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O(3)-model: topology of n-field
Consider the O(3)-model on the Euclidean plane:

S[n] =
1

2g

∫
d2x (∂µn)2, n2

1 + n2
2 + n2

3 = 1. (1)

We will be interested in the functions n(x) with finite action. They must be
constant at infinity:

n0(x) →
x→∞

n0. (2)

It means that the function n(x) lives on the topological sphere R2 ∪ {∞}. Hence,
it realized a map

n : S2 → S2′. (3)
Examples. Let (θ, φ) are spherical coordinates on S2 and (θ′, φ′) are those on S2′.
Define the mapping

θ′ = θ, ϕ′ = qϕ, q ∈ Z. (4)
The mappings with different values of q cannot be deformed to each other
continuously. Thus q is a topological number.
In generic coordinates (x1, x2) on S2 and (x′1, x′2) on S2′. Define any metric g′
on the target sphere, such that

S =

∫
S2′

d2x′
√
g′

is finite. Then

q =
1

S

∫
x′(S2)

d2x′
√
g′ =

1

S

∫
S2
d2x

∂(x′)

∂(x)

√
g′.
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Topological charge: integral form
Assuming the spherical coordinates on S2′ with the standard metric:

q =
1

4π

∫ 2π

0
dϕ

∫ π

0
dθ

∂(θ′, ϕ′)

∂(θ, ϕ)
sin θ′ =

1

4π

∫
d2x

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′.

Put
n = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). (5)

It can be checked by a direct calculation that

1

2
n (∂µn× ∂νn)εµν =

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′. (6)

Hence,

q =
1

8π

∫
d2xn (∂µn× ∂νn)εµν . (7)

It can be proved in a simple way. a = ∂1n dx1 and b = ∂2n dx2 are small vectors
on the sphere. The element df of the surface in the parallelogram (a, b) is

df = ±|a× b| = n(a× b) = n(∂1n dx
1 × ∂2n dx2) =

1

2
n (∂µn× ∂νn)εµν dx1 dx2.

0

n b
a

df

Michael Lashkevich Lecture 4. O(3)-model: mass generation by instantons



Topological charge: integral form
Assuming the spherical coordinates on S2′ with the standard metric:

q =
1

4π

∫ 2π

0
dϕ

∫ π

0
dθ

∂(θ′, ϕ′)

∂(θ, ϕ)
sin θ′ =

1

4π

∫
d2x

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′.

Put
n = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). (5)

It can be checked by a direct calculation that

1

2
n (∂µn× ∂νn)εµν =

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′. (6)

Hence,

q =
1

8π

∫
d2xn (∂µn× ∂νn)εµν . (7)

It can be proved in a simple way. a = ∂1n dx1 and b = ∂2n dx2 are small vectors
on the sphere. The element df of the surface in the parallelogram (a, b) is

df = ±|a× b| = n(a× b) = n(∂1n dx
1 × ∂2n dx2) =

1

2
n (∂µn× ∂νn)εµν dx1 dx2.

0

n b
a

df

Michael Lashkevich Lecture 4. O(3)-model: mass generation by instantons



Topological charge: integral form
Assuming the spherical coordinates on S2′ with the standard metric:

q =
1

4π

∫ 2π

0
dϕ

∫ π

0
dθ

∂(θ′, ϕ′)

∂(θ, ϕ)
sin θ′ =

1

4π

∫
d2x

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′.

Put
n = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). (5)

It can be checked by a direct calculation that

1

2
n (∂µn× ∂νn)εµν =

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′. (6)

Hence,

q =
1

8π

∫
d2xn (∂µn× ∂νn)εµν . (7)

It can be proved in a simple way. a = ∂1n dx1 and b = ∂2n dx2 are small vectors
on the sphere. The element df of the surface in the parallelogram (a, b) is

df = ±|a× b| = n(a× b) = n(∂1n dx
1 × ∂2n dx2) =

1

2
n (∂µn× ∂νn)εµν dx1 dx2.

0

n b
a

df

Michael Lashkevich Lecture 4. O(3)-model: mass generation by instantons



Topological charge: integral form
Assuming the spherical coordinates on S2′ with the standard metric:

q =
1

4π

∫ 2π

0
dϕ

∫ π

0
dθ

∂(θ′, ϕ′)

∂(θ, ϕ)
sin θ′ =

1

4π

∫
d2x

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′.

Put
n = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). (5)

It can be checked by a direct calculation that

1

2
n (∂µn× ∂νn)εµν =

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′. (6)

Hence,

q =
1

8π

∫
d2xn (∂µn× ∂νn)εµν . (7)

It can be proved in a simple way. a = ∂1n dx1 and b = ∂2n dx2 are small vectors
on the sphere. The element df of the surface in the parallelogram (a, b) is

df = ±|a× b| = n(a× b) = n(∂1n dx
1 × ∂2n dx2) =

1

2
n (∂µn× ∂νn)εµν dx1 dx2.

0

n b
a

df

Michael Lashkevich Lecture 4. O(3)-model: mass generation by instantons



Topological charge: integral form
Assuming the spherical coordinates on S2′ with the standard metric:

q =
1

4π

∫ 2π

0
dϕ

∫ π

0
dθ

∂(θ′, ϕ′)

∂(θ, ϕ)
sin θ′ =

1

4π

∫
d2x

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′.

Put
n = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). (5)

It can be checked by a direct calculation that

1

2
n (∂µn× ∂νn)εµν =

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′. (6)

Hence,

q =
1

8π

∫
d2xn (∂µn× ∂νn)εµν . (7)

It can be proved in a simple way. a = ∂1n dx1 and b = ∂2n dx2 are small vectors
on the sphere.

The element df of the surface in the parallelogram (a, b) is

df = ±|a× b| = n(a× b) = n(∂1n dx
1 × ∂2n dx2) =

1

2
n (∂µn× ∂νn)εµν dx1 dx2.

0

n b
a

df

Michael Lashkevich Lecture 4. O(3)-model: mass generation by instantons



Topological charge: integral form
Assuming the spherical coordinates on S2′ with the standard metric:

q =
1

4π

∫ 2π

0
dϕ

∫ π

0
dθ

∂(θ′, ϕ′)

∂(θ, ϕ)
sin θ′ =

1

4π

∫
d2x

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′.

Put
n = (sin θ′ cosϕ′, sin θ′ sinϕ′, cos θ′). (5)

It can be checked by a direct calculation that

1

2
n (∂µn× ∂νn)εµν =

∂(θ′, ϕ′)

∂(x1, x2)
sin θ′. (6)

Hence,

q =
1

8π

∫
d2xn (∂µn× ∂νn)εµν . (7)

It can be proved in a simple way. a = ∂1n dx1 and b = ∂2n dx2 are small vectors
on the sphere. The element df of the surface in the parallelogram (a, b) is

df = ±|a× b| = n(a× b) = n(∂1n dx
1 × ∂2n dx2) =

1

2
n (∂µn× ∂νn)εµν dx1 dx2.

0

n b
a

df

Michael Lashkevich Lecture 4. O(3)-model: mass generation by instantons



Self-duality equations
From the identity∫

d2x (∂µn + εµνn× ∂νn)2 = 2

∫
d2x (∂µn)2 − 2

∫
d2xn (∂µn× ∂νn)εµν (8)

we obtain
S[n] =

4πq

g
+

1

4g

∫
d2x (∂µn + εµνn× ∂νn)2. (9)

By the substitution n→ −n, q → −q we have

S[n] = −
4πq

g
+

1

4g

∫
d2x (∂µn− εµνn× ∂νn)2. (10)

Thus
S[n] ≥

4π|q|
g

. (11)

The equality in (11) is achieved, if one of the self-duality equations is satisfied:

∂µn = −εµνn× ∂νn (q > 0), (12)
∂µn = εµνn× ∂νn (q < 0). (13)

These are first-order differential equations. Every their solution is a solution to
the equations of motion, but not vice versa.
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Solutions to the self-duality equations
The stereographic projection:

O

S

N w

n

n1 + in2 =
2w

1 + |w|2
, n3 =

1− |w|2

1 + |w|2
.

(14)

The complex parameter w becomes a coordinate on the sphere. Substituting it to
the self-duality equations we obtain

∂̄w = 0 (q > 0), (15)
∂w = 0 (q < 0). (16)

Take, for example, q > 0. A regular solution around n = e3 corresponds to a
simple node of w ' n1+in2

2
, while a regular solution around n = −e3 corresponds

to a simple pole of w ' 2
n1−in2

. Hence, the general solution is

w(n,~a,~b, c; z) = c

n∏
j=1

z − aj
z − bj

, (17)

The values aj , bj ∈ C ∪ {∞}, but ai 6= bj (∀i, j).
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Solutions to the self-duality equations
Let w0 be large enough and generic. Then the equation w(n,~a,~b, c; z) = w0 has
exactly n solutions.

⇒ It has exactly n solution un to multiplicity for any w0. ⇒

n = q. (17a)

Similarly, for q < 0 we have

w(q,~a,~b, c; z̄) = c

−q∏
j=1

z̄ − aj
z̄ − bj

, (18)
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Functional integral
Discuss the calculation of the functional integral.

Let w(z, z̄) be an arbitrary
function. Then the action reads

S[w, w̄] =
4πq

g
+

8

g

∫
d2x

∂̄w∂w̄

(1 + |w|2)2
(19)

= −
4πq

g
+

8

g

∫
d2x

∂w∂̄w̄

(1 + |w|2)2
. (20)

Suppose q ≥ 0. Let

Sq [ϕ, ϕ̄] = S[w(q,~a,~b, c; z)(1 + ϕ(z, z̄)), w∗(q,~a,~b, c; z)(1 + ϕ̄(z, z̄))]. (21)

It is easy to see that

Sq [ϕ, ϕ̄] =
4πq

g
+

8

g

∫
d2x

|w|2

(1 + |w|2)2
∂̄ϕ∂ϕ̄ (22)

in the quadratic approximation. The q-instanton action is

Zq =
e−4πq/g

(q!)2

∫
dµ(~a,~b, c)Z[w(q,~a,~b, c; z)],

Z[w] =

∫
DϕDϕ̄ exp

(
−

8

g

∫
d2x

|w|2

(1 + |w|2)2
∂̄ϕ∂ϕ̄

) (23)

with a conformal invariant measure µ.
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Functional integral
The only conformal invariant measure is

µ(~a,~b, c) = kq
d2c

|c|2

q∏
j=1

d2aj d
2bj

∏
i<j

|ai − aj |4|bi − bj |4
∏
i,j

|ai − bj |−4 (24)

with a certain constant k.

The partition function Z[w] is g-independent, but due
to the UV and IR divergences is not literally conformal invariant. Instead,

Z[w]→ Z[w′]

q∏
j=1

∣∣∣∣∣da
′
j

daj

∣∣∣∣∣
2α ∣∣∣∣∣db

′
j

dbj

∣∣∣∣∣
2α

with a certain exponent α. Hence,

Z[w] ∼ f(c)
∏
i<j

|ai − aj |−4α|bi − bj |−4α
∏
i6=j
|ai − bj |4α.

A rather complex calculation results in α = 1/2 and f(c) = |c|2/(1 + |c|2)2, so the
integral over c gives just a finite factor. Thus we have

Zq ∼
λq

(q!)2

∫ q∏
j=1

d2aj d
2bj

∏
i<j

|ai − aj |2|bi − bj |2
∏
i,j

|ai − bj |−2, (25)

where λ ∼ e−4π/g .
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Z[w]→ Z[w′]

q∏
j=1

∣∣∣∣∣da
′
j

daj

∣∣∣∣∣
2α ∣∣∣∣∣db

′
j

dbj

∣∣∣∣∣
2α

with a certain exponent α. Hence,

Z[w] ∼ f(c)
∏
i<j

|ai − aj |−4α|bi − bj |−4α
∏
i6=j
|ai − bj |4α.

A rather complex calculation results in α = 1/2 and f(c) = |c|2/(1 + |c|2)2, so the
integral over c gives just a finite factor.

Thus we have

Zq ∼
λq

(q!)2

∫ q∏
j=1

d2aj d
2bj

∏
i<j

|ai − aj |2|bi − bj |2
∏
i,j

|ai − bj |−2, (25)

where λ ∼ e−4π/g .
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Total partition function
The total partition function Z =

∑
q∈Z Zq formally coincides with the partition

function of the sine-Gordon model with β2 = 1, i.e. with the partition function of
massive free fermions.

Literally it is not correct. The problem is the we cannot
find contributions of solutions that behave like multi-instanton in certain regions
of space and like multi-antisoliton in other regions. The only correct conclusion is
that the total theory is massive. We will see below that the O(N)-models with
N > 3, where there are no solitons, are massive too. It is not related to solitons.
Moreover, the O(3)-model looks falls in to the general pattern N ≥ 3 very well.
What is the real consequence of the solitons? In the case of solitons we may
modify the action:

Sθ(n) = S(n) + iθq =
1

2g

∫
d2x (∂µn)2 + i

θ

8π

∫
d2xn(∂µn× ∂νn)εµν . (26)

The second theta-term is purely topological, but it essentially modifies the theory.
The partition function reads

Z =
∞∑

q=−∞
eiθqZq .

In particular, it is known that for θ = π the O(3)-model is massless, but not scale-
invariant. For θ 6= 0, π (mod 2π) the theory does not seem to be exactly solvable.
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