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O(3)-model: mass generation by instantons
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:

1
Sn] = g/d%(@un)? ni+n3+ng=1 (1)
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:
1
Stnl = o, /d%(é’un)? nf +n3 +nf=1 (1)

We will be interested in the functions n(z) with finite action. They must be
constant at infinity:

no(z) = mo. (2)
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:
1
Stnl = o, /d%(é’un)? nf +n3 +nf=1 (1)

We will be interested in the functions n(z) with finite action. They must be
constant at infinity:

no(z) — mo. (2)

It means that the function n(x) lives on the topological sphere R? U {co}.
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:
1
Stnl = o, /d%(é’un)? nf +n3 +nf=1 (1)

We will be interested in the functions n(z) with finite action. They must be
constant at infinity:
— .
70 ({L‘) T— 00 no (2)
Tt means that the function m(x) lives on the topological sphere R? U {co}. Hence,
it realized a map
n:8? - 5% (3)
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:
1
Stnl = o, /d%(é’un)? nf +n3 +nf=1 (1)

We will be interested in the functions n(z) with finite action. They must be
constant at infinity:

no(z) — mo. (2)

Tt means that the function m(x) lives on the topological sphere R? U {co}. Hence,
it realized a map
n:8? - 5% (3)
Examples. Let (6, ) are spherical coordinates on S? and (', ¢’) are those on S?’.
Define the mapping
=60, ¢ =qp, qeL (4)
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:
1
Stnl = o, /d%(é’un)? nf +n3 +nf=1 (1)

We will be interested in the functions n(z) with finite action. They must be
constant at infinity:
— .

70 ({L‘) T— 00 no (2)
Tt means that the function m(x) lives on the topological sphere R? U {co}. Hence,
it realized a map

n:8? - 5% (3)
Examples. Let (6, ) are spherical coordinates on S? and (', ¢’) are those on S?’.
Define the mapping

=0, ¢ =qp, qel (4)

The mappings with different values of g cannot be deformed to each other
continuously. Thus ¢ is a topological number.
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:
1
Stnl = o, /d%(é’un)? nf +n3 +nf=1 (1)

We will be interested in the functions n(z) with finite action. They must be
constant at infinity:

no(z) — mo. (2)

Tt means that the function m(x) lives on the topological sphere R? U {co}. Hence,
it realized a map
n:8? - 5% (3)

Examples. Let (6, ) are spherical coordinates on S? and (', ¢’) are those on S?’.
Define the mapping

=60, ¢ =qp, qeL (4)
The mappings with different values of g cannot be deformed to each other
continuously. Thus ¢ is a topological number.
In generic coordinates (z!,22) on S? and (2’1, 2'2) on S?’. Define any metric g’
on the target sphere, such that

S = 22’ /g

S27
is finite.
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O(3)-model: topology of n-field

Consider the O(3)-model on the Euclidean plane:
1
Stnl = o, /d%(é’un)? nf +n3 +nf=1 (1)

We will be interested in the functions n(z) with finite action. They must be
constant at infinity:

no(z) — mo. (2)

Tt means that the function m(x) lives on the topological sphere R? U {co}. Hence,
it realized a map
n:8? - 5% (3)

Examples. Let (6, ) are spherical coordinates on S? and (', ¢’) are those on S?’.
Define the mapping

=60, ¢ =qp, qeL (4)
The mappings with different values of g cannot be deformed to each other
continuously. Thus ¢ is a topological number.
In generic coordinates (z!,22) on S? and (2’1, 2'2) on S?’. Define any metric g’
on the target sphere, such that

S = dz:p'\/?
S27
is finite. Then

/
S Jar(52) S Js2

I(z)
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Topological charge: integral form

Assuming the spherical coordinates on S?' with the standard metric:

27r 9/ 1 4 /
q= / df —>~ 8( %) sinf’ = f/dzstinﬂl.
Ar 0,¢) 4w O(z1, 22)
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Topological charge: integral form

