Lecture 3.

Renormalization group for the Berezinskii—Kosterlitz—Thouless
transition
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Renormalization group appr

Suppose we consider a field theory system with the correlation length r.. It is
described by a bare action defined the at the UV cutoff rg, which depends on the
set of parameters \g. We are interested in correlations functions on a scale r,

ro K r K re. Let Gexact (Mo, 703+ +) be exact correlation functions calculated in
all orders of the perturbation theory.
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Renormalization group appr

Suppose we consider a field theory system with the correlation length r.. It is
described by a bare action defined the at the UV cutoff rg, which depends on the
set of parameters \g. We are interested in correlations functions on a scale r,

ro K r K re. Let Gexact (Mo, 703+ +) be exact correlation functions calculated in
all orders of the perturbation theory. There exists a dressed action, which depend
on the set of parameters A. Let Giree(A, 7;- - +) the tree (first nonvanishing order)
correlation functions for the dressed action. The dressed action is defined in such
a way that

1 Tn
Gexact(>‘0,"'0;x17- . wxn) = Gltree ()\ar; e EREE *) .
T T

if x; ~ 7.
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Renormalization group appr

Suppose we consider a field theory system with the correlation length r.. It is
described by a bare action defined the at the UV cutoff rg, which depends on the
set of parameters \g. We are interested in correlations functions on a scale r,

ro K r K re. Let Gexact (Mo, 703+ +) be exact correlation functions calculated in
all orders of the perturbation theory. There exists a dressed action, which depend
on the set of parameters A. Let Giree(A, 7;- - +) the tree (first nonvanishing order)
correlation functions for the dressed action. The dressed action is defined in such
a way that

x1 x
Gexact(A()a"'O;xlv e 7xn) = Gltree ()\ar; 77 ceey Tn) .
if z; ~ r. With this definition the parameters A depend on the scale r. The group
of transformations (r,\) — (v, \') for the same Ao, ro is called the renormalization
group (RG).
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Renormalization group appr

Suppose we consider a field theory system with the correlation length r.. It is
described by a bare action defined the at the UV cutoff rg, which depends on the
set of parameters \g. We are interested in correlations functions on a scale r,

ro K r K re. Let Gexact (Mo, 703+ +) be exact correlation functions calculated in
all orders of the perturbation theory. There exists a dressed action, which depend
on the set of parameters A. Let Giree(A, 7;- - +) the tree (first nonvanishing order)
correlation functions for the dressed action. The dressed action is defined in such
a way that

Gexact(A()a"'O;xlv o 7xn) = Gltree ()\a"’; I’%v ey ITn) .
if z; ~ r. With this definition the parameters A depend on the scale r. The group
of transformations (r,\) — (v, \') for the same Ao, ro is called the renormalization
group (RG).
In combining the RG approach with the perturbation theory make it possible to
find the behavior of correlation functions in a wide range of scales in the case of a
nearly-marginal perturbation.
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Renormalization group appr

Suppose we consider a field theory system with the correlation length r.. It is
described by a bare action defined the at the UV cutoff rg, which depends on the
set of parameters \g. We are interested in correlations functions on a scale r,

ro K r K re. Let Gexact (Mo, 703+ +) be exact correlation functions calculated in
all orders of the perturbation theory. There exists a dressed action, which depend
on the set of parameters A. Let Giree(A, 7;- - +) the tree (first nonvanishing order)
correlation functions for the dressed action. The dressed action is defined in such
a way that

Gexact(A()a"'O;xlv o 7xn) = Gltree ()\a"’; I’%v ey ITn) .
if z; ~ r. With this definition the parameters A depend on the scale r. The group
of transformations (r,\) — (v, \') for the same Ao, ro is called the renormalization
group (RG).
In combining the RG approach with the perturbation theory make it possible to
find the behavior of correlation functions in a wide range of scales in the case of a
nearly-marginal perturbation. In our case it is

s=p2-2«1.
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Bare and dr d sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

Ss@[d) /d2 ( auf) —0407’(?[2)72 cosﬂodu), (1)
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Bare and dr d sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:
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Here rq is the UV cutoff,
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Bare and dr d sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

Ss@[d) /d2 ( auf) —0407’(?[2)72 cosﬂodu), (1)

Here rg is the UV cutoff, a is the dimensionless bare coupling constant.
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Bare and dr d sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

Ss@[d) /d2 ( auf) —0407’(?[2)72 cosﬂodu), (1)

Here rg is the UV cutoff, a is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action.
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Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

Ss@[d) /d2 ( auf) —0407’(?[2)72 cosﬂodu), (1)

Here rg is the UV cutoff, a is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action. It can
be done by means of a small mass term

2 242
Ssal¢) = /d2z (% + mgoj) —« r‘gU cosﬁoqi)) . (2)
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Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

Ss@[d) /d2 ( auf) —0407’(?[2)72 cosﬂodu), (1)

Here rg is the UV cutoff, a is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action. It can
be done by means of a small mass term

2 242
Ssal¢) = /d2z (% + mgoj) —« r‘gU cosﬁoqi)) . (2)

For ultraviolet regularization, we will replace 2 by x2 + rg. Then for m%x2 <1
the free field propagator (with ag = 0) is equal to
R !

Golw—a/) =log — 0 Ry—(emo)l,  c=—eE2 (3)
(x—a)2+73
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Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:
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Here rg is the UV cutoff, a is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action. It can
be done by means of a small mass term
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Ssal¢) = /d2z (% + mgoj) —« r‘gU cosﬁoqi)) . (2)

For ultraviolet regularization, we will replace 2 by x2 + rg. Then for m%x2 <1
the free field propagator (with ag = 0) is equal to
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Now write down the renormalized (dressed) action

R
slol = [ a ( Ot " ol c\w&(a?) R=(em)™', (4
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Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:
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Here rg is the UV cutoff, a is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action. It can
be done by means of a small mass term

2 242
Ssal¢) = /d2z (% + mgoj) —« r‘gU cosﬁoqi)) . (2)

For ultraviolet regularization, we will replace 2 by x2 + rg. Then for m%x2 <1
the free field propagator (with ag = 0) is equal to
R !

Golw—a/) =log — 0 Ry—(emo)l,  c=—eE2 (3)
(x—a)2+73

Now write down the renormalized (dressed) action
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Bare and dressed sine-Gordon action

The bare action of the sine-Gordon model on the Euclidean plane:

Ss@[d) /d2 ( auf) —0407’(?[2)72 cosﬂodu), (1)

Here rg is the UV cutoff, a is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action. It can
be done by means of a small mass term

2 242
Ssal¢) = /d2z (% + mgoj) —« r‘gU cosﬁoqi)) . (2)

For ultraviolet regularization, we will replace 2 by x2 + rg. Then for m%x2 <1
the free field propagator (with ag = 0) is equal to
R !

Golw—a/) =log — 0 Ry—(emo)l,  c=—eE2 (3)
(x—a)2+73

Now write down the renormalized (dressed) action

S& (o /d2 ( (Ou)” + m;(fQ ;2 Cos,@(]ﬁ) R = (ecm)™ 1, (4)

such that Ssg[¢] = Sé%G[Z_l/2 ¢+ Stz _1/2¢]. Assume that the counterterms

S°g] = / 2z 2 4 # cos ).

do not contain a counterterm for the auxiliary mass term.
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The renormalization procedure

Hence we have two renormalization constants Z4 and Z,:

6=26r,  Bo=2,"8,
—1/2 (5)
mo = Z¢ m, ag = Zao.
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The renormalization procedure

Hence we have two renormalization constants Z4 and Z,:
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Let Go(z — 2') = (¢(z)¢(2"))o be the propagator of the unperturbed (g = 0)
theory,
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The renormalization procedure

Hence we have two renormalization constants Z4 and Z,:

1/2 —1/2

¢ =2, ¢r, Bo=2

mo = Z;l/zm7 ag = Zaa.

ﬁ?
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Let Go(z — 2') = (¢(z)¢(2"))o be the propagator of the unperturbed (g = 0)
theory, G(z — z’) = (¢(z)¢p(z’)) be the exact propagator of the full theory for the
field &,
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The renormalization procedure

Hence we have two renormalization constants Z4 and Z,:

1/2¢R: Bo = _1/2/5,

mo = Z;l/zm7 ag = Zaa.

()

Let Go(z — 2') = (¢(z)¢(2"))o be the propagator of the unperturbed (g = 0)
theory, G(z — z’) = (¢(z)¢p(z’)) be the exact propagator of the full theory for the
field ¢, and Gr(z — ') = (¢pr(z)Pr(z’)) = Z(;IG({Z‘ — 2') be the renormalized
exact propagator.
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Go = 4#(783‘ + mg)_l, G and G g correspondingly.
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The renormalization procedure

Hence we have two renormalization constants Z4 and Z,:

6=26r,  Bo=2,"8, o
mo = Z;l/zm7 ag = Zaa.

Let Go(z — 2') = (¢(z)¢(2"))o be the propagator of the unperturbed (g = 0)
theory, G(z — z’) = (¢(z)¢p(z’)) be the exact propagator of the full theory for the
field ¢, and Gr(z — ') = (¢pr(z)Pr(z’)) = Z(;IG({Z‘ — 2') be the renormalized
exact propagator. They can be consider as kernels of operators
Go = 4#(783‘ + mg)_l, G and G g correspondingly.
The mass operator ¥ is defined by the relation

1

Gl=Ggt+ —=3. 6
o t - (6)
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The renormalization procedure

Hence we have two renormalization constants Z4 and Z,:

6=26r,  Bo=2,"8,

mo = Z;l/zm7 ag = Zaa.

()

Let Go(z — 2') = (¢(z)¢(2"))o be the propagator of the unperturbed (g = 0)
theory, G(z — z’) = (¢(z)¢p(z’)) be the exact propagator of the full theory for the
field ¢, and Gr(z — ') = (¢pr(z)Pr(z’)) = Z(;IG({Z‘ — 2') be the renormalized
exact propagator. They can be consider as kernels of operators

Go = 4#(783‘ + mg)_l, G and G g correspondingly.

The mass operator ¥ is defined by the relation

1

Gl=g'+ =% 6
7o (©)
Suppose that in the momentum space
A7
2y _ 4 2
GR(p)fp2+M2+O(p) as p° — 0, (7)
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The renormalization procedure

Hence we have two renormalization constants Z4 and Z,:

1/2 —1/25

¢ =2, ¢r, Bo=2
—1/2

mo = Z¢ m, ag = Zao.

()

Let Go(z — 2') = (¢(z)¢(2"))o be the propagator of the unperturbed (g = 0)
theory, G(z — z’) = (¢(z)¢p(z’)) be the exact propagator of the full theory for the
field ¢, and Gr(z — ') = (¢pr(z)Pr(z’)) = Z(;IG({Z‘ — 2') be the renormalized
exact propagator. They can be consider as kernels of operators
Go = 4#(783‘ + mg)_l, G and G g correspondingly. _ 6:1 7 60
The mass operator ¥ is defined by the relation { v Z G

G E, e

-1 1, 1

G =Gy + 471_2. (6)

Suppose that in the momentum space

4
Gr(p?) = ——— +O(p* 250, 7
r(P%) p2+M2+(p)asp—> (7)

with a constant
dra ,8

M? =m? + Z—— = m2(1 + 4nc?ap?). (8)

This defines the renormalized coupling constant « for a given scale R.
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

ArGH(p?) = p® + md + 2(p?)
9)
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

ArGH(p?) = p® + m3 + S(p?) = p® + m + So + T1p? + O(p*))
9)
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

AnG~H(p?) = p* + m§ + 2(p%) = p* + mf + o + Tip” + O(p*))
= (1+51)(p? + m? + So(1+51) 1) + O )
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

ArGT(p?) = p* + m + B(p?) = p> + mf + So + T1p® + O(p*))
= (14 2) (P + m? + To(1+30)71) + 0(p) = 4n(1+ DGR %) (9)
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

4nG~1(p?) = p* + mj + 2(p*) = p* + m3 + Zo + T1p” + O(p*))
= L+ 2) (P + m? + To(1+30)71) + 0(p) = 4n(1+ DGR %) (9)
1
zZ

We obtain

Zy = , (10)
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

ArGT(p?) = p* + m + B(p?) = p> + mf + So + T1p® + O(p*))
= L+ 2) (P + m? + To(1+30)71) + 0() = dn(1+ DGR 7). (9)
N — N— —
Z;l M2
We obtain

o
143

, (10)
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).

Indeed,
ArGT(p?) = p* + m + B(p?) = p> + mf + So + T1p® + O(p*))

= (14 2) (P + m? + To(1+30)71) + 0(p) = 4n(1+ DGR %) (9)

m%(bz = mzéfq
We obtain
2
Zy L 7 M2 = m2 >o , 2 my
1+3 143 1+30
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

ArGT(p?) = p* + m + B(p?) = p> + mf + So + T1p® + O(p*))
= (14 2) (P + m? + To(1+30)71) + 0(p) = 4n(1+ DGR %) (9)

We obtain
2
Z¢:;, M? =m? 2o s m?=_"0_ (10)
1+ 1+3 1+
Instead of calculating ¥ it is more convenient to calculate the correlation function
o , , <¢ d(x')e 51 [¢]>
(o) = (p(2)p(a)) = <e_51[<,, »
1
= (d()o(z")), — (d()¢(z)S1[¢])o,c §<¢(I)¢(w’)5f[¢]>o,c

+
(8@ B0 +Olad).
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

ArGT(p?) = p* + m + B(p?) = p> + mf + So + T1p® + O(p*))
= (14 2) (P + m? + To(1+30)71) + 0(p) = 4n(1+ DGR %) (9)

We obtain
2
Z¢:;, M? =m? o s m? = Mo (10)
1+ 1+ 1+

Instead of calculating ¥ it is more convenient to calculate the correlation function

, , <¢ d(x')e 51 [¢]>

Gz — o) = (¢(x)o(a')) = <e_51[<,, »
1 /
= (d(2)¢(z")), — (d(2)¢(z")S1[g])o,c + 5 (e@)e(x )S[¢))o,c
1
- 5 {8@o(@)STeo.c + O(ag).

The connected averages (- - - )o,c will be extracted on the fly.
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The renormalization procedure

The renormalization condition can be rewritten as 3(p?) = Z¢ + Z1p% + O(p?).
Indeed,

ArGT(p?) = p* + m + B(p?) = p> + mf + So + T1p® + O(p*))
= (14 2) (P + m? + To(1+30)71) + 0(p) = 4n(1+ DGR %) (9)

We obtain

2
71 M? = m? o m? = o .
145’ 1+3%’ 143

Zy = (10)

Instead of calculating ¥ it is more convenient to calculate the correlation function

(z')e—S11¢]
Gla =) = (e(yote)) = X <e_sf[¢ 5 L
0
= (p@)6("))y — (B )S1 B0 + 5 (()6)SHo.c
— S(6()9(a") 5 ])0.c +O(ad).

The connected averages (- - - )o,c will be extracted on the fly. Then the mass
operator will be extracted by removing ‘legs’ from the diagrams.
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RG: first order

Let us calculate

—($(@)p(z")S1[8]) = aorl? / 02y ($(x)d(z’) :cos Bod(y): )o.
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RG: first order

Let us calculate

—($(@)p(z")S1[8]) = aorl? / 02y ($(x)d(z’) :cos Bod(y): )o.

We hav ~ k
(o(@)d(a") cos Bod(y): Yo = ($(@)é(@' o cos Bod(y): Yo *
— B (p()d(y))o((x")p(y))o( :cos Bod(y): )o-
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RG: first order
Let us calculate

—($(@)p(z")S1[8]) = aorl? / 02y ($(x)d(z’) :cos Bod(y): )o.

We have
(p(2)9(a") :cos Bod(y): Jo = (p(z)¢(z"))o( :cos Bog(y): )o

— B (p()d(y))o((x")p(y))o( :cos Bod(y): )o-

The first term is disconnected,
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RG: first order
Let us calculate

—(¢(x)¢(2')S1[¢]) = aor’ /d29<¢>(w)¢($') icos Bod(y): )o-

We have
(p(2)9(a") :cos Bod(y): Jo = (p(z)¢(z"))o( :cos Bog(y): )o

— B (p()d(y))o((x")p(y))o( :cos Bod(y): )o-

The first term is disconnected, the second one contains two external lines:
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RG: first order
Let us calculate

—($(@)p(z")S1[8]) = aorl? / 02y ($(x)d(z’) :cos Bod(y): )o.

We have
(p(2)9(a") :cos Bod(y): Jo = (p(z)¢(z"))o( :cos Bog(y): )o

— B (p()d(y))o((x")p(y))o( :cos Bod(y): )o-

The first term is disconnected, the second one contains two external lines:

5

x o x z’
So=p2 -2 Y /4 Q,

Hence, §=p2-2

V<
*iE(l)(yfy) —apB3r° (zcos Bod(y): )od(y —y')
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RG: first order
Let us calculate

—($(@)p(z")S1[8]) = aorl? / 02y ($(x)d(z’) :cos Bod(y): )o.

We have
(p(2)9(a") :cos Bod(y): Jo = (p(z)¢(z"))o( :cos Bog(y): )o

— B (p()d(y))o((x")p(y))o( :cos Bod(y): )o-

The first term is disconnected, the second one contains two external lines:

y@
T / T 2!

do = ﬁg -2 Y
Hence, §=p82_2

(o8 fod(y): o = Ry 10

—‘/ﬁro)éo 5(y—y').

_ sy, _ = . )
sWy—y) = aoﬁoro (:cos Bod(y): Yod(y—vy') = 7 \ &
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RG: first order
Let us calculate

—($(@)p(z")S1[8]) = aorl? / 02y ($(x)d(z’) :cos Bod(y): )o.

We have
(p(2)9(a") :cos Bod(y): Jo = (p(z)¢(z"))o( :cos Bog(y): )o

— B (p()d(y))o((x")p(y))o( :cos Bod(y): )o-

The first term is disconnected, the second one contains two external lines:

Y
x o x z’
o = B3 —2 v 4 _ g2
Hence, §=p8%-2 (:cos Bod(y):)o = Ry
Lo e i ()
~ 3 2 ) = 0By (reos fos(w):hodly —y') == et ( 7 ) 0wy
In the momentum space:
dmagBE (1o \ % 1
5 (,2) = o) _ o (7 O 1
(%) 0 R(Q) Ro 1 (11)
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RG: first order

By comparing this with the formulas

draf?
R2

M2 =m?+ =m?(1 + 4rnc?af?). (8)
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RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and )
1 =
Zy = Lo MP=mP e 0 e O (10)
1+ 1+ 1+
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RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and 5
1 by
Zy = —=, M2 =m?+ g s m? = 0 , (10)
1+ 1+ 1+

we obtain Zy =1 = m = mo, 8 = Bo.
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RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and )
1 3
Zy = —=, M? =m? + o R m? = 10 , (10)
1+ 1+ 1+

we obtain Zy =1 = m = mo, = Bo. Therefore

“e(2)

To
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RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and )
1 3
Zy = —=, M? =m? + o R m? = 10 , (10)
1+ 1+ 1+

we obtain Zy =1 = m = mo, = Bo. Therefore
5
Zo = (5) . (12)
o

Though the answer is quite clear and applicable to any value of ¢, let us formally
perform the standard RG procedure.
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RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and )
1 3
Zy = —=, M? =m? + o R m? = 10 , (10)
1+ 1+ 1+

we obtain Zy =1 = m = mo, = Bo. Therefore
R 5
Zo = (7) . (12)
o
Though the answer is quite clear and applicable to any value of ¢, let us formally

perform the standard RG procedure. For § < 1 we have

R
Zo =1+ dlog —,
To
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RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and )
1 3
Zy = —=, M? =m? + o R m? = 10 , (10)
1+ 1+ 1+

we obtain Zy =1 = m = mo, = Bo. Therefore
5
Zo = (5) . (12)
o

Though the answer is quite clear and applicable to any value of ¢, let us formally
perform the standard RG procedure. For § < 1 we have

R
Zo =1+ dlog —,
To

Take the derivative of a = Z(;lao:
do

— = —ap9, t = log R.
dt aQ og

Michael La ric Lecture 3. RG for the BKT tra



RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and )
1 3
Zy = —=, M? =m? + o R m? = 10 , (10)
1+ 1+ 1+

we obtain Zy =1 = m = mo, = Bo. Therefore

“e(2)

To

Though the answer is quite clear and applicable to any value of ¢, let us formally
perform the standard RG procedure. For § < 1 we have

R
Zo =1+ dlog —,
To

Take the derivative of a = Z(;lao:

do
— = —q 57 t = log R.
dt 0 g
Substitute ag by « in the r.h.s.:
d
=2 —ad,
dt
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RG: first order

By comparing this with the formulas

4 2
M2 =m?+ Tr]:f =m?(1 + 4rnc?af?). (8)
and )
1 3
Zy = —=, M? =m? + o R m? = 10 , (10)
1+ 1+ 1+

we obtain Zy =1 = m = mo, = Bo. Therefore

“e(2)

To

Though the answer is quite clear and applicable to any value of ¢, let us formally
perform the standard RG procedure. For § < 1 we have

R
Zo =1+ dlog —,
To

Take the derivative of a = Z(;lao:

do
— = —q 57 t = log R.
dt 0 g
Substitute ag by « in the r.h.s.:
d
& —ad,
dt

The solution is & ~ R~? in consistency with (12).
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RG: first order

The RG trajectories look like

b2
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RG: first order

The RG trajectories look like

The transition point § = 0 here is a line of fixed points for any value of a. Is it
really the case?

re 3. RG for the BKT transition



RG: second order

Consider the second order contribution. The connected contribution to the pair
correlation function is

5 (6(@)0(a") 5T 0.0 =

2,260
070

[ uz 6(@)0(a) cos o (un): 103 Bod(w2): o
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RG: second order

Consider the second order contribution. The connected contribution to the pair
correlation function is

5 (6(@)0(a") 5T 0.0 =

2,260
agrg

/d2 1 d2ys ($(x) (") :cos Pod(yn ): :cos Pod(ya): Jo.c

= a3p3ry’ /d2y1 d*ys (<¢>($)¢(y1))0<¢(r')¢(y2)>0< :sin Bod(y1): :sin Bod(y2): )o

These terms correspond to the diagrams

Y1 Y2
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RG: second order

Consider the second order contribution. The connected contribution to the pair
correlation function is

5 (6(@)0(a") 5T 0.0 =

2,260
agrg

/ d2y1 d2ys ($(x)p(a’) cos fod(y1): cos Bob(y2): Josc
= ap2re’ /d2y1 d?y2 ((¢>($)¢(y1)>0<¢(r')¢(y2)>o<isinﬂ0¢(y1)i :sin Bog(y2): o
— (B@)dun))o (6" 3(y1)o ((:cos Bod(un): wcos fod(u2): o — By > )).

. T
These terms correspond to the diagrams o %[\?
G n o amyp I
Ro
Y1 Y2
T =
* Y1 z!
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RG: second order

Consider the second order contribution. The connected contribution to the pair
correlation function is

5 (6(@)0(a") 5T 0.0 =

2,260
070

/ d2y1 d2ys ($(x)p(a’) cos fod(y1): cos Bob(y2): Josc
= ap2re’ /d2y1 d?y2 ((¢>($)¢(y1)>0<¢(r')¢(y2)>o<isinﬂ0¢(y1)i :sin Bog(y2): o
— (B@)dun))o (B 3(y1)o ((:cos Bod(un): wcos fod(u2): o — By > )).

These terms correspond to the diagrams

e ()

For calculation of £(2) we have to remove ‘legs’ and to subtract the contribution
of one line in the first diagram:

— L3 (@) = aBpRr% (<:sinﬁo<z><x>: sin fod(0):)o — B3Ry > (6(2)6(0))o

4
z)/dgy (<1C0550¢(0): :cos Bod(y): Yo — Rawg))
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RG: second order

R AR e ' o
Explicitly, <:e:1§¢,{’0{_;1lﬂ’ V4 <€§ *) & h(o\>
2,.260 %32 £ 252 9
e S (- () e
4 2R250 - Ro 22

aof (2 (2)7°-9),

R
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RG: second order

Explicitly,

,Lg(m(x) =
4 2R

o i () ()7 4))

In the momentum space we have
2(2) (p2) _ _QWQ/OBST(Q)&) (/ d2x (eipfv o 1)1,72‘30

_4p2 A
- o /d2x (e + 1)2280 — 242R 2ﬁOGo( )+2R2 26”). (13)

0‘0537"350 R\ 2% z )24 5 R2
— — | = — 285 log —
283 x Ry x2

Michael La




RG: second order

Explicitly,

,Lg(m(x) -
4m 2R,

wafon (57 (2)"-)

In the momentum space we have
2(2) (p2) _ _QWQ/OBST(Q)&) (/ d2x (eipfv o 1)1,72‘30

_ 2 .
7R0 4B°/d2x(e‘pz+1)x250 252 QﬁUGO( )+2R2 26())' (13)

%53 7"360 Ro 206 kg 206 2 R(%
— - = — 285 log —
283 x Ry x2

The second line vanishes as Ry — oo for dp < 1
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RG: second order

Explicitly,

,Lg(m(x) -
4m 2R,

oo (84 (2)9)

In the momentum space we have
2(2) (p2) _ _27“1’0637’(2)50 (/ d2x (eipfv o 1)1,72;30

_ 2 .
7R0 460/d2$ (61p1+1)x2[30 252 QﬁUGO( )+2R2 26())' (13)

%53 7"360 Ro 206 kg 206 2 R(%
— - = — 285 log —
283 x Ry x2

The second line vanishes as Ry — oo for §p < 1. The integral in the first line must

be expanded in p:
R,
2(2)(p2) = 71'04(2),6’37“350 /d2x (pz)%r*zﬂg +0(p*) ~ 7r2a(2)ﬁ§p2 log =0 o(p*).
To
(14)

Lecture 3. RG for the BKT
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RG: second order

Explicitly,

2. 2680 282 282 2
Ly = 20%70° (ﬁ) “’<i> " 262105 0
4 2R25° T Ro 2

9R2 2
R, 264 285
fé(x)/d2y <—[)> + <i> -2 .
Yy Ro
In the momentum space we have
=@ (p?) = —2#@0687’350 (/ d?z (e'P” — l)afz‘sg

_ 2 .
7R0 460/d2$ (61p1+1)x2[30 252 QﬁUGO( )+2R2 26())' (13)

The second line vanishes as Ry — oo for §p < 1. The integral in the first line must
be expanded in p:

op2 Ro
2(2)(p2) = 71'04(2),6’37“350 /d2x (pz)3x 280 O(p*) ~ 7r2a(2)ﬁ§p2 log o +0(ph).
(14)
It only contributes to ¥X1. We have

R R
Zy=1-n%a3B2log —, Zo =14 6glog —. (15)
To T0
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RG: second order

Substituting it to o = Z5 e and 1+ §/2 = Z4(1 + 0/2), taking the derivation
and expressing ag, do in terms of «,d in the r.h.s., we obtain
da dé

25 = = —4n%a? t =logR. 16
dt & dt e o8 (16)

Michael L



RG: second order

Substituting it to o = Z5 e and 1+ §/2 = Z4(1 + 0/2), taking the derivation
and expressing ag, do in terms of «,d in the r.h.s., we obtain

d dé
@ —da, = = —4n?a?, t = log R. (16)
dt dt

These equations can be rewritten in the form

d(2ra F6)

% = £2ra(27a F4). (16a)
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RG: second order

Substituting it to o = Z5 e and 1+ §/2 = Z4(1 + 0/2), taking the derivation
and expressing ag, do in terms of «,d in the r.h.s., we obtain

d dé
@ —da, = = —4n?a?, t = log R. (16)
dt dt

These equations can be rewritten in the form
d(2ra F6)
dt

This means that the straight lines 2ra = £6 are RG trajectories. They divide the
half-plane a > 0 into three regions:

= £2ra(27a F4). (16a)

52 2T S1
17
117 1
é
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RG: regions

There are three regions:

S2 2T S1
17
117 1
1)




RG: regions

There are three regions:

o Region I. @« — 0 as R — oo, so that the system looks like a free massless
boson at large distances.

52 2T S1
17
117 1
1)
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RG: regions

There are three regions:

o Region I. @« — 0 as R — oo, so that the system looks like a free massless
boson at large distances.

o Region III. o — 0 as R — 0, so that the system looks like a free massless
boson at small distances. It was conjectured that 6 — —1 as R — oo and the
system behaves as a massive Dirac fermion. The line § = —1 was conjectured

o be a separatrix.

S 2T S1

\\/

I
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RG: regions

There are three regions:

o Region I. @« — 0 as R — oo, so that the system looks like a free massless
boson at large distances.

o Region III. o — 0 as R — 0, so that the system looks like a free massless
boson at small distances. It was conjectured that 6 — —1 as R — oo and the
system behaves as a massive Dirac fermion. The line § = —1 was conjectured
to be a separatrix.

o Region II. « grows for both large and small R. The system has no conformal

behavior in both IR and UV regions. Since it approaches the line sp at large
R, it must be a massive theory.

52 2T S1
17
117 1
1)

Michael L
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