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Thirring model

The massive Thirring model in the Minkowski space:

STl 0l = [ (B0, -y — Lr)?). "
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Here v(x), ¥ (x) are the Dirac fermion field and its Dirac conjugate. The
matrices satisfy the relations

YA+t =29, A =04#0
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The massive Thirring model in the Minkowski space:
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Here v(x), ¥ (x) are the Dirac fermion field and its Dirac conjugate. The
matrices satisfy the relations

AT Tyt =2 T = g Oyka0,

They can be chosen as

The model has a conserved current

3t =PyHy. (3)
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Thirring model

The massive Thirring model in the Minkowski space:
MT A 2 T 97 w2
ST, ) = [ o (B0, —myw - Ly )?) )

Here v(x), ¥ (x) are the Dirac fermion field and its Dirac conjugate. The
matrices satisfy the relations

AT Tyt =2 T = g Oyka0,

They can be chosen as

The model has a conserved current
3 =Py, 3)
When m = 0 there is another conserved current

3 =0 = ey, === -1 (4)
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Thirring model

The massive Thirring model in the Minkowski space:
MT A 2 T 97 w2
ST, ) = [ o (B0, —myw - Ly )?) )

Here v(x), ¥ (x) are the Dirac fermion field and its Dirac conjugate. The
matrices satisfy the relations

AT Tyt =2 T = g Oyka0,

They can be chosen as

The model has a conserved current
J* = pyHep. (3)
When m = 0 there is another conserved current
35 =93yt = =g, Ol =0 =-1. (4)

Excitations: fermion, antifermion, and for g > 0 neutral boson bound states.
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Sine-Gordon model

The sine-Gordon model:

558G ] = /d2x (% +,ucos,8¢) . (5)
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Sine-Gordon model

The sine-Gordon model:
550] = [ o (1220 0O ) cos 5). (5)

This model has a topological number

4= 1 (8lt, +00) ~ 61, ~00)) € Z. (6)
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Sine-Gordon model

The sine-Gordon model:
SSG[¢]=/d2I (( M¢) +/LCOS§¢)

This model has a topological number

4= $-(8(t,+o0) — 6(t, ~0)) € 7

It conserves on solutions and can be written as

q= L3 dz 91 4(t,x) = / dfu Jtops

21 ) _ oo

where df,, = ey dx” is the one-dimensional surface element
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Sine-Gordon model

The sine-Gordon model:

550] = [ o (1220 00 peos o). (5)
This model has a topological number
_ 5 .
4 = 4= ({1, +00) — 9(t, ~0)) € Z. ©)
It conserves on solutions and can be written as
B Sy
a=5 [ dworstta) = [ dit, (1)

where df,, = eypdx” is the one-dimensional surface element and jtuop is the
topological current:

. B , B v
Gop = =5 Oub, il = =5 0uOu6 = 0. (8)
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Digression: Stationary solutions of field equations

Consider a two-dimensional model of one scalar field with the action
0,.0)?
st = [ (P25~ i)

Suppose that the potential U(¢) possesses a set of degenerate absolute minima ¢;.
Let us order these minima so that ¢; < ¢i41.
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0,.0)?
st = [ (P25~ i)

Suppose that the potential U(¢) possesses a set of degenerate absolute minima ¢;.
Let us order these minima so that ¢; < ¢;4+1. We say that a solution ¢(z) with
finite action has topological charge g, if
o d(x) — ¢; as !
o ¢(z) = Pitq as xl — +oo.

— —00,
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solutions of field equa

Consider a two-dimensional model of one scalar field with the action
0,.0)?
st = [ (P25~ i)

Suppose that the potential U(¢) possesses a set of degenerate absolute minima ¢;.
Let us order these minima so that ¢; < ¢;4+1. We say that a solution ¢(z) with
finite action has topological charge g, if

o ¢(x) = ¢; as 1 — —oo0,
o ¢(z) = Pitq as xl — +oo.

Subject to these conditions any nontrivial static solution ¢(z) = ¢p(x!) has
topological charge ¢ = +1.
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R =U'(¢p).
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Consider a two-dimensional model of one scalar field with the action
0,.0)?
st = [ (P25~ i)

Suppose that the potential U(¢) possesses a set of degenerate absolute minima ¢;.
Let us order these minima so that ¢; < ¢;4+1. We say that a solution ¢(z) with
finite action has topological charge g, if

o ¢(x) = ¢; as 1 — —oo0,
o ¢(z) = Pitq as xl — +oo.

Subject to these conditions any nontrivial static solution ¢(z) = ¢p(x!) has
topological charge ¢ = +1.

Proof. The static solution satisfies the equation
R =U'(¢p).

This is the Newton equation with the potential —U(y). The points ¢; correspond
to maxima of this potential. The field ¢, which starts its ‘movement’ at the point
¢; may only finish it at the points ¢;41.
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solutions of field equa

Consider a two-dimensional model of one scalar field with the action
0,.0)?
st = [ (P25~ i)

Suppose that the potential U(¢) possesses a set of degenerate absolute minima ¢;.
Let us order these minima so that ¢; < ¢;4+1. We say that a solution ¢(z) with
finite action has topological charge g, if

o ¢(x) = ¢; as 1 — —oo0,
o ¢(z) = Pitq as xl — +oo.

Subject to these conditions any nontrivial static solution ¢(z) = ¢p(x!) has
topological charge ¢ = +1.

Proof. The static solution satisfies the equation
R =U'(¢p).

This is the Newton equation with the potential —U(y). The points ¢; correspond
to maxima of this potential. The field ¢, which starts its ‘movement’ at the point
¢; may only finish it at the points ¢;41.

If there is a static solution, we may define a family of solutions moving with any

velocity —1 < v < 1:
1 0
zt —ox
ww=¢(————).

V1—12
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Digression: Classical solutions of the sine-Gordon equation

There are kink (¢ = 1) and antikink (¢ = —1) solutions:

m(z! —vz® — z})

V1—02?

o(z) = i% arctg exp
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Digression: Classical solutions of the sine-Gordon equation

There are kink (¢ = 1) and antikink (¢ = —1) solutions:

4 m(z! —vz® — z})
¢(x) = £— arctgexp
() 3 s
The breather solution
V1 — w?coswT z0 — vzl — z! — 20 —
¢(x) = 4arctg , T= , = ———
wcosV1 —w2é V1—0? V1—02

depends on the parameter w (0 < w < 1).
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Digression: Classical solutions of the sine-Gordon equation

There are kink (¢ = 1) and antikink (¢ = —1) solutions:

4 m(z! —vz® — z})
¢(x) = £— arctgexp
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depends on the parameter w (0 < w < 1). It is not stationary and can be
considered as a kink—antikink bound state.
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equation.
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depends on the parameter w (0 < w < 1). It is not stationary and can be
considered as a kink—antikink bound state.

Kinks, antikinks and breathers are the only solitary waves of the sine-Gordon
equation. It can be checked that any solution decays to a system of solitary waves
with different velocities as 9 — +o0o0. Moreover, the composition and velocities of
the solitary waves in far past and far future coincide, so that the scattering of
solitary wave reduces to shifts of the parameters x8, :)3(1) as a result of interaction.
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Digression: Classical solutions of the sine-Gordon equation

There are kink (¢ = 1) and antikink (¢ = —1) solutions:

4 m(z! —vz® — z})
¢(x) = £— arctgexp
() 3 s
The breather solution
V1—w? 20 — vzl — 20 2! —vz0 — 2}
¢(x) = 4arctg WCSWT - o 0 e=""—X-_"0

weos V1 — w2g’ V1—0? VI—e2

depends on the parameter w (0 < w < 1). It is not stationary and can be
considered as a kink—antikink bound state.

Kinks, antikinks and breathers are the only solitary waves of the sine-Gordon
equation. It can be checked that any solution decays to a system of solitary waves
with different velocities as 9 — +o0o0. Moreover, the composition and velocities of
the solitary waves in far past and far future coincide, so that the scattering of
solitary wave reduces to shifts of the parameters x8, :)3(1) as a result of interaction.
One may expect the quantum spectrum to consist of a kink (¢ = 1), antikink

(¢ = —1) and a discrete series of breathers. The density of the mass spectrum of
breathers decreases with increasing .
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Equivalence of the two models

We will see that these two models are equivalent subject to

g=m(B"*-1), (9)
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Equivalence of the two models

We will see that these two models are equivalent subject to
g = W(ﬁ_Q - 1)7 (9)

The massive term in the Thirring model corresponds to the cosine term in the
sine-Gordon model, so that

2
poomr” (10)
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Equivalence of the two models

We will see that these two models are equivalent subject to
g = W(ﬁ_Q - 1)7 (9)

The massive term in the Thirring model corresponds to the cosine term in the
sine-Gordon model, so that

2
pomr® 1, (10)

The conserved currents also coincide
3" = dlops (11)

so that the fermion number in the Thirring model coincides with the topological
number in the sine-Gordon model.
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Massless Thirring model

Rewrite the action in terms of the light cone variables:

SMTy, §) = / P (20 B — 20 O+ im (6 b — ) — 290 ah).
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Massless Thirring model

Rewrite the action in terms of the light cone variables:
SMT 16, 9] = [ o i dun — 20 0va -+ im(wi va — v ) — 200 v davn)

The components of the currents are

jz=—v1, gz =i, (12)
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Massless Thirring model

Rewrite the action in terms of the light cone variables:
SMT 9] = / d?a (2 Oy — 2ty Do + iy 2 — ¥y 1) — 2097 Y3 Yatn).
The components of the currents are

Jo=—Yier, jr =g ¢ (12)
In the case m = 0 the equations of motion read

A1 = —ighd Y = —igjzin,

(13)
by = igp T ripe = —igjatha.

Lecture 2. Bosonization of the Thirring model



Massless Thirring model

Rewrite the action in terms of the light cone variables:

SMTy, §) = / P (20 B — 20 O+ im (6 b — ) — 290 ah).

The components of the currents are

Jo = =g,z =F e, (12)
In the case m = 0 the equations of motion read
Oy = —ighF othr = —igjzin,
: : (13)

Oa = g Yrepa = —igja¢a.
Since e*¥ 8,5, = O,74 = 0 the current j, is a gradient of a free field:

5 .4 . (19)

]u:_g W
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Massless Thirring model

Rewrite the action in terms of the light cone variables:
SMT 16, 9] = [ o i dun — 20 0va -+ im(wi va — v ) — 200 v davn)
The components of the currents are

Jo=—Yier, jr =g ¢ (12)
In the case m = 0 the equations of motion read

Ip1 = —igyy a1 = —igjzir,

. . (13)
Oth = igahy P1ipa = —igjzpa.
Since e*¥ 8,5, = O,74 = 0 the current j, is a gradient of a free field:
) B ., B
Ju = _? M¢ = _*€uuay¢- (14)
T 2w

We will think of & as of the dual of another field ¢.
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Massless Thirring model

Rewrite the action in terms of the light cone variables:
SMT 16, 9] = [ o i dun — 20 0va -+ im(wi va — v ) — 200 v davn)
The components of the currents are

Jo=—Yier, jr =g ¢ (12)
In the case m = 0 the equations of motion read

Ip1 = —igyy a1 = —igjzir,

o . (13)
Oth = igahy P1ipa = —igjzpa.
Since e*¥ 8,5, = O,74 = 0 the current j, is a gradient of a free field:
) B ., B
Ju = _? M¢ = _*€uuay¢- (14)
T 2w

We will think of & as of the dual of another field ¢. Both satisfy the d’Alembert
equation: _
00t ¢ = 0,0"¢ = 0.

The solution to these equations reads

d(x) = () +¢(2),  (x) = p(2) — #(2), (15)
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Massless Thirring model

Rewrite the action in terms of the light cone variables:
SMT 16, 9] = [ o i dun — 20 0va -+ im(wi va — v ) — 200 v davn)
The components of the currents are

Jo=—Yier, jr =g ¢ (12)
In the case m = 0 the equations of motion read

Ip1 = —igyy a1 = —igjzir,

. . (13)
Oth = igahy P1ipa = —igjzpa.
Since e*¥ 8,5, = O,74 = 0 the current j, is a gradient of a free field:
) B ., B
Ju = _? M¢ = _*€uuay¢- (14)
T 2w

We will think of & as of the dual of another field ¢. Both satisfy the d’Alembert
equation: _
00t ¢ = 0,0"¢ = 0.

The solution to these equations reads

b(x) = 0(2) + 7(2), b(x) = p(2) — (2), (15)
Thus we have
Jo=—t-0p, ji=1-05 (16)
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Massless Thirring model: quantization

The equations of motion (13) have the solution

G1(2,2) = Fi(2)e 352 ys(2,2) = Fa(2)el 792,
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Massless Thirring model: quantization

The equations of motion (13) have the solution

9B (= ;9B
P1(2,2) = Fi(2)e 3593, yo(z,2) = Fa(2)e’ $n ¥4,
while equation (12) gives

B
21

B

oo = i1 = Fi(2)Fy (2), 297 = Vi = Fa(2)F5(2).  (17)
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Massless Thirring model: quantization

The equations of motion (13) have the solution

9B (= ;9B
P1(2,2) = Fi(2)e 3593, yo(z,2) = Fa(2)e’ $n ¥4,
while equation (12) gives

B
21

B

dp =1 = F1(2)Ff (2), 5595:711;7#2 =F(2)F5(2).  (17)
This makes it possible to find a classical solution in terms of two analytic

functions F;(z).
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9B (= ;9B
P1(2,2) = Fi(2)e 3593, yo(z,2) = Fa(2)e’ $n ¥4,
while equation (12) gives

B
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B = ¢ y1 = F1(2)F (2), 5399:711;7#2 =F(2)F5(2).  (17)
This makes it possible to find a classical solution in terms of two analytic
functions F;(z).

What can be done in the quantum case?
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This makes it possible to find a classical solution in terms of two analytic
functions F;(z).

What can be done in the quantum case? Conjecture the fields v; in the form
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where N; are constants
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oo = i1 = Fi(2)Fy (2), 297 = Vi = Fa(2)F5(2).  (17)

This makes it possible to find a classical solution in terms of two analytic
functions F;(z).
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where N; are constants and 7; are algebraic elements with the relations

mnz = —7n2Mm1- (19)
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The equations of motion (13) have the solution
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B = ¢ y1 = F1(2)F (2), 5399:711;7#2 =F(2)F5(2).  (17)
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functions F;(z).
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where N; are constants and 7; are algebraic elements with the relations

mnz = —7n2Mm1- (19)
As in the classical case we have
B
ar=—p1 =L, (20)
21

But the exponential form of F; seems to be strange. To understand them consider
the operator product expansions of ;.
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Massless Thirring model: quantization
We have

T/’i(l‘/)iﬁj (z) = mm@

5 (Z/ _ Z)aiaj (2/ _ Z)Biﬁj
T

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
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Massless Thirring model: quantization
We have

T/’i(l‘/)iﬁj (z) = mm@

5 (Z/ _ Z)aiaj (2/ _ Z)Biﬁj
T

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then ¢;(2")¥; (x) = —v; (@) (2), if

0412 - ,312 €22+ 1, ajag — (182 € 27Z. (22)
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Massless Thirring model: quantization

We have

/N;N;
bi(a" Wy (z) = min; L2

— 2)@i% (5 — 5)PiB;
S (e (- 2)

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then ; (2" (x) = =5 (2)i(2), if
—B82e2Z+1, aras — P12 € 2Z. (22)
Now let us expand the product % (¢’)31 () in powers of 2/ — x:

Ny B2
Fe@) = S -l (7 -7
x e (e()—e(2)—ib1(2(Z)~2(2)  (23)
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Massless Thirring model: quantization

We have

/N;N;
bi(a" Wy (z) = min; L2

— 2)@i% (5 — 5)PiB;
S (e (- 2)

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then ; (2" (x) = =5 (2)i(2), if
—B82e2Z+1, aras — P12 € 2Z. (22)
Now let us expand the product % (¢’)31 () in powers of 2/ — x:
@) = T - e (7 )
x (1 —ion (2 — 2) Op(x) —iBi(Z — Z) De(x) +) C(23)
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Massless Thirring model: quantization

We have

/N;N;
bi(a" Wy (z) = min; L2

— 2)@i% (5 — 5)PiB;
S (e (- 2)

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then ; (2" (x) = =5 (2)i(2), if
—B82e2Z+1, aras — P12 € 2Z. (22)
Now let us expand the product % (¢’)31 () in powers of 2/ — x:
@) = T - e (7 )
x (1 —ion (2 — 2) dp(x) —if1(Z — 2) De(x) +

N—

(23)
Define the current j, as follows:
27 do 0
j2(2,2) = —/ fi,/)l (= +70e*?, z + roe”? )1(z, 2)
0

for some small rg.
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Massless Thirring model: quantization

We have

/N;N;
bi(a" Wy (z) = min; L2

— 2)@i% (5 — 5)PiB;
S (e (- 2)

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then ; (2" (x) = =5 (2)i(2), if
—B82e2Z+1, aras — P12 € 2Z. (22)
Now let us expand the product % (¢’)31 () in powers of 2/ — x:
@) = T - e (7 )
x (1 —ion (2 — 2) Op(x) —iBi(Z — Z) De(x) +) C(23)

Define the current j, as follows:

) 27 do —i0
j2(2,2) = —/ fi,/)l (= +70e*?, z + roe”? )1(z, 2)
0

for some small rg.
B =1, (24)
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Massless Thirring model: quantization

We have

/N;N;
bi(a" Wy (z) = min; L2

(2 — 2)*i% (7 — z)PibBi
27

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then i (") (z) = —tb; (x)i(a"), if
- ,312 €22+ 1, ajag — (182 € 27Z. (22)
Now let us expand the product % (¢’)31 () in powers of 2/ — x:
N
Fah (@) = S =9t (7 - 2) 7
2w
X(Xfial(z/fz) do(x) —ip =] x)+---). (23)

Define the current j, as follows:

) 27 do —i0
j2(2,2) = —/ fi,/)l (= +70e*?, z + roe”? )1(z, 2)
0

for some small rg.
B =1, (24)

the first and the third terms give zero contribution due to the angular dependence
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Massless Thirring model: quantization

We have

/N;N;
bi(a" Wy (z) = min; L2

(2 — 2)*i% (7 — z)PibBi
27

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then i (o' Yy (2) = —; (2 (o), it
— B2 e2m+1, ajas — 182 € 27Z. (22)
Now let us expand the product % (¢’)31 () in powers of 2/ — x:
@) = D - et (-5
2w
x (X—iar(s) = 2) 09(x) — iBIE=—=r08() +3><) . (23)

Define the current j, as follows:

) ~ 2m do B —i0 ~
j2(2,2) = —/ fi,/)l (z+ r0e'?, z + roe 7)1 (2, 2)
0
for some small rg.
B =1, (24)

the first and the third terms give zero contribution due to the angular dependence
and the terms from the forth on are negligible.
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Massless Thirring model: quantization

We have

/N;N;
bi(a" Wy (z) = min; L2

(2 — 2)*i% (7 — z)PibBi
27

« elaip(z ) +iB;@(2) +iajo(2)+iB; (2) (21)
Then ; (2" (x) = =5 (2)i(2), if
—B82e2Z+1, aras — P12 € 2Z. (22)
Now let us expand the product % (¢’)31 () in powers of 2/ — x:
T i (z) = %(z —z)—od (7 -2 i
x (= iaa(s' = 2) 09 (x) |~ iBLE=—2108(@) +><) . (23)

Define the current j, as follows:

) 27 do —i0
j2(2,2) = —/ fi,/)l (= +70e*?, z + roe”? )1(z, 2)
0

for some small rg.
B =1, (24)

the first and the third terms give zero contribution due to the angular dependence
and the terms from the forth on are negligible. The second term only contributes
the current.
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Massless Thirring model: conditions for «;, 5;, N;

We obtain -
. —282 [ —110¢p
Jz = *Nlro L (T) .
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Massless Thirring model: conditions for «;, 5;, N;

We obtain -
. —282 [ —110¢p
Jz = *Nlro L (T) .

Comparing with j, = B9y we find
27 ¥

a2
B = —irg i Ny (25)
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Massless Thirring model: conditions for «;, 5;, N;

We obtain

_og? [ —iai O
Jz = —Nir 28 (7“;1‘_ 89) .

Comparing with j, = %&p we find
. —2p82
B =—irg "' Niog. (25)
Repeating the same for 1/13%/)2 and assuming

a3 — B3 = —1, (26)

Lecture 2. Bosonization of the Thirring model



Massless Thirring model: conditions for «;, 5;, N;

We obtain

_og? [ —iai O
Jz = —Nir 28 (7“;1‘_ 89) .

Comparing with j, = %&p we find
B =—irg* Ny (25)
Repeating the same for 1/13%/)2 and assuming
a3 —f3=-1, (26)

we obtain
. 72043
B = —irg N2 f3s. (27)
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Massless Thirring model: conditions for «;, 5;, N;

We obtain 5
. —282 [ —i«x
Jz = 7N17'O A (7271‘_ 30) .

Comparing with j, = %&p we find
B =—irg* Ny (25)
Repeating the same for 1/13%/)2 and assuming
a3 —f3=-1, (26)

we obtain
. 72043
B = —irg N2 f3s. (27)

We need one more equation. To find it, we have to analyze the mass term.
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Thirring model: mass term
Consider now the mass term —mat) = im(?/)ftbg - ¢2+¢1). Both terms must be
well-defined and be consistent with the conservancy of the fermion charge.
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Thirring model: ma
Consider now the mass term —mat) = im(?/)ftbg - ¢2+¢1). Both terms must be
well-defined and be consistent with the conservancy of the fermion charge.

Consider the expansion

VN1 N-:
UF @) = —mny Y (2 )T (2 - )

% (eual—aw(zwml—Bz)«s(z) T+ ) . (28)
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Thirring model: m:

Consider now the mass term —mat) = im(?/)ftbg - ¢2+¢1). Both terms must be
well-defined and be consistent with the conservancy of the fermion charge.

Consider the expansion

Vi (@) () = —mupy P Y2

5 (2" —z)7re2(z — 5)—[31/32
s

% (eual—aw(zwml—Bz)«s(z) T+ ) . (28)
The first term survives in the averaged product defined similarly to j, if

arae =f1f2 = o =—pfa. (29)
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Thirring model: m:

Consider now the mass term —mat) = im(?/)ftbg - ¢2+¢1). Both terms must be
well-defined and be consistent with the conservancy of the fermion charge.

Consider the expansion

Vi (@) () = —mupy P Y2

5 (2" —z)7re2(z — 5)—[31/32
s

% (eual—aw(zwml—Bz)«s(z) T+ ) . (28)
The first term survives in the averaged product defined similarly to j, if
ataz = P12 = a1 =P (29)
With this assumption we may define

1Y NIN2 2010 it —a2)e(2)+i(B1—582)5(2)

o1 (z) = —ming o
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Thirring model: m:

Consider now the mass term —mat) = im(?/)ftbg - ¢2+¢1). Both terms must be
well-defined and be consistent with the conservancy of the fermion charge.

Consider the expansion

Vi (@) () = —mupy P Y2

5 (2" —z)7re2(z — 5)—[31/32
s

% (eual—aw(zwml—Bz)«s(z) T+ ) . (28)
The first term survives in the averaged product defined similarly to j, if
ataz = P12 = a1 =P (29)
With this assumption we may define

1Y NIN2 2010 it —a2)e(2)+i(B1—582)5(2)

o1 (z) = —ming o

Now check the consistency with the conservancy of the fermion charge @@ means
that it should be a function of ¢.
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Thirring model: mass term

Consider now the mass term —mat) = im(?/)ftbg - ¢2+¢1). Both terms must be
well-defined and be consistent with the conservancy of the fermion charge.

Consider the expansion

Vi (@) () = —mupy P Y2

5 (2" —z)7re2(z — 5)—[31/32
s

% (eual—aw(zwml—Bz)«s(z) T+ ) . (28)

The first term survives in the averaged product defined similarly to j, if
ataz = P12 = a1 =P (29)

With this assumption we may define

v N1 N . . .
¢;w1(x) = —771772717271.( 27»0_20‘10‘287'(041*0‘2%9(2)‘5’1(51*52) (z)

Now check the consistency with the conservancy of the fermion charge @@ means
that it should be a function of ¢. Consider the commutator

00.Q] = § i, 7 @0(0) = § de” e (@00) =~ 1= f da” e,0"6(2) 0(0)

= =2 faa¥ ue0,00) 00) = 2 f di* 016() 0(0) = Z26(2)0(0),

where A means the increment of the field while passing the closed contour.
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Thirring model: mass term
Let O(x) = e2#(2)+a’@(2)  Then

00),Q) =,

™
_Ba <a log & + o log 1) (10w (O)+ia'B(0)  g(o _ of)eiow(0)+ia/B(0)
27 z z

A(p(2) + (2))ei e Hie'2(2)
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Thirring model: m:
Let O(z) = e@?(:)¥'?(2)  Then

00),Q) =,

™
_Ba <a log & + o log 1) (10w (O)+ia'B(0)  g(o _ of)eiow(0)+ia/B(0)
27 z z

A(p(2) + (2))ei e Hie'2(2)

Hence, the operator @ is commuting with w;rWL since a; — ag = B1 — Ba.
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Thirring model: mass term
Let O(z) = e@¥(2)+a’2(2)  Then

[0(0),Q] = EA((p(z)+@(z))ela<P(z)+la 3(3)

_ B, <a log L + o/ log ,) (109 (0)+ia’2(0) _ g(o _ o )eian(0)+ia'p(0)
2m z z

Hence, the operator @ is commuting with w;rWL since a; — ag = B1 — Ba.
Now fix the 8 parameter. Set O(z) = 1;(z). Since the operators v; have the
fermion charge —1, we have

¥i(0) = [¢:(0), Q] = Blas — Bi)1hi(0) = Boa + a2)1i(0)
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Thirring model: mass term
Let O(z) = e@¥(2)+a’2(2)  Then

[0(0),Q] = EA((p(z)+@(z))ela<P(z)+la 3(3)

_ B, <a log L + o/ log ,) (109 (0)+ia’2(0) _ g(o _ o )eian(0)+ia'p(0)
2m z z

Hence, the operator @ is commuting with w;rWL since a; — ag = B1 — Ba.
Now fix the 8 parameter. Set O(z) = 1;(z). Since the operators v; have the
fermion charge —1, we have

¥i(0) = [¢:(0), Q] = Blas — Bi)1hi(0) = Boa + a2)1i(0)

Hence
1

artax=8"" = a-—a2z=4
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Thirring model: mass term

Let O(x) = e2#(2)+a’@(2)  Then
00.@ =2

_A(p(z) + p3)ei P
_ B, <a log L + o/ log ,) (109 (0)+ia’2(0) _ g(o _ o )eian(0)+ia'p(0)
2m z z

Hence, the operator @ is commuting with w;rWL since a; — ag = B1 — Ba.
Now fix the 8 parameter. Set O(z) = 1;(z). Since the operators v; have the
fermion charge —1, we have

¥i(0) = [¢:(0), Q] = Blas — Bi)1hi(0) = Boa + a2)1i(0)

Hence
artaz=8" = a1—-a=48.
Hence 1 /1
=== (5+5).
2\B
1 /1 (30)
a2=*51:§(5*6>~
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Thirring model: mass term

Let O(x) = e2#(2)+a’@(2)  Then

[0(0),Q] = EA((p(z)+@(z))ela<P(z)+la 3(3)

_ EA <a log - + o log j) eioup(O)-‘—ia @(0) _ B(a _ a/)eia¢(0)+ia’¢(0).
2 z z
Hence, the operator @ is commuting with w;rWL since a; — ag = B1 — Ba.
Now fix the 8 parameter. Set O(z) = 1;(z). Since the operators v; have the

fermion charge —1, we have

¥i(0) = [¢:(0), Q] = Blas — Bi)1hi(0) = Boa + a2)1i(0)

Hence
artaz=8" = a1—-a=48.

o1 = — o é(%w),

Hence

30
Wl (1, (30)
ar=—pF1==(—=— .
2 1=5 3
Using as = g3/27 we obtain the relation between coupling constants:
(B -1). 9)

Michael La



Thirring model and sine-Gordon model

Substituting it we obtain

(31)
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Thirring model and sine-Gordon model

Substituting it we obtain

Ny =—Ny =ir,” (31)

g+
Hence )
1 B 2
i B ; 1
— Wy 1 = ;52 n 17“0 (2771772 ) eBe
1 B2 2
b B < 1
Wiv2 = o I
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Thirring model and sine-Gordon model

Substituting it we obtain

Ny =—Ny =ir,” (31)

g+
Hence )
1 8 2
ol — B ; 1
— Wy 1 = ;52 n 17“0 (2771772 ) eBe
1 B2 g2
Wiv2 = o I

Consider the mass contribution
) -1 .
Zm( ;wl - ;r'l/)Q) ~ (inln;1> etB? + (i'fhn;1> e8P

as a perturbation.
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Thirring model and sine-Gordon model

Substituting it we obtain

Ny =—Ny =ir,” ST (31)
Hence )
) 1 B 2 )
_ ij)g"qpl = ; 52 = ng (7'771772 1) ez[ﬁ?’
1 B2 g2
ot _ = B . 1 B
2¢1¢2—ﬂ52+17’0 (“71?7 ) e’

Consider the mass contribution
) -1 .
Zm( ;wl - ;r'l/)Q) ~ (inln;1> etB? + (i'fhn;1> e8P

as a perturbation. Due to the ‘neutrality’ on the infinite plane,
#(e'PP) — #(e~"8%) is the same in each perturbation term.
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Thirring model and sine-Gordon model

Substituting it we obtain

Tl 267
Ny =-Ny =ir, ** BT (31)
Hence )
) 1 B 2 )
_ ij)g"qpl = ; 52 = ng (7'771772 1) ez[ﬁ?’
‘ 1 B2 g2y,
ih o = o lrg (2171?7 1) e8¢

Consider the mass contribution
) -1 .
Zm( ;wl - ;r'l/)Q) ~ (inln;1> etB? + (i'fhn;1> e8P

as a perturbation. Due to the ‘neutrality’ on the infinite plane,
#(e'PP) — #(e~"P?) is the same in each perturbation term. Hence the substitution

a/B . .
(imngl) it _y pied,

makes it possible to get rid of the algebraic elements 7;.
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Thirring model and sine-Gordon model

Substituting it we obtain

Tl 267
Ny =-Ny =ir, ** BT (31)
Hence )
) 1 B 2 )
_ ij)g"qpl = ; 52 = ng (7'771772 1) ez[ﬁ?’
‘ 1 B2 g2y,
ih o = o lrg (2171?7 1) e8¢

Consider the mass contribution
) -1 .
Zm( ;wl - ;r'l/)Q) ~ (inln;1> etB? + (i'fhn;1> e8P

as a perturbation. Due to the ‘neutrality’ on the infinite plane,
#(e'PP) — #(e~"P?) is the same in each perturbation term. Hence the substitution

a/B . .
(imngl) it _y pied,
makes it possible to get rid of the algebraic elements 7;. Then we have

2 B2 g2y

i( 11112—1#;1111):;62_’_17"0

cos B¢, (32)
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Thirring model and sine-Gordon model

Substituting it we obtain

Sz ap?
N; =—Ng =1 R 31
1 2 Z’I“O 52 T 1 ( )
Hence )
1 B 2_ .
. _ Be—1 (. -1
— Wy 1 = ;52 n 17“0 (2771772 ) eBe
1 B2 2
b B -1
Wiv2 = o I

Consider the mass contribution
) -1 .
Zm( ;wl - ;r'l/)Q) ~ (inln;1> etB? + (i'fhn;1> e8P

as a perturbation. Due to the ‘neutrality’ on the infinite plane,
#(e'PP) — #(e~"P?) is the same in each perturbation term. Hence the substitution

a/B . .
(imngl) it _y pied,

makes it possible to get rid of the algebraic elements 7;. Then we have

. + 2 p? B2—1
i( 1 Y2 — gy Y1) = ; 32 + 17"() cos (¢, (32)
from which we find )
e~ mrg _1, (10)
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Thirring model and sine-Gordon model

Correlation functions of the Thirring and the sine-Gordon models coincide in each
order of the perturbation theory in the parameter m. This is a strong argument
for their coincidence.
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Thirring model and sine-Gordon model

Correlation functions of the Thirring and the sine-Gordon models coincide in each
order of the perturbation theory in the parameter m. This is a strong argument
for their coincidence.

The parameter p of the sine-Gordon model is finite and measurable. It is related
to the physical mass mppys of a particle:

2—432

B~ 777’phys .

The coefficient is known exactly, but its calculation is far beyond the scope of
these lectures.
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Thirring model and sine-Gordon model

Correlation functions of the Thirring and the sine-Gordon models coincide in each
order of the perturbation theory in the parameter m. This is a strong argument
for their coincidence.

The parameter p of the sine-Gordon model is finite and measurable. It is related
to the physical mass mppys of a particle:

2—432

B~ 777’phys .

The coefficient is known exactly, but its calculation is far beyond the scope of
these lectures.
Hence the parameter m is divergent:

_ B2 g/m
m ~ Mphys (’rnphys"no)1 A = mphys(mphysTO) T+g/m ) (33)
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Thirring model and sine-Gordon model

Correlation functions of the Thirring and the sine-Gordon models coincide in each
order of the perturbation theory in the parameter m. This is a strong argument
for their coincidence.

The parameter p of the sine-Gordon model is finite and measurable. It is related
to the physical mass mppys of a particle:

2—432

B~ 777’phys .

The coefficient is known exactly, but its calculation is far beyond the scope of
these lectures.
Hence the parameter m is divergent:

_ B2 g/m
m ~ Mphys (’rnphys"no)1 A = mphys(mphysTO) T+g/m ) (33)

Consider the operators from Lecture 1:

©

edP = e28%, J €. (34)
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Thirring model and sine-Gordon model

Correlation functions of the Thirring and the sine-Gordon models coincide in each
order of the perturbation theory in the parameter m. This is a strong argument
for their coincidence.

The parameter p of the sine-Gordon model is finite and measurable. It is related
to the physical mass mppys of a particle:

2—432

B~ 777’phys .

The coefficient is known exactly, but its calculation is far beyond the scope of
these lectures.
Hence the parameter m is divergent:

_ B2 g/m
m ~ Mphys (’rnphys"no)1 A = mphys(mphysTO) T+g/m ) (33)

Consider the operators from Lecture 1:
i J X2
e =e287, J e Z. (34)

These operators change the topological charge by J: ¢ = ¢+ J.
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Thirring model and sine-Gordon model

Correlation functions of the Thirring and the sine-Gordon models coincide in each
order of the perturbation theory in the parameter m. This is a strong argument
for their coincidence.

The parameter p of the sine-Gordon model is finite and measurable. It is related
to the physical mass mppys of a particle:

2—432

B~ 777’phys .

The coefficient is known exactly, but its calculation is far beyond the scope of
these lectures.
Hence the parameter m is divergent:

_ B2 g/m
m ~ Mphys (’rnphys"no)1 A = mphys(mphysTO) T+g/m ) (33)

Consider the operators from Lecture 1:
i J X2
e =e287, J e Z. (34)

These operators change the topological charge by J: ¢ = ¢+ J. For J = %1 they
are boson kink creation-annihilation operators.
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