Assuming the spherical coordinates on S?' with the standard metric:
27r o(0’ 1 o 0/’ /
q= / df —>~ ( %) sinf’ = f/dzstinﬂl.
Ar 0,p) 4T O(xl, x2)

Put
n = (sin @ cos ¢’,sin @’ sin ¢’, cos §’). (5)
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Topological charge: integral form

Assuming the spherical coordinates on S?' with the standard metric:

27r 9/ 1 4 /
q= / df —>~ 8( %) sinf’ = f/dzstinﬂl.
Ar 0,p) 4T

O(z1, 22)
Put
n = (sin @ cos ¢’,sin @’ sin ¢’, cos §’).
It can be checked by a direct calculation that
(e, ¢")

PR
Wsme .

1
Sm (Oum X Oyn)er” =
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Topological charge: integral form

Assuming the spherical coordinates on S?' with the standard metric:
27r o(0’ 1 o 6'/, /
q= / df —>~ ( %) sinf’ = f/dzstinﬂl.
Ar 0,¢) 4w O(z1, 22)
Put
n = (sin @ cos¢’,sin @' sin ¢’ cos @’). (5)

It can be checked by a direct calculation that
20’ ¢')

Py
W sin . (6)

1
Sm (Oum X Oyn)er” =

Hence,
1
= —/dzxn(aun X Oymn)el. (7)
8m
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Topological charge: integral form

Assuming the spherical coordinates on S?' with the standard metric:
27r o(0’ 1 o 6'/, /
q= / df —>~ ( %) sinf’ = f/dzstinﬂl.
Ar 0,¢) 4w O(z1, 22)
Put
n = (sin @ cos¢’,sin @' sin ¢’ cos @’). (5)

It can be checked by a direct calculation that
20’ ¢')

Py
W sin . (6)

1
Sm (Oum X Oyn)er” =

Hence,
1
= —/dzxn(aun X Oymn)el. (7)
8m

It can be proved in a simple way. a = 91ndz' and b = Jon dz? are small vectors
on the sphere.
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Topological charge: integral form

Assuming the spherical coordinates on S?' with the standard metric:
27r o(0’ 1 o 0/’ /
q= / df —>~ ( %) sinf’ = f/dzstinﬂl.
Ar 0,¢) 4w O(z1, 22)
Put
n = (sin @ cos¢’,sin @' sin ¢’ cos @’). (5)

It can be checked by a direct calculation that
20’ ¢')

Py
W sin . (6)

1
Sm (Oum X Oyn)er” =

Hence,
1
= —/dzxn(aun X Oymn)el. (7)
8m

It can be proved in a simple way. a = 91ndz' and b = Jon dz? are small vectors
on the sphere. The element df of the surface in the parallelogram (a,b) is

1
df = +la x b| = n(a x b) = n(dinde’ x dandz?) = §n(aun X dym)et” dzt da?.
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Self-duality equations

From the identity

/d% (Oum + eppm x 8¥n)? = 2/d2m (Bum)? — Q/d%n(am x dym)et  (8)
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Self-duality equations

From the identity
/d% (Oum + eppm x 8¥n)? = 2/d2m (Bum)? — Q/d%n(am x dym)et  (8)

we obtain 4 1
Sfn) = 177 4 /d% (@um + epum X 3m)2. )
g )

Lecture 4. O(3)-model: m neration by instantons



Self-duality equations

From the identity

/d% (Oum + eppm x 8¥n)? = 2/d2m (Bum)? — Q/d%n(aw x dym)et  (8)

we obtain 4 1
Sn) =44, L /d% (@um + epum X 3m)2. )
g 49
By the substitution n - —n, ¢ -+ —q we have
4 1
S[n] = M 4—/d2x (Bum — €pum x 8¥n)2. (10)
g g
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Self-duality equations

From the identity

/d% (Oum + eppm x 8¥n)? = 2/d2m (Bum)? — Q/d%n(aw x dym)et  (8)

we obtain 4
S[n] = ﬂ—s——/dQ (Oum + €pum x 9¥n)2.
g
By the substitution n - —n, ¢ -+ —q we have
4 1
S[n] = M —/dQI (Bum — €pum x 8¥n)2.
g 49
Thus 1
Sin] > 4rlq|

Lecture 4. O(3)-model: m:
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Self-duality equations

From the identity

/d% (Oum + eppm x 8¥n)? = 2/d2m (Bum)? — Q/d%n(aw x dym)et  (8)

we obtain 4
S[n] = ﬂ—s——/dQ (Oum + €pum x 9¥n)2. (9)
g
By the substitution n - —n, ¢ -+ —q we have
4 1
S[n] = M —/dQI (Bum — €pum x 8¥n)2. (10)
g 49
Thus 1
S > Aldl (11)
g

The equality in (11) is achieved, if one of the self-duality equations is satisfied:

Oun = —epn x 0n (g >0), (12)
Oun = eum x 0¥n (g <0). (13)
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Self-duality equations

From the identity

/d% (Oum + eppm x 8¥n)? = 2/d2m (Bum)? — Q/d%n(aw x dym)et  (8)

we obtain 4
S[n] = ﬂ—s——/dQ (Oum + €pum x 9¥n)2. (9)
g
By the substitution n - —n, ¢ -+ —q we have
4 1
S[n] = M —/dQI (Bum — €pum x 8¥n)2. (10)
g 49
Thus 1
S > Aldl (11)
g

The equality in (11) is achieved, if one of the self-duality equations is satisfied:

Oun = —epn x 0n (g >0), (12)
Oun = eum x 0¥n (g <0). (13)

These are first-order differential equations. Every their solution is a solution to
the equations of motion, but not vice versa.
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Solutions to the self-duality equations

The stereographic projection:
N w

(14)
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Solutions to the self-duality equations

The stereographic projection:

N w
O\
S
n1+in2=27w, ngzﬂ. (14)
1+ |w|? 1+ |wl?
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Solutions to the self-duality equations

The stereographic projection:

N w
O\~
S
4 2w 1—|w|?
n ing = ———, ng = ——-=.
P T P T wf?

The complex parameter w becomes a coordinate on the sphere.
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Solutions to the self-duality equations

The stereographic projection:

N w
O\
S
n1+in2=27w, ngzﬂ. (14)
1+ |w|? 1+ |w|?

The complex parameter w becomes a coordinate on the sphere. Substituting it to
the self-duality equations we obtain

ow =0 (g >0), (15)
dw=0  (g<0). (16)
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Solutions to the self-duality equations

The stereographic projection:

N w
O\
S
n1+in2=27w, ngzﬂ. (14)
1+ |w|? 1+ |wl?

The complex parameter w becomes a coordinate on the sphere. Substituting it to
the self-duality equations we obtain

ow =0 (¢ >0), (15)
ow =0 (g <0). (16)
Take, for example, ¢ > 0.
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Solutions to the self-duality equations

The stereographic projection:

N w
O\
S
n1+in2=27w, ngzﬂ. (14)
1+ |w|? 1+ |wl?

The complex parameter w becomes a coordinate on the sphere. Substituting it to
the self-duality equations we obtain

ow =0 (¢ >0), (15)
ow=0 (g<0). (16)

Take, for example, ¢ > 0. A regular solution around n = e3 corresponds to a

simple node of w ~ %,
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Solutions to the self-duality equations

The stereographic projection:

N w
O\
S
n1+in2=27w, ngzﬂ. (14)
1+ |w|? 1+ |wl?

The complex parameter w becomes a coordinate on the sphere. Substituting it to
the self-duality equations we obtain

ow =0 (¢ >0), (15)
ow=0 (g<0). (16)

Take, for example, ¢ > 0. A regular solution around n = e3 corresponds to a

simple node of w =~ %, while a regular solution around n = —e3 corresponds
2

to a simple pole of w ~ =T
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Solutions to the self-duality equations

The stereographic projection:

N w
O\~
S
4 2w 1—|w|? (14)
n ing = ———, ng = ——-=.
P T P T wf?

The complex parameter w becomes a coordinate on the sphere. Substituting it to
the self-duality equations we obtain

ow =0 (¢ >0), (15)

ow =0 (g <0). (16)
Take, for example, ¢ > 0. A regular solution around n = e3 corresponds to a
simple node of w =~ m, while a regular solution around n = —e3 corresponds
to a simple pole of w ~ ﬁ Hence, the general solution is

w(na,bcz)-cHZib (17)
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Solutions to the self-duality equations

The stereographic projection:

N w
O\~
S
4 2w 1—|w|? (14)
n ing = ———, ng = ——-=.
P T P T wf?

The complex parameter w becomes a coordinate on the sphere. Substituting it to
the self-duality equations we obtain

ow =0 (¢ >0), (15)

ow =0 (g <0). (16)
Take, for example, ¢ > 0. A regular solution around n = e3 corresponds to a
simple node of w =~ m, while a regular solution around n = —e3 corresponds
to a simple pole of w ~ ﬁ Hence, the general solution is

w(na,bcz)-cHZib (17)

The values a;,b; € CU {oo}, but a; # b; (Vi, ])
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Solutions to the self-duality equations

Let wo be large enough and generic. Then the equation w(n,d, I;, ¢;z) = wo has
exactly n solutions.




Solutions to the self-duality equations

Let wo be large enough and generic. Then the equation w(n,d, I;, ¢;z) = wo has
exactly n solutions. = It has exactly n solution un to multiplicity for any wq.
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Solutions to the self-duality equations

Let wo be large enough and generic. Then the equation w(n,d, I;, ¢;z) = wo has
exactly n solutions. = It has exactly n solution un to multiplicity for any wg. =

n=gq. (17a)
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Solutions to the self-duality equations

Let wo be large enough and generic. Then the equation w(n,d, I;, ¢;z) = wo has
exactly n solutions. = It has exactly n solution un to multiplicity for any wg. =

n=gq. (17a)
Similarly, for ¢ < 0 we have

q _
- zZ—a;
w(g,d,b,c;Z) = ¢ J
i=1

; (18)
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Functional integral

Discuss the calculation of the functional integral.
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Functional integral

Discuss the calculation of the functional integral. Let w(z,z) be an arbitrary
function. Then the action reads

_ 47rq Owdw
Slw,w] = + - / 19
[, @] TrTulE (19)
47rq / Awdw
= + = — . 20
I P2 20
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Functional integral

Discuss the calculation of the functional integral. Let w(z,z) be an arbitrary
function. Then the action reads

4mq 8 2 Owdw

Slw,w] = — + — T —— 19
)= L T ey 1
drqg 8 2 Awdwm
=——"+- T . (20
9 9 (1+ lwl?)? )
Suppose g > 0. Let
Sqle, @) = S[w(q, @b, ¢; 2)(1 + (2, 7)), w* (¢,d, b, ¢; 2) (1 + &(2, 2))]. (21)
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Functional integral

Discuss the calculation of the functional integral. Let w(z,z) be an arbitrary
function. Then the action reads

4mq 8 2 Owdw

Slw, 0] = — + — T — (19)
9 9 (1+ w[?)?
4 a -
__Ama 8 [, Owow (20)
9 9 (1+ [w]?)
Suppose g > 0. Let
Sqle, @) = S[w(q, @b, ¢; 2)(1 + (2, 7)), w* (¢,d, b, ¢; 2) (1 + &(2, 2))]. (21)
It is easy to see that
B 4wq 8 9 |w|2 ~
Sqle, =—+7/dx788 22
qle. @l 7 T3 5 w2 9% (22)

in the quadratic approximation.

Lecture 4. O(3)-model: m: eneration by instantons



Functional integral

Discuss the calculation of the functional integral. Let w(z,z) be an arbitrary
function. Then the action reads

4mq 8 2 Owdw

Slw, 0] = — + — T — (19)
9 9 (1+ w[?)?
47 8 Awdwm
- + - 2z . (20)
9 9 (1+ [w]?)
Suppose g > 0. Let
Sqle, @) = S[w(q, @b, ¢; 2)(1 + (2, 7)), w* (¢,d, b, ¢; 2) (1 + &(2, 2))]. (21)
It is easy to see that
B 4wq 8 9 |w|2 ~
Sqle, =—+7/dx788 22
qle. @l 7 T3 5 w2 9% (22)
in the quadratic approximation. The g-instanton action is
e—4ma/g o o
Zq = N2 / d/"L(ﬁ’ b7 C) Z['Uj(q, 67 b: (&N Z)]:
(a) (23)
, 8 lw]> <
Zw:/DDex (77/d2x786
[w] pDpexp |~ TR A

with a conformal invariant measure pu.
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Functional integral

The only conformal invariant measure is

(@, b, c) ||2 Hd%dzb [T la: = ajl*1bi = b1 [ [ las — b;17*  (24)

i<j 0]

with a certain constant k.
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Functional integral

The only conformal invariant measure is
_— q d?c 2 2 4 4 —4
w(@b,c) =k EE [ da;d®b; [T lai —a;l*bs = b;|* [ ] las — bs] (24)
j=1 i<j i,j

with a certain constant k. The partition function Z[w] is g-independent,
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Functional integral

The only conformal invariant measure is
_— q d?c 2 2 4 4 —4
w(@b,c) =k EE [ da;d®b; [T lai —a;l*bs = b;|* [ ] las — bs] (24)
j=1 i<j i,j

with a certain constant k. The partition function Z[w] is g-independent, but due
to the UV and IR divergences is not literally conformal invariant.
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Functional integral

The only conformal invariant measure is

(@, b, c) ||2 Hd%dzb [T la: = ajl*1bi = b1 [ [ las — b;17*  (24)

i<j 0]

with a certain constant k. The partition function Z[w] is g-independent, but due
to the UV and IR divergences is not literally conformal invariant. Instead,

Zw) —>Zw]H

, 2

v/
db]-

da y

with a certain exponent a.
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Functional integral

The only conformal invariant measure is

(@, b, c) ||2 Hd%dzb [T la: = ajl*1bi = b1 [ [ las — b;17*  (24)

i<j 0]

with a certain constant k. The partition function Z[w] is g-independent, but due
to the UV and IR divergences is not literally conformal invariant. Instead,

Zw) —>Zw]H

, 2

v/
db]-

da y

with a certain exponent . Hence,

Zw] ~ f(¢) [T lai — aj|=**[bi = bj|=** [T las — b;|**.

i<j i#]
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Functional integral

The only conformal invariant measure is

(@, b, c) ||2 Hd%dzb [T la: = ajl*1bi = b1 [ [ las — b;17*  (24)

i<j 0]

with a certain constant k. The partition function Z[w] is g-independent, but due
to the UV and IR divergences is not literally conformal invariant. Instead,

Zw) —>Zw]H

, 2

v/
db]-

da y

with a certain exponent . Hence,

Zw] ~ f(¢) [T lai — aj|=**[bi = bj|=** [T las — b;|**.

i<j i#]

A rather complex calculation results in a = 1/2 and f(c) = |¢|?/(1 + |c|?)2, so the
integral over c gives just a finite factor.
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Functional integral

The only conformal invariant measure is
(@, b, c) H d*a; d®b; [ lai — aj|*|bi = bj|* [ [ lai — ;17" (24)
1<J 1,7

with a certain constant k. The partition function Z[w] is g-independent, but due
to the UV and IR divergences is not literally conformal invariant. Instead,

da’ 2c dv'. 2a
A —Z
w]H daj db,

with a certain exponent . Hence,

Zw] ~ f(¢) [T lai — aj|=**[bi = bj|=** [T las — b;|**.

i<j i#]

A rather complex calculation results in a = 1/2 and f(c) = |¢|?/(1 + |c|?)2, so the
integral over c gives just a finite factor. Thus we have

/Hda3d2]H|az—a]| Ibs —b|2H\al—b|_ (25)

1<J

where A ~ e=47/9.
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Total partition function

The total partition function Z = quz

function of the sine-Gordon model with 2 = 1, i.e. with the partition function of
massive free fermions.

Z4 formally coincides with the partition
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Total partition function

The total partition function Z = quz

function of the sine-Gordon model with 2 = 1, i.e. with the partition function of
massive free fermions. Literally it is not correct.

Z4 formally coincides with the partition
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Total partition function

The total partition function Z = quz
function of the sine-Gordon model with 2 = 1, i.e. with the partition function of
massive free fermions. Literally it is not correct. The problem is the we cannot
find contributions of solutions that behave like multi-instanton in certain regions
of space and like multi-antisoliton in other regions.

Z4 formally coincides with the partition
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Total partition function

The total partition function Z = quz

function of the sine-Gordon model with 2 = 1, i.e. with the partition function of
massive free fermions. Literally it is not correct. The problem is the we cannot
find contributions of solutions that behave like multi-instanton in certain regions
of space and like multi-antisoliton in other regions. The only correct conclusion is
that the total theory is massive.

Z4 formally coincides with the partition
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Total partition function

The total partition function Z = 3= .,
function of the sine-Gordon model with 2 = 1, i.e. with the partition function of
massive free fermions. Literally it is not correct. The problem is the we cannot
find contributions of solutions that behave like multi-instanton in certain regions
of space and like multi-antisoliton in other regions. The only correct conclusion is
that the total theory is massive. We will see below that the O(IN)-models with

N > 3, where there are no solitons, are massive too. It is not related to solitons.

Z4 formally coincides with the partition
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Total partition function

The total partition function Z = quz

function of the sine-Gordon model with 2 = 1, i.e. with the partition function of
massive free fermions. Literally it is not correct. The problem is the we cannot
find contributions of solutions that behave like multi-instanton in certain regions
of space and like multi-antisoliton in other regions. The only correct conclusion is
that the total theory is massive. We will see below that the O(IN)-models with

N > 3, where there are no solitons, are massive too. It is not related to solitons.
Moreover, the O(3)-model looks falls in to the general pattern N > 3 very well.

Z4 formally coincides with the partition
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Total partition function

The total partition function Z = quz

function of the sine-Gordon model with 2 = 1, i.e. with the partition function of
massive free fermions. Literally it is not correct. The problem is the we cannot
find contributions of solutions that behave like multi-instanton in certain regions
of space and like multi-antisoliton in other regions. The only correct conclusion is
that the total theory is massive. We will see below that the O(IN)-models with

N > 3, where there are no solitons, are massive too. It is not related to solitons.
Moreover, the O(3)-model looks falls in to the general pattern N > 3 very well.
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Sp(n) = S(n) +ihq = QL /dQ:v (Bum)? + 18i /dQ:v'n,(aun x Oyn)et’.  (26)
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The second theta-term is purely topological, but it essentially modifies the theory.
The partition function reads

o0
Z= > €%z,

g=—o0
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In particular, it is known that for § = 7 the O(3)-model is massless, but not scale-
invariant.
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The second theta-term is purely topological, but it essentially modifies the theory.
The partition function reads

R .
Z= > €%z,
gq=—00

In particular, it is known that for § = 7 the O(3)-model is massless, but not scale-
invariant. For 6 # 0,7 (mod 27) the theory does not seem to be exactly solvable.
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