the integrals. We
may think that every vortex lives in a cell of size rg.
The action is given by

Six + ¢gz] = Slegz] + SIX] +M

We have seen that the last term vanishes. Hence the generating function factorizes:

<1 Y qz —2n
Z[J) = ZolJ] ) ~ >y X
n=0 """ q

1homs an e~ Sleazl « const
a1+ Fan=0 / ’ o
y /d2x1 P H 20 — 2 2% qadp e~ (Jegm) (12)
a<b
ZolJ] = /Dxe’s[’d’“”o- (13)
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Berezinskii-Kosterlitz—Thouless (BKT) transition

The source J(z) is not arbitrary due to the identification ¢ ~ ¢ + 27. It must
have the form

k
Tpp@) = =iy Jis(@—vy;),  Ji€Z (14)
Jj=1
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Berezinskii-Kosterlitz—Thouless (BKT) transition

The source J(z) is not arbitrary due to the identification ¢ ~ ¢ + 27. It must
have the form

k
Tpp@) = =iy Jis(@—vy;),  Ji€Z (14)
Jj=1

Then

k
em ) = expi Y Jip(ys)
=1

is unique-valued.
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The source J(z) is not arbitrary due to the identification ¢ ~ ¢ + 27. It must
have the form

7 (x) 712 Jié(x —y5), J; € Z. (14)

Then

k
em ) = expi Y Jip(ys)
i=1

is unique-valued. We have

T 2L P2
SR [

||M8

Trgl =

q1:---:9n

g1+ +qn=0

J;i/2

2x wj — zq \ 17 g ..

x TL ko — = s%%n(-f—_) T s~ wy % (1)
c\W;j — Za i

a<b a,) i<J
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The source J(z) is not arbitrary due to the identification ¢ ~ ¢ + 27. It must
have the form

7 (x) 712 Jié(x —y5), J; € Z. (14)

Then

k
em ) = expi Y Jip(ys)
i=1

is unique-valued. We have

T 2L P2
SR [

wi — zq \%a7i/? 9 g
% H Iza_zb| g qG.QbH( J a) H |wj_wj’ 27[_J]Jj/. (15)

a<b J<i’

Iyl =

||M8

This looks as a partition function of a two-dimensional plasma.
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The source J(z) is not arbitrary due to the identification ¢ ~ ¢ + 27. It must
have the form

7 (x) 712 Jié(x —y5), J; € Z. (14)

Then

k
em ) = expi Y Jip(ys)
i=1

is unique-valued. We have

T 2L P2
SR [

wi — zq \%a7i/? 9 g
% H Iza_zb| g qG.QbH( J a) H |wj—IUj/|2"J]Jj/- (15)

a<b J<i’

Iyl =

||M8

This looks as a partition function of a two-dimensional plasma. At high
‘temperature’ g the plasma is ‘ionized’, vortices are separated and correlation
functions decrease exponentially due to the Debye-type screening.
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The source J(z) is not arbitrary due to the identification ¢ ~ ¢ + 27. It must
have the form

——g x) 7@2] 5(x —yj5), J; € Z. (14)
Then

k
em ) = expi Y Jip(ys)
i=1

is unique-valued. We have

T 2L P2
SR [

||M8

Iyl =

wi — zq \%a7i/? 9 g
% H Iza_zb| g qG.QbH( J a) H |wj—IUj/|2"J]Jj/- (15)

a<b J<i’

This looks as a partition function of a two-dimensional plasma. At high
‘temperature’ g the plasma is ‘ionized’, vortices are separated and correlation
functions decrease exponentially due to the Debye-type screening. Al low
‘temperature’ the vortices of opposite vorticities attract and neutralize each other.
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The source J(z) is not arbitrary due to the identification ¢ ~ ¢ + 27. It must
have the form

7 (x) 712 Jié(x —y5), J; € Z. (14)

Then

k
em ) = expi Y Jip(ys)
i=1

is unique-valued. We have

T 2L P2
SR [

wi — zq \%a7i/? 9 g
% H Iza_zb| g qG.QbH( J a) H |’wj—wj'/|27"JJJj/- (15)

a<b J<i’

