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nal integral

Consider the general O(N)-model in the Minkowski space:

Sln] = %/de(aﬂn)Q, n?—1. (1)
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Instead of the restriction n? = 1, let us introduce an auxiliary field w:

Sin,w] = %/d% (9um)? — w(n® - 1)). )
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Functional integral

Consider the general O(N)-model in the Minkowski space:
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Instead of the restriction n? = 1, let us introduce an auxiliary field w:
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The integral over n is Gaussian. Indeed, the exponent looks like

. - 1/ n w
iS[n, w]+ig I/Q/dQIJn:—§ (g1/2’ (w)di5 1/2)+<1Jz, 1/2)+Z/d2$ 2

where
K(w) = 1(82 + w).
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Functional integral

Consider the general O(N)-model in the Minkowski space:
Sln] = 1g/d2m(8#n) n?—1. (1)
Instead of the restriction n? = 1, let us introduce an auxiliary field w:
Sin,w] = %/d% (9um)? — w(n® - 1)). )
The generating functional of correlation functions:
21 = [ Do Dpessimertio 2 3)

The integral over n is Gaussian. Indeed, the exponent looks like

. - 1/ n w
iS[n, w]+ig I/Q/dQIJn:—§ (g1/2’ (w)di5 1/2)+<1Jz, 1/2)+Z/d2$ 2

where
K(w) = 1(82 + w).
Thus we obtain
Z[J) = /Dw (det(92+w)) "N/ Z exp (i/d%Qi - %/d%d%’ Ji(l')G(x:x/lw)Ji(m/)) ;
g

where G(z, z’|w) is the solution of the equation

2(65 + w(z))G(z, 2’ |w) = 6(z — ). (4)
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Stationary point approximation as N — oo

Rewrite it as

Z10] = /Dw exp (iseﬂ[w] - %/d%d%’ Ji(z)G(x,x’|w)J¢(w’)>, )

Seft|w] = zg tr log(aﬁ +w)+ /d2x 21 (6)
g
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Stationary point approximation as N — oo

Rewrite it as

2] = /Dw exp (iseﬂ[w] - %/d%d%’ Ji(z)G(x,x’|w)J¢(m’)> :
Seft|w] = zg tr log(aﬁ +w)+ /d2x ;—g

Find the saddle point as N — oco. Suppose that the saddle point is

w(z) = const = wp.
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Stationary point approximation as N — oo

Rewrite it as

Z10] = /Dw exp (iseﬂ[w] - %/d%d%’ Ji(z)G(x,x’|w)J¢(w’)>, )

Seft|w] = zg tr log(aﬁ +w)+ /d2x 21 (6)
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Find the saddle point as N — oco. Suppose that the saddle point is
w(z) = const = wp.

Then

d?k
tr log(@i +wo) = V/ W log(wo — k2 — i0)

where A is an ultraviolet cutoff parameter.
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where A is an ultraviolet cutoff parameter.
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Stationary point approximation as N — oo
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where A is an ultraviolet cutoff parameter.
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Stationary point approximation as N — oo
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where A is an ultraviolet cutoff parameter.
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Stationary point approximation as N — oo

The stationary point equation is

d N A? 1
0= 8wl _y, (——log— + —) :
8m g

dwo




Stationary point approximation as N — oo

The stationary point equation is

which results in




Stationary point approximation as N — oo

The stