
Lecture 3.
Renormalization group for the Berezinskii–Kosterlitz–Thouless

transition

Michael Lashkevich

Michael Lashkevich Lecture 3. RG for the BKT transition



Renormalization group approach
Suppose we consider a field theory system with the correlation length rc. It is
described by a bare action defined the at the UV cutoff r0, which depends on the
set of parameters λ0. We are interested in correlations functions on a scale r,
r0 � r � rc. Let Gexact(λ0, r0; · · · ) be exact correlation functions calculated in
all orders of the perturbation theory.
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on the set of parameters λ. Let Gtree(λ, r; · · · ) the tree (first nonvanishing order)
correlation functions for the dressed action.
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described by a bare action defined the at the UV cutoff r0, which depends on the
set of parameters λ0. We are interested in correlations functions on a scale r,
r0 � r � rc. Let Gexact(λ0, r0; · · · ) be exact correlation functions calculated in
all orders of the perturbation theory. There exists a dressed action, which depend
on the set of parameters λ. Let Gtree(λ, r; · · · ) the tree (first nonvanishing order)
correlation functions for the dressed action. The dressed action is defined in such
a way that

Gexact(λ0, r0;x1, . . . , xn) = Gtree
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λ, r;

x1

r
, . . . ,
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r

�
.

if xi ∼ r.
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if xi ∼ r. With this definition the parameters λ depend on the scale r. The group
of transformations (r,λ) → (r�,λ�) for the same λ0, r0 is called the renormalization
group (RG).
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Suppose we consider a field theory system with the correlation length rc. It is
described by a bare action defined the at the UV cutoff r0, which depends on the
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if xi ∼ r. With this definition the parameters λ depend on the scale r. The group
of transformations (r,λ) → (r�,λ�) for the same λ0, r0 is called the renormalization
group (RG).
In combining the RG approach with the perturbation theory make it possible to
find the behavior of correlation functions in a wide range of scales in the case of a
nearly-marginal perturbation.
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Suppose we consider a field theory system with the correlation length rc. It is
described by a bare action defined the at the UV cutoff r0, which depends on the
set of parameters λ0. We are interested in correlations functions on a scale r,
r0 � r � rc. Let Gexact(λ0, r0; · · · ) be exact correlation functions calculated in
all orders of the perturbation theory. There exists a dressed action, which depend
on the set of parameters λ. Let Gtree(λ, r; · · · ) the tree (first nonvanishing order)
correlation functions for the dressed action. The dressed action is defined in such
a way that

Gexact(λ0, r0;x1, . . . , xn) = Gtree

�
λ, r;
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, . . . ,

xn

r

�
.

if xi ∼ r. With this definition the parameters λ depend on the scale r. The group
of transformations (r,λ) → (r�,λ�) for the same λ0, r0 is called the renormalization
group (RG).
In combining the RG approach with the perturbation theory make it possible to
find the behavior of correlation functions in a wide range of scales in the case of a
nearly-marginal perturbation. In our case it is

δ = β2 − 2 � 1.
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Bare and dressed sine-Gordon action
The bare action of the sine-Gordon model on the Euclidean plane:

SSG[φ] =

�
d2x

�
(∂µφ)2

8π
− α0r

β2
0−2

0 cosβ0φ

�
, (1)
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Here r0 is the UV cutoff, α0 is the dimensionless bare coupling constant.
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Here r0 is the UV cutoff, α0 is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action.
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Here r0 is the UV cutoff, α0 is the dimensionless bare coupling constant. Instead
of the scale r it is convenient to introduce an infrared scale into the action. It can
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d2x
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(∂µφ)2

8π
+

m2
0φ

2

8π
− α0r

β2
0−2

0 cosβ0φ

�
. (2)

For ultraviolet regularization, we will replace x2 by x2 + r20 . Then for m2
0x

2 � 1
the free field propagator (with α0 = 0) is equal to

G0(x− x�) = log
R2

0

(x− x�)2 + r20
, R0 = (cm0)

−1, c = eγE/2. (3)
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such that SSG[φ] = SR
SG[Z

−1/2
φ φ] + Sct[Z

−1/2
φ φ].
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+

m2φ2

8π
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R2
cosβφ
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, R = (cm)−1, (4)

such that SSG[φ] = SR
SG[Z

−1/2
φ φ] + Sct[Z

−1/2
φ φ]. Assume that the counterterms

Sct[φ] =

�
d2x (#(∂µφ)

2 +#cosβφ).

do not contain a counterterm for the auxiliary mass term.
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The renormalization procedure
Hence we have two renormalization constants Zφ and Zα:

φ = Z
1/2
φ φR, β0 = Z

−1/2
φ β,

m0 = Z
−1/2
φ m, α0 = Zαα.

(5)
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Let G0(x− x�) = �φ(x)φ(x�)�0 be the propagator of the unperturbed (α0 = 0)
theory,
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exact propagator. They can be consider as kernels of operators
G0 = 4π(−∂2

µ +m2
0)
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Suppose that in the momentum space

GR(p2) =
4π

p2 +M2
+O(p4) as p2 → 0, (7)
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G0 = 4π(−∂2

µ +m2
0)

−1, G and GR correspondingly.
The mass operator Σ is defined by the relation

G−1 = G−1
0 +

1

4π
Σ. (6)

Suppose that in the momentum space

GR(p2) =
4π

p2 +M2
+O(p4) as p2 → 0, (7)

with a constant

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

This defines the renormalized coupling constant α for a given scale R.
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The renormalization procedure
The renormalization condition can be rewritten as Σ(p2) = Σ0 + Σ1p2 +O(p4).
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The renormalization procedure
The renormalization condition can be rewritten as Σ(p2) = Σ0 + Σ1p2 +O(p4).
Indeed,

4πG−1(p2) = p2 +m2
0 + Σ(p2)

(9)
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The renormalization procedure
The renormalization condition can be rewritten as Σ(p2) = Σ0 + Σ1p2 +O(p4).
Indeed,

4πG−1(p2) = p2 +m2
0 + Σ(p2) = p2 +m2

0 + Σ0 + Σ1p
2 +O(p4))

= (1 + Σ1)� �� �
Z−1

φ
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p2 + m2 + Σ0(1 + Σ1)

−1
�
+O(p4) = 4π(1 + Σ1)G

−1
R (p2). (9)

We obtain

Zφ =
1

1 + Σ1
, (10)
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The renormalization procedure
The renormalization condition can be rewritten as Σ(p2) = Σ0 + Σ1p2 +O(p4).
Indeed,

4πG−1(p2) = p2 +m2
0 + Σ(p2) = p2 +m2

0 + Σ0 + Σ1p
2 +O(p4))

= (1 + Σ1)
�
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We obtain

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
. (10)

Instead of calculating Σ it is more convenient to calculate the correlation function

G(x− x�) =
�
φ(x)φ(x�)

�
=

�
φ(x)φ(x�)e−S1[φ]

�
0�

e−S1[φ]
�
0

=
�
φ(x)φ(x�)

�
0
− �φ(x)φ(x�)S1[φ]�0,c +

1

2
�φ(x)φ(x�)S2

1 [φ]�0,c

− 1

6
�φ(x)φ(x�)S3

1 [φ]�0,c +O(α4
0).
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− 1
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1 [φ]�0,c +O(α4
0).

The connected averages �· · · �0,c will be extracted on the fly.
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e−S1[φ]
�
0

=
�
φ(x)φ(x�)

�
0
− �φ(x)φ(x�)S1[φ]�0,c +

1

2
�φ(x)φ(x�)S2

1 [φ]�0,c

− 1

6
�φ(x)φ(x�)S3

1 [φ]�0,c +O(α4
0).

The connected averages �· · · �0,c will be extracted on the fly. Then the mass
operator will be extracted by removing ‘legs’ from the diagrams.
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RG: first order
Let us calculate

−�φ(x)φ(x�)S1[φ]� = α0r
δ0
0

�
d2y �φ(x)φ(x�) :cosβ0φ(y): �0.
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RG: first order
Let us calculate

−�φ(x)φ(x�)S1[φ]� = α0r
δ0
0

�
d2y �φ(x)φ(x�) :cosβ0φ(y): �0.