Iyl =

||M8

This looks as a partition function of a two-dimensional plasma. At high
‘temperature’ g the plasma is ‘ionized’, vortices are separated and correlation
functions decrease exponentially due to the Debye-type screening. Al low
‘temperature’ the vortices of opposite vorticities attract and neutralize each other.
In contrast to the usual plasma here these regimes are switched at a definite value
of g. It is called the Berezinskii-Kosterlitz—Thouless (BKT) transition.
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Critical value of g

Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.
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Critical value of g
Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.
The plasma phase corresponds to infrared divergent integrals, while the neutral
phase corresponds to infrared convergent integrals.
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Critical value of g

Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.

The plasma phase corresponds to infrared divergent integrals, while the neutral
phase corresponds to infrared convergent integrals. One integral is always
divergent due to the translation invariance, so that we ignore it.
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Critical value of g
Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.
The plasma phase corresponds to infrared divergent integrals, while the neutral
phase corresponds to infrared convergent integrals. One integral is always
divergent due to the translation invariance, so that we ignore it. Then the
divergence index is

27
In=2n—=1)+ = qags-
9 a<b

If I, < 0, the (n — 1)-tuple integral converges at large zq — xp.
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Critical value of g

Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.

The plasma phase corresponds to infrared divergent integrals, while the neutral
phase corresponds to infrared convergent integrals. One integral is always
divergent due to the translation invariance, so that we ignore it. Then the
divergence index is

27
In=2n-1)+ =" qag.
9 a<b

If I, < 0, the (n — 1)-tuple integral converges at large zo — x. Estimate the index
I,,. It depends on the sum

2
ZQaQb:%ZQaQb: % <an> - %Zqi=—%2q§ < —g
a a a

a<b a#b
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Critical value of g

Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.

The plasma phase corresponds to infrared divergent integrals, while the neutral
phase corresponds to infrared convergent integrals. One integral is always
divergent due to the translation invariance, so that we ignore it. Then the
divergence index is

27
In=2n-1)+ =" qag.
9 a<b

If I, < 0, the (n — 1)-tuple integral converges at large zo — x. Estimate the index
I,,. It depends on the sum

2
1 1 1 1 n
Dt == e = (> ) 5> aa=-2-> q@ <.
2 2 2 2 2
a<b a#b a a a
Thus all integrals converge, if
n

In < 2(n— 1)+2§ (—5) <o.
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Critical value of g

Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.
The plasma phase corresponds to infrared divergent integrals, while the neutral
phase corresponds to infrared convergent integrals. One integral is always
divergent due to the translation invariance, so that we ignore it. Then the
divergence index is

In=200- 1)+ 23" qagy.

9 a<b

If I, < 0, the (n — 1)-tuple integral converges at large zo — x. Estimate the index
I,,. It depends on the sum

2
> qaas :%ZQaQb = % <an> - %Zqﬁ =—%Zq§ < —g
a<b a#b a a a

Thus all integrals converge, if
In<2(m-1)+2° (-2) <o.
g 2

For large n it gives the exact bound: if this condition is satisfied, all integrals are
convergent, while if it is not satisfied, there exists a configuration {q,} for any
given n, for which the integral diverges.
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Critical value of g

Now let us find the critical value ggxT of the ‘temperature’ g corresponding to the
BKT transition.
The plasma phase corresponds to infrared divergent integrals, while the neutral
phase corresponds to infrared convergent integrals. One integral is always
divergent due to the translation invariance, so that we ignore it. Then the
divergence index is

In=200- 1)+ 23" qagy.

9 a<b

If I, < 0, the (n — 1)-tuple integral converges at large zo — x. Estimate the index
I,,. It depends on the sum

2
> qaas :%ZQaQb = % <an> - %Zqﬁ =—%Zq§ < —g
a<b a#b a a a

Thus all integrals converge, if
In<2(m-1)+2° (-2) <o.
g 2

For large n it gives the exact bound: if this condition is satisfied, all integrals are
convergent, while if it is not satisfied, there exists a configuration {q,} for any
given n, for which the integral diverges. By taking n — co we obtain the critical
value

gBKT = —- (16)




Critical value of g

e For g > gk the correlation length £ ~ rg f(g). The excitations are massive
with the mass m ~ £~1.

Lecture 1. O(2)-model and BKT tr



Critical value of g

e For g > gk the correlation length £ ~ rg f(g). The excitations are massive
with the mass m ~ £~1. In the limit 79 — 0 the exponent e~5 — 0 for vortex
solutions, but effectively the volume of the phase space grows, so that the
contribution of the vortices is always of the same order.
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Critical value of g

e For g > gk the correlation length £ ~ rg f(g). The excitations are massive
with the mass m ~ £~1. In the limit 79 — 0 the exponent e~5 — 0 for vortex
solutions, but effectively the volume of the phase space grows, so that the
contribution of the vortices is always of the same order.

e For g < gkt the theory is massless and for r > rg coincides with a
reduction of the free massless boson theory compatible with the identification
@~ p+2m.
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Free massless field

Consider a free massless field ¢(z) with the action

Solé) = - [ o @u0)* an
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Free massless field

Consider a free massless field ¢(z) with the action

1
Solé) = - [ o @u0)* (a7)
81
The classical equation of motion is

80" p = 0.
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Free massless field

Consider a free massless field ¢(z) with the action

Solé) = - [ o @u0)* (17)
The classical equation of motion is
0,0F¢ = 0.
Define the dual field ¢(z) as a solution to the equation

8u¢~> =€uv 0”9, €01 = —€10 =1, (18)
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Free massless field

Consider a free massless field ¢(z) with the action

Solé) = - [ o @u0)* (17)
The classical equation of motion is
0,0F¢ = 0.
Define the dual field ¢(z) as a solution to the equation
BMZ; =€, 0V 9, €01 = —€10 = 1, (18)

or

8¢ = O, dp = —0é. (19)
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Free massless field

Consider a free massless field ¢(z) with the action

Solé) = - [ o @u0)* (17)
The classical equation of motion is
0,0F¢ = 0.
Define the dual field ¢(z) as a solution to the equation
BMZ; =€, 0V 9, €01 = —€10 = 1, (18)

or

8¢ = O, dp = —0é. (19)

We rewrite it as follows _
¢~5(1) = ¢r(2) + ¢L(2), (20)
d(z) = ¢pr(2) — dL(2).
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Free massless field

Consider a free massless field ¢(z) with the action

1
Solé) = - [ o @u0)* (a7)
81
The classical equation of motion is
0,0F¢ = 0.
Define the dual field ¢(z) as a solution to the equation
8u¢~> =€uv 0”9, €01 = —€10 =1, (18)
or ~ . ~
d¢p = 09, 0¢p = —0¢. (19)
We rewrite it as follows () ) @)
¢(z) = ¢r(2) + ¢L(2),
- ~ (20)
¢(z) = ¢r(2) — o1(2).
This decomposition (up to some subtleties) is valid in the quantum case. The
correlation functions
/ R = = R =
(#r(2)9R(2"))0 = log Pk (#r(2)¢r(2"))o = log Z_2 (#r(2)9L(Z))0 =0

(21)
are consistent with the theory.
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Exponential operato

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge.
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

<eic¥1¢>R(zl) . .eian¢R(zn)> - <ei Ya=1 04a¢R(Za)>
0 0
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

2
<e’ia1¢R(zl) e eian¢R(Zn)>0 - <ei 23:1 0‘a¢R(za)>0 = exp <; (i aa¢R(zu)> >
a=1 0
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

2
<e’ia1¢R(zl) e eian¢R(Zn)>0 - <ei 23:1 0‘a¢R(za)>0 = exp <; (i aa¢R(zu)> >
a=1 0

log ,ﬂ log - B
Lo 0 ° Za—Zp
= e [ 23 alohio - Y ownortnoton

a=1 a<b

2t
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

2
<e’ia1¢R(zl) e eian¢R(Zn)>0 - <ei 23:1 0‘a¢R(za)>0 = exp <; (i aa¢R(zu)> >
a=1 0

log % log — B
S Za—2p
1 & 0 lEaaﬁ n Za — Zp Ga %
—oxp [ =5 2 a2l6h0 — X awalonGaon | = () 7 ] (7)

a=1 a<b R a<b R
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

<eic¥1¢>R(zl) o

n 2
emm<2n>>0 = (ermimneon) = (1 (3 anonte) >

log . log Za Rp
A ,_/% l 042 n - Ga b
0 — Zaaab ¢R(Za)¢(zb)> = (%) ’ e H (LRZF))
a<b

a<b

n
_7'022 aaR (Z D‘a)2 H(Zafzb)aaab.
a<b
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

<eic¥1¢>R(zl) o

n 2
emm<2n>>0 = (ermimneon) = (1 (3 anonte) >

log . log Za Rp
A ,_/% l 042 n - Ga b
0 — Zaaab ¢R(Za)¢(zb)> = (%) ’ e H (LRZF))
a<b

a<b

n
_7'022 aaR (Z D‘a)2 H(Zafzb)aaab.

a<b

Here we assumed the T ordered averages such that z, is assumed ‘later’ than

Za+1-
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

<eic¥1¢>R(zl) o

n 2
emm<2n>>0 = (ermimneon) = (1 (3 anonte) >

log . log Za Rp
A ,_/% l 042 n - Ga b
0 — Zaaab ¢R(Za)¢(zb)> = (%) ’ e H (LRZF))
a<b

a<b

n
_7'022 aaR (Z D‘a)2 H(Zafzb)aaab.

a<b

Here we assumed the T ordered averages such that z, is assumed ‘later’ than

Za+1-

3 [e%
elPR,L — o

makes the operators :-- -

2 )
2
/ :elad;'R,L;,

We see that the renormalization

el*? = 7'8‘2 ' ¢ elod — ré“2 eiad, (22)

: finite.
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Exponential operators

Consider the exponents e'®?R,L(%) of the fields. Their correlation functions
diverge. In the functional integral manner we can derive them as follows:

2
<e’ia1¢R(zl) e eian¢R(Zn)>0 - <ei 23:1 0‘a¢R(za)>0 = exp <; (i aa¢R(zu)> >
a=1 0

log . log Za Rp
1 /—’R ,_/% 0 lzaai n Za — zp ) Fo
= exp 3 Z RO — Zaaab (SR (za)d(2p))o | = (E) ’ H ( aR )
a=1 a<b a<b

n
_7'022 aaR (Z D‘a)2 H(Zafzb)aaab.

a<b

Here we assumed the T ordered averages such that z, is assumed ‘later’ than
Za+1. We see that the renormalization

2 -

et (22)

% eiad,

iaq}_ i
:, e =y

) 2 ) )
ela¢R,L :,,,84 /2 :elad’R,L;’ ezaqb :,,,84
makes the operators :---: finite. We have

<:ei0¢1¢R(21): :eiand)R(Zn):)O —r31(Za aq)? H(Za — )%,
a<b

<:€i041¢‘L(51): :ei&n¢L(2n):>0 — R*%(Za aq)? H(ga — )%,
a<b

(23)
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Scaling transformation

The renormalized exponents :e’*?R.L: are no more dimensionless and have the
dimensions a2/2 in mass (inverse length) units.
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Scaling transformation

The renormalized exponents :e’*?R.L: are no more dimensionless and have the
dimensions a?/2 in mass (inverse length) units. These dimensions coincide with
the scaling dimensions of the operators.

Lecture 1. O(2)-model and BKT tr



Scaling transformation

The renormalized exponents :e’*?R.L: are no more dimensionless and have the
dimensions a?/2 in mass (inverse length) units. These dimensions coincide with
the scaling dimensions of the operators. A system of operators O;(z) possesses
dimensions d;, if all correlation function are invariant under simultaneous
transformations

O;(z) = 5% 0y (sx).
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Scaling transformation

The renormalized exponents :e’*?R.L: are no more dimensionless and have the
dimensions a?/2 in mass (inverse length) units. These dimensions coincide with
the scaling dimensions of the operators. A system of operators O;(z) possesses
dimensions d;, if all correlation function are invariant under simultaneous
transformations

O;(z) = 5% 0y (sx).

Indeed, in the limit R — oo we have

<5eio‘1¢R(zl); :eian¢R<2n):>O = Ha<b(za _Zb)auab7 Za Qq :0;
0 otherwise,
(24)

(:e1010L (31, L. giomdr(Zn) ) — ooy (Za — 2)%e%, 3, aq =0;
0 otherwise.

These correlation functions are invariant under the scaling transformation.
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Scaling transformation

The renormalized exponents :e’*?R.L: are no more dimensionless and have the
dimensions a?/2 in mass (inverse length) units. These dimensions coincide with
the scaling dimensions of the operators. A system of operators O;(z) possesses
dimensions d;, if all correlation function are invariant under simultaneous
transformations

O;(z) = 5% 0y (sx).

Indeed, in the limit R — oo we have

<5eio‘1¢R(zl); :eian¢R<2n):>O = Ha<b(za _Zb)auab7 Za Qq :0;
0 otherwise,
(24)

(:e1010L (31, L. giomdr(Zn) ) — ooy (Za — 2)%e%, 3, aq =0;
0 otherwise.

These correlation functions are invariant under the scaling transformation. Then

we have
N 8.3 oo S, 243, 82
<H ezﬁj¢(yj) H 6laa¢(za)> — 7.0 a —a ] H Iza _ Zb|2aaab x
Jj=1 a=1 ) a<b

P Qn,Bj 1 — JR— 0

o 2Ba By Wj — Za ) Z%fZﬂg =0
X w w; X 25
jg’ | J ]/‘ E ('J)j — 2a> {0 otherwise. (25)
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Partition function in terms of the free b
This coincides with the integrand of Z[J] if

™ g
a =4/ qa, =4/ J;. 26
@ \/;q Bj 1 (26)
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Partition function in terms of the free b
This coincides with the integrand of Z[J] if

™ g
LR S 26
= Tae B= o (26)

Then we have

oo
1 _
2= > 7 2"/d2x1 R

a1 an
q1+--+qn=0

o <ﬁei\/EJj‘Z’<yj) ﬁeiﬁqa¢(wa)>
Jj=1 a=1

0
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Partition function in terms of the free b

This coincides with the integrand of Z[J] if

™ g
LR S 26
= Tae B= o (26)

Then we have

oo
1 _
2= > 7 2"/d2x1 R

a1 an
q1+--+qn=0

o <ﬁei\/EJj‘Z’<yj) ﬁeiﬁqa¢(wa)>
Jj=1 a=1 0

The integrand is remarkably symmetric with respect to the replacements

g 2m2g7h,  kon, g e ;6@ d(x).
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Partition function in terms of the free b
This coincides with the integrand of Z[J] if

™ g
LR S 26
= Tae B= o (26)

Then we have

Z[J*g] = Z i, Zq T62n/d2x1~--d2xn
k n
NE=IE1on iﬁqa¢<xa>>
X e e
(/e 1

a1 n
q1+--+qn=0

0
The integrand is remarkably symmetric with respect to the replacements
g @2m)Pg,  ken  qeld; 9@ & é).

Moreover, the Lagrangian of the free field is written identically in terms of both
the fields ¢ and ¢. Thus we can identify

p(@) = [ = (). (27)
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Sine-Gordon theo
2

. 549 ay —
Since rj = < ry?, we may neglect the contribution of a g-vortex compared to the
contribution of ¢ instances of a 1-vortex.
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Sine-Gordon theo
2

. 549 ay o
Since rj = < ry?, we may neglect the contribution of a g-vortex compared to the
contribution of ¢ instances of a 1-vortex. It means that we may restrict the sum
over vorticities to g, = £1.
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Sine-Gordon theo
2

. 549 ay o
Since rj = < ry?, we may neglect the contribution of a g-vortex compared to the
contribution of ¢ instances of a 1-vortex. It means that we may restrict the sum
over vorticities to g, = £1. Hence

oo r74n k a1 2n e | .
Z[Jjg} = Z 0 /d2x1 < d?xoy Z e'Vir Ti9i) H e '\/;¢(I )
1 a=1

!
n=0 (2TL) q1,--,q2n==%1 \j=

0

(28)
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Sine-Gordon theory
T 2 Tr
. K ay R
Since rj = < ry?, we may neglect the contribution of a g-vortex compared to the

contribution of ¢ instances of a 1-vortex. It means that we may restrict the sum
over vorticities to g, = £1. Hence

Z[Jfg} = i 7‘6471 /d2I1 ~'-d2x2n Z <He \/7‘] ¢(yg) H f¢(za)>

n=0 (Qn)' ~q2n==%1 0
> 74 k iy /] = b n i,/ Eo(x —i, /[ Zp(x
Z /dQIl"'dQIQn <Hel i‘]jqb(yj) H (6 \/;(b( * te \/;¢( a))>

(2n j=1 a=1 0

(28)
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Sine-Gordon theory
2

. 549 ay o
Since rj = < ry?, we may neglect the contribution of a g-vortex compared to the
contribution of ¢ instances of a 1-vortex. It means that we may restrict the sum
over vorticities to g, = £1. Hence

0 T,74n k a1 2n g )T .
A= S [ e 5 ([TVE 30 ] e For
1 a=1

|
n=0 (2TL) q1,--,q2n==%1 \j= 0
oo —4n k . . 2n = =
_ o ,/d%lmd%zn <H€z\/4€, Jjb(y;) 11 (ezﬁwna) ‘e z\/;¢<za>)>
o (2n)! j=1 a=1 0

koo
= <H ez\/ng(j)(yj) exp (QTJQ /dzx cos \/?¢(1‘))>
Jj=1 g 0

(28)
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Sine-Gordon theory
2

. 549 ay o
Since rj = < ry?, we may neglect the contribution of a g-vortex compared to the
contribution of ¢ instances of a 1-vortex. It means that we may restrict the sum
over vorticities to g, = £1. Hence

0 T,74n k a1 2n g )T .
A= S [ e 5 ([TVE 30 ] e For
1 a=1

|
n=0 (2TL) q1,--,q2n==%1 \j= 0
oo —4n k . . 2n = =
_ o ,/d%lmd%zn <H€z\/4€, Jjb(y;) 11 (ezﬁwna) ‘e z\/;¢<za>)>
o (2n)! j=1 a=1 0

koo
= <H ez\/ng(j)(yj) exp (QTJQ /dzx cos \/?¢(1‘))>
Jj=1 g 0

k ~
= /Dqﬁe*SSG[M H ei\/ i Jj¢(y.7)7 (28)
j=1
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Sine-Gordon theory
2

. 549 ay o
Since rj = < ry?, we may neglect the contribution of a g-vortex compared to the
contribution of ¢ instances of a 1-vortex. It means that we may restrict the sum
over vorticities to g, = £1. Hence

oo r74n k a1 2n e | .
Z[Jjg} = Z 0 /d2x1 < d?xoy Z e'Vir Ti9i) H e '\/;¢(I )
1 a=1

n=0 (Qn)' q1,--,q2n==%1 \j= 0
[ee] —4n k . - 2n = N
_ o a1 daan { ] i i Ti9w) 11 RAVETLCH +e—z\/§¢<za>
(2n)!
n=0 j=1 a=1 0
g i/ 1% Tid(ys) 2 [ 2 /T
= H e Var "I exp (QTJ /d x cos 7<Z>(1‘)>
j=1 9
0
k -
= /D¢6755G[¢] H Vi Ti0ts) (28)
j=1
where )
0
Ssalol = [ da ((‘8‘—:” — p-cos de) (29)
is the action of the sine-Gordon model with the parameters
z_2
/8 = ) H = 2T0 (30)
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Scaling dimension of the perturbation term

The sine-Gordon model is a perturbation of the free massless fermion model with
the perturbation term ~ :cos ¢ in the Lagrangian with the scaling dimension

™

Ap=p5%=—.
g

There are three regimes:
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Scaling dimension of the perturbation term

The sine-Gordon model is a perturbation of the free massless fermion model with
the perturbation term ~ :cos ¢ in the Lagrangian with the scaling dimension

Ap=p2=".
g
There are three regimes:

O Ap <2 (9> gkr). The perturbation is relevant and superrenormalizable. It
does not change the ultraviolet behavior of the theory, but essentially changes
the infrared behavior.
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Scaling dimension of the perturbation term

The sine-Gordon model is a perturbation of the free massless fermion model with
the perturbation term ~ :cos ¢ in the Lagrangian with the scaling dimension

™

Ap=p5%=—.
g

There are three regimes:

O Ap <2 (9> gkr). The perturbation is relevant and superrenormalizable. It
does not change the ultraviolet behavior of the theory, but essentially changes
the infrared behavior.

@ Ap >2 (g < gkr)- The perturbation is irrelevant and nonrenormalizable. It
changes the infrared behavior breaking the perturbation theory beyond the
leading (tree) contributions. The infrared behavior remains free-fermion-like.
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Scaling dimension of the perturbation term

The sine-Gordon model is a perturbation of the free massless fermion model with
the perturbation term ~ :cos ¢ in the Lagrangian with the scaling dimension

™

Ap=p5%=—.
g

There are three regimes:
O Ap <2 (9> gkr). The perturbation is relevant and superrenormalizable. It
does not change the ultraviolet behavior of the theory, but essentially changes
the infrared behavior.

@ Ap >2 (g < gkr)- The perturbation is irrelevant and nonrenormalizable. It
changes the infrared behavior breaking the perturbation theory beyond the
leading (tree) contributions. The infrared behavior remains free-fermion-like.

@ Ap =2 (9 =gkTr). The perturbation is marginal. In the case of the sine-
Gordon theory it is also renormalizable. Nevertheless it changes both infrared
and ultraviolet behavior.
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s boson

p(z) =Q —iPlogz+ > “Hk,
k20 ik
[P, Q] = —i, lak, a;] = kdk11,0,

Pl0) = a|0) =0, (Ola_p =0 (k>0).
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. ar _p
=Q —1iPl + E —
p(2) =Q —iPlogz ikz ,

k#0

[P, Q] = —i, lak, a;] = kdk11,0,
P|0) = ag|0) =0, (Ola—x =0 (k> 0).

Calculate
(e(2)ep(2)) = 77
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Seminar: free massless boson

1. Define

Calculate

p(z) =Q —iPlogz+ > “Hk,
k20 ik
[P,Q] = —i, lak, a;] = kdky1,0,

Pl0) = a|0) =0, (Ola_p =0 (k>0).

(o()p(2)) = (@) +log ——.

zl — 2z
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Seminar: free massless boson

1. Define
p(z) =Q —iPlogz+ > “Hk,
i Z0 ik
[P, Q] = —i, lak, a1] = kdk41,0,
Pl0) = al0) =0, (Ola_p =0 (k> 0).
Calculate
(p(2)p(2)) = (Q%) + log —
2l —z
2. Define
elae(ro,z) — exp | iaQ + aPlogz + a Z (%Z—k Ak (z— To)k) )
k k

k>0

B ] a_g . ap
elap(ro,z), — giaQ aP exp | —a Z T(z _ To)k exp | @ Z fz k
k>0 k>0




Seminar: free massless boson

1. Define
p(z) = Q—iPlogz+ > Kok,
i Z0 ik
[P, Q] = —i, lak, a1] = kdk41,0,
Pl0) = al0) =0, (Ola_p =0 (k> 0).
Calculate
(P )p(=) = Q%) + log
2. Define
iap(ro,2) — ; Ok —k _ Ok, _ .k
e exp zaQ—l—aPlogz—l—aZ(kz . (z 7’0)) R

k>0

i i a—g . ap _
.elae(ro,2). :ezanaPexp _O‘Z T(Z—To)k exp az ?Z k
k>0 k>0

Calculate the coefficient:

etae(ro,z) — 729 etaw(ro,z).




Seminar: free massless boson

1. Define
p(z) = Q—iPlogz+ > Kok,
i Z0 ik
[P, Q] = —i, lak, a1] = kdk41,0,
Pl0) = al0) =0, (Ola_p =0 (k> 0).
Calculate
(P )p(=) = Q%) + log
2. Define
iap(ro,2) — ; Ok —k _ Ok, _ .k
e exp zaQ—l—aPlogz—l—aZ(kz . (z 7’0)) R

k>0

i i a—g . ap _
.elae(ro,2). :ezanaPexp _O‘Z T(Z—To)k exp az ?Z k
k>0 k>0

Calculate the coefficient:

. 2 .
¢i0e(r0:2) = 0°/2 giaw(ro.2),




Seminar: free massless boson
3. Define

tap(z), L iap(0,2). _ iaQ aP a—k g A g

e =€ =€ z exp —Q —2Z exp (0% —Z
> 2%
k>0 k>0
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
elee(2), = piaw(0:2), — iaQ aP o [ o —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
etare(z). L gianp(2). _ 99 top(z)Hare(2),
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
et (2); = tew(0,2), = glaQ aP oy | g —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
ptane(z). L giane(z). (2 — z)e192 top(z)Hare(2),
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
et (2); = tew(0,2), = glaQ aP oy | g —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
ptane(z). L giane(z). (2 — z)e192 top(z)Hare(2),

4. Calculate

<:ei2§v=1 @iz y = 77
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
et (2); = tew(0,2), = glaQ aP oy | g —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
ptane(z). L giane(z). (2 — z)e192 top(z)Hare(2),

4. Calculate

otherwise.

<:ei2§\’=1 aw(zi):> _ 1, Zj aj =0;
0
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
et (2); = tew(0,2), = glaQ aP oy | g —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
ptane(z). L giane(z). (2 — z)e192 top(z)Hare(2),

4. Calculate

0 otherwise.

<:ei2§\’=1 aw(zi):> _ {1, >, 0 =0;
5. Calculate

(efore(21); o eiane(an) )y = 79
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
et (2); = tew(0,2), = glaQ aP oy | g —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
ptane(z). L giane(z). (2 — z)e192 top(z)Hare(2),

4. Calculate

0 otherwise.

<:ei2§\’=1 aw(zi):> _ {1, >, 0 =0;
5. Calculate

N
) X 1, > . a; =0
etare(z1), L. etane(2N). )y — | | 2 — 2 )X e 3 ’
< ) ; <].( i) 0 otherwise.
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
et (2); = tew(0,2), = glaQ aP oy | g —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
ptane(z). L giane(z). (2 — z)e192 top(z)Hare(2),

4. Calculate

0 otherwise.

<:ei2§\’=1 aw(zi):> _ {1, Zj aj =0;

5. Calculate

N
) X 1, > . a; =0
eta1e(z1). L glane(EN). ) = | | 2 — 2 )% 4 3= )
< ) (2 = %) 0 otherwise.

i<j
6. Prove that this correlation function is invariant under the transformation

eleie(zi), )\012/2 eleip(Azi).
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Seminar: free massless boson

3. Define
. . ; a_k Ak —k
et (2); = tew(0,2), = glaQ aP oy | g —2" | exp | @ —z
pl-ad = plad
k>0 k>0
Calculate the coefficient
ptane(z). L giane(z). (2 — z)e192 top(z)Hare(2),

4. Calculate

0 otherwise.

<:ei2§\’=1 aw(zi):> _ {1, Zj aj =0;

5. Calculate

N
) X 1, > . a; =0
eta1e(z1). L glane(EN). ) = | | 2 — 2 )% 4 3= )
< ) (2 = %) 0 otherwise.

i<j
6. Prove that this correlation function is invariant under the transformation
eleie(zi), )\012/2 eleip(Azi).
7. Prove that this correlation function is invariant under the transformation

. 2 . —1
etaip(2i), _>Zi_a etaiv(—2; 7).
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