We have
�φ(x)φ(x�) :cosβ0φ(y): �0 = �φ(x)φ(x�)�0� :cosβ0φ(y): �0

− β2
0�φ(x)φ(y)�0�φ(x�)φ(y)�0� :cosβ0φ(y): �0.

Michael Lashkevich Lecture 3. RG for the BKT transition



RG: first order
Let us calculate

−�φ(x)φ(x�)S1[φ]� = α0r
δ0
0

�
d2y �φ(x)φ(x�) :cosβ0φ(y): �0.

We have
�φ(x)φ(x�) :cosβ0φ(y): �0 = �φ(x)φ(x�)�0� :cosβ0φ(y): �0

− β2
0�φ(x)φ(y)�0�φ(x�)φ(y)�0� :cosβ0φ(y): �0.

The first term is disconnected,

x x�

y
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RG: first order
Let us calculate

−�φ(x)φ(x�)S1[φ]� = α0r
δ0
0

�
d2y �φ(x)φ(x�) :cosβ0φ(y): �0.

We have
�φ(x)φ(x�) :cosβ0φ(y): �0 = �φ(x)φ(x�)�0� :cosβ0φ(y): �0

− β2
0�φ(x)φ(y)�0�φ(x�)φ(y)�0� :cosβ0φ(y): �0.

The first term is disconnected, the second one contains two external lines:

x x�

y

x x�
y
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RG: first order
Let us calculate

−�φ(x)φ(x�)S1[φ]� = α0r
δ0
0

�
d2y �φ(x)φ(x�) :cosβ0φ(y): �0.

We have
�φ(x)φ(x�) :cosβ0φ(y): �0 = �φ(x)φ(x�)�0� :cosβ0φ(y): �0

− β2
0�φ(x)φ(y)�0�φ(x�)φ(y)�0� :cosβ0φ(y): �0.

The first term is disconnected, the second one contains two external lines:

x x�

y

x x�
y

Hence,

− 1

4π
Σ(1)(y−y�) = −α0β

2
0r

δ0

δ0 = β2
0 − 2

δ = β2 − 2

0 � :cosβ0φ(y): �0δ(y−y�)
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RG: first order
Let us calculate

−�φ(x)φ(x�)S1[φ]� = α0r
δ0
0

�
d2y �φ(x)φ(x�) :cosβ0φ(y): �0.

We have
�φ(x)φ(x�) :cosβ0φ(y): �0 = �φ(x)φ(x�)�0� :cosβ0φ(y): �0

− β2
0�φ(x)φ(y)�0�φ(x�)φ(y)�0� :cosβ0φ(y): �0.

The first term is disconnected, the second one contains two external lines:

x x�

y

x x�
y

Hence,

− 1

4π
Σ(1)(y−y�) = −α0β

2
0r

δ0

δ0 = β2
0 − 2

δ = β2 − 2

0 � :cosβ0φ(y): �0δ(y−y�) =

� :cosβ0φ(y): �0 = R
−2β2

0
0

− α0β2
0

R2
0

�
r0

R0

�δ0

δ(y−y�).
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RG: first order
Let us calculate

−�φ(x)φ(x�)S1[φ]� = α0r
δ0
0

�
d2y �φ(x)φ(x�) :cosβ0φ(y): �0.

We have
�φ(x)φ(x�) :cosβ0φ(y): �0 = �φ(x)φ(x�)�0� :cosβ0φ(y): �0

− β2
0�φ(x)φ(y)�0�φ(x�)φ(y)�0� :cosβ0φ(y): �0.

The first term is disconnected, the second one contains two external lines:

x x�

y

x x�
y

Hence,

− 1

4π
Σ(1)(y−y�) = −α0β

2
0r

δ0

δ0 = β2
0 − 2

δ = β2 − 2

0 � :cosβ0φ(y): �0δ(y−y�) =

� :cosβ0φ(y): �0 = R
−2β2

0
0

− α0β2
0

R2
0

�
r0

R0

�δ0

δ(y−y�).

In the momentum space:

Σ(1)(p2) = Σ
(1)
0 =

4πα0β2
0

R2
0

�
r0

R0

�δ0

, Σ
(1)
1 = 0. (11)
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)

we obtain Zφ = 1 ⇒ m = m0, β = β0.
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)

we obtain Zφ = 1 ⇒ m = m0, β = β0. Therefore

Zα =

�
R

r0

�δ

. (12)
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)

we obtain Zφ = 1 ⇒ m = m0, β = β0. Therefore

Zα =

�
R

r0

�δ

. (12)

Though the answer is quite clear and applicable to any value of δ, let us formally
perform the standard RG procedure.
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)

we obtain Zφ = 1 ⇒ m = m0, β = β0. Therefore

Zα =

�
R

r0

�δ

. (12)

Though the answer is quite clear and applicable to any value of δ, let us formally
perform the standard RG procedure. For δ � 1 we have

Zα = 1 + δ log
R

r0
,
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)

we obtain Zφ = 1 ⇒ m = m0, β = β0. Therefore

Zα =

�
R

r0

�δ

. (12)

Though the answer is quite clear and applicable to any value of δ, let us formally
perform the standard RG procedure. For δ � 1 we have

Zα = 1 + δ log
R

r0
,

Take the derivative of α = Z−1
α α0:

dα

dt
= −α0δ, t = logR.
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)

we obtain Zφ = 1 ⇒ m = m0, β = β0. Therefore

Zα =

�
R

r0

�δ

. (12)

Though the answer is quite clear and applicable to any value of δ, let us formally
perform the standard RG procedure. For δ � 1 we have

Zα = 1 + δ log
R

r0
,

Take the derivative of α = Z−1
α α0:

dα

dt
= −α0δ, t = logR.

Substitute α0 by α in the r.h.s.:

dα

dt
= −αδ,
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RG: first order
By comparing this with the formulas

M2 = m2 +
4παβ2

R2
= m2(1 + 4πc2αβ2). (8)

and

Zφ =
1

1 + Σ1
, M2 = m2 +

Σ0

1 + Σ1
, m2 =

m2
0

1 + Σ1
, (10)

we obtain Zφ = 1 ⇒ m = m0, β = β0. Therefore

Zα =

�
R

r0

�δ

. (12)

Though the answer is quite clear and applicable to any value of δ, let us formally
perform the standard RG procedure. For δ � 1 we have

Zα = 1 + δ log
R

r0
,

Take the derivative of α = Z−1
α α0:

dα

dt
= −α0δ, t = logR.

Substitute α0 by α in the r.h.s.:

dα

dt
= −αδ,

The solution is α ∼ R−δ in consistency with (12).
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RG: first order
The RG trajectories look like

δ

α
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RG: first order
The RG trajectories look like

δ

α

The transition point δ = 0 here is a line of fixed points for any value of α. Is it
really the case?
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RG: second order
Consider the second order contribution. The connected contribution to the pair
correlation function is

1

2
�φ(x)φ(x�)S2

1 [φ]�0,c =
α2
0r

2δ0
0

2

�
d2y1 d

2y2 �φ(x)φ(x�) :cosβ0φ(y1): :cosβ0φ(y2): �0,c
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RG: second order
Consider the second order contribution. The connected contribution to the pair
correlation function is

1

2
�φ(x)φ(x�)S2

1 [φ]�0,c =
α2
0r

2δ0
0

2

�
d2y1 d

2y2 �φ(x)φ(x�) :cosβ0φ(y1): :cosβ0φ(y2): �0,c

= α2
0β

2
0r

2δ0
0

�
d2y1 d

2y2
�
�φ(x)φ(y1)�0�φ(x�)φ(y2)�0� :sinβ0φ(y1): :sinβ0φ(y2): �0

These terms correspond to the diagrams

x
y1 y2

x�
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RG: second order
Consider the second order contribution. The connected contribution to the pair
correlation function is

1

2
�φ(x)φ(x�)S2

1 [φ]�0,c =
α2
0r

2δ0
0

2

�
d2y1 d

2y2 �φ(x)φ(x�) :cosβ0φ(y1): :cosβ0φ(y2): �0,c

= α2
0β

2
0r

2δ0
0

�
d2y1 d

2y2
�
�φ(x)φ(y1)�0�φ(x�)φ(y2)�0� :sinβ0φ(y1): :sinβ0φ(y2): �0

− �φ(x)φ(y1)�0�φ(x�)φ(y1)�0
�
� :cosβ0φ(y1): :cosβ0φ(y2): �0 −R

−2β2
0

0

��
.

These terms correspond to the diagrams

x
y1 y2

x�

x
y1

x�

y2y2
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RG: second order
Consider the second order contribution. The connected contribution to the pair
correlation function is

1

2
�φ(x)φ(x�)S2

1 [φ]�0,c =
α2
0r

2δ0
0

2

�
d2y1 d

2y2 �φ(x)φ(x�) :cosβ0φ(y1): :cosβ0φ(y2): �0,c

= α2
0β

2
0r

2δ0
0

�
d2y1 d

2y2
�
�φ(x)φ(y1)�0�φ(x�)φ(y2)�0� :sinβ0φ(y1): :sinβ0φ(y2): �0

− �φ(x)φ(y1)�0�φ(x�)φ(y1)�0
�
� :cosβ0φ(y1): :cosβ0φ(y2): �0 −R

−2β2
0

0

��
.

These terms correspond to the diagrams

x
y1 y2

x�

x
y1

x�

y2y2

For calculation of Σ(2) we have to remove ‘legs’ and to subtract the contribution
of one line in the first diagram:

− 1

4π
Σ(2)(x) = α2

0β
2
0r

2δ0
0

�
� :sinβ0φ(x): :sinβ0φ(0): �0 − β2

0R
−2β2

0
0 �φ(x)φ(0)�0

− δ(x)

�
d2y

�
� :cosβ0φ(0): :cosβ0φ(y): �0 −R

−2β2
0

0

��
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RG: second order
Explicitly,

− 1

4π
Σ(2)(x) =

α2
0β

2
0r

2δ0
0

2R
2β2

0
0

��
R0

x

�2β2
0

−
�

x

R0

�2β2
0

− 2β2
0 log

R2
0

x2

− δ(x)

�
d2y

��
R0

y

�2β2
0

+

�
y

R0

�2β2
0

− 2

��
.
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RG: second order
Explicitly,

− 1

4π
Σ(2)(x) =

α2
0β

2
0r

2δ0
0

2R
2β2

0
0

��
R0

x

�2β2
0

−
�

x

R0

�2β2
0

− 2β2
0 log

R2
0

x2

− δ(x)

�
d2y

��
R0

y

�2β2
0

+

�
y

R0

�2β2
0

− 2

��
.

In the momentum space we have

Σ(2)(p2) = −2πα2
0β

2
0r

2δ0
0

��
d2x (eipx − 1)x−2β2

0

−R
−4β2

0
0

�
d2x (eipx + 1)x2β2

0 − 2β2
0R

−2β2
0

0 G0(p
2) + 2R

2−2β2
0

0

�
. (13)

Michael Lashkevich Lecture 3. RG for the BKT transition



RG: second order
Explicitly,

− 1

4π
Σ(2)(x) =

α2
0β

2
0r

2δ0
0

2R
2β2

0
0

��
R0

x

�2β2
0

−
�

x

R0

�2β2
0

− 2β2
0 log

R2
0

x2

− δ(x)

�
d2y

��
R0

y

�2β2
0

+

�
y

R0

�2β2
0

− 2

��
.

In the momentum space we have

Σ(2)(p2) = −2πα2
0β

2
0r

2δ0
0

��
d2x (eipx − 1)x−2β2

0

−R
−4β2

0
0

�
d2x (eipx + 1)x2β2

0 − 2β2
0R

−2β2
0

0 G0(p
2) + 2R

2−2β2
0

0

�
. (13)

The second line vanishes as R0 → ∞ for δ0 � 1.
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RG: second order
Explicitly,

− 1

4π
Σ(2)(x) =

α2
0β

2
0r

2δ0
0

2R
2β2

0
0

��
R0

x

�2β2
0

−
�

x

R0

�2β2
0

− 2β2
0 log

R2
0

x2

− δ(x)

�
d2y

��
R0

y

�2β2
0

+

�
y

R0

�2β2
0

− 2

��
.

In the momentum space we have

Σ(2)(p2) = −2πα2
0β

2
0r

2δ0
0

��
d2x (eipx − 1)x−2β2

0

−R
−4β2

0
0

�
d2x (eipx + 1)x2β2

0 − 2β2
0R

−2β2
0

0 G0(p
2) + 2R

2−2β2
0

0

�
. (13)

The second line vanishes as R0 → ∞ for δ0 � 1. The integral in the first line must
be expanded in p:

Σ(2)(p2) = πα2
0β

2
0r

2δ0
0

�
d2x (px)2x−2β2

0 +O(p4) � π2α2
0β

2
0p

2 log
R0

r0
+O(p4).

(14)
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RG: second order
Explicitly,

− 1

4π
Σ(2)(x) =

α2
0β

2
0r

2δ0
0

2R
2β2

0
0

��
R0

x

�2β2
0

−
�

x

R0

�2β2
0

− 2β2
0 log

R2
0

x2

− δ(x)

�
d2y

��
R0

y

�2β2
0

+

�
y

R0

�2β2
0

− 2

��
.

In the momentum space we have

Σ(2)(p2) = −2πα2
0β

2
0r

2δ0
0

��
d2x (eipx − 1)x−2β2

0

−R
−4β2

0
0

�
d2x (eipx + 1)x2β2

0 − 2β2
0R

−2β2
0

0 G0(p
2) + 2R

2−2β2
0

0

�
. (13)

The second line vanishes as R0 → ∞ for δ0 � 1. The integral in the first line must
be expanded in p:

Σ(2)(p2) = πα2
0β

2
0r

2δ0
0

�
d2x (px)2x−2β2

0 +O(p4) � π2α2
0β

2
0p

2 log
R0

r0
+O(p4).

(14)
It only contributes to Σ1. We have

Zφ = 1− π2α2
0β

2
0 log

R

r0
, Zα = 1 + δ0 log

R

r0
. (15)
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RG: second order
Substituting it to α = Z−1

α α0 and 1 + δ/2 = Zφ(1 + δ0/2), taking the derivation
and expressing α0, δ0 in terms of α, δ in the r.h.s., we obtain

dα

dt
= −δα,

dδ

dt
= −4π2α2, t = logR. (16)
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RG: second order
Substituting it to α = Z−1

α α0 and 1 + δ/2 = Zφ(1 + δ0/2), taking the derivation
and expressing α0, δ0 in terms of α, δ in the r.h.s., we obtain

dα

dt
= −δα,

dδ

dt
= −4π2α2, t = logR. (16)

These equations can be rewritten in the form

d(2πα∓ δ)

dt
= ±2πα(2πα∓ δ). (16a)
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RG: second order
Substituting it to α = Z−1

α α0 and 1 + δ/2 = Zφ(1 + δ0/2), taking the derivation
and expressing α0, δ0 in terms of α, δ in the r.h.s., we obtain

dα

dt
= −δα,

dδ

dt
= −4π2α2, t = logR. (16)

These equations can be rewritten in the form

d(2πα∓ δ)

dt
= ±2πα(2πα∓ δ). (16a)

This means that the straight lines 2πα = ±δ are RG trajectories. They divide the
half-plane α > 0 into three regions:

δ

2παs2 s1

I

II

III
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RG: regions
There are three regions:

δ

2παs2 s1

I

II

III
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RG: regions
There are three regions:

Region I. α → 0 as R → ∞, so that the system looks like a free massless
boson at large distances.

δ

2παs2 s1

I

II

III
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RG: regions
There are three regions:

Region I. α → 0 as R → ∞, so that the system looks like a free massless
boson at large distances.
Region III. α → 0 as R → 0, so that the system looks like a free massless
boson at small distances. It was conjectured that δ → −1 as R → ∞ and the
system behaves as a massive Dirac fermion. The line δ = −1 was conjectured
to be a separatrix.

δ

2παs2 s1

I

II

III
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RG: regions
There are three regions:

Region I. α → 0 as R → ∞, so that the system looks like a free massless
boson at large distances.
Region III. α → 0 as R → 0, so that the system looks like a free massless
boson at small distances. It was conjectured that δ → −1 as R → ∞ and the
system behaves as a massive Dirac fermion. The line δ = −1 was conjectured
to be a separatrix.
Region II. α grows for both large and small R. The system has no conformal
behavior in both IR and UV regions. Since it approaches the line s2 at large
R, it must be a massive theory.

δ

2παs2 s1

I

II

III
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Seminar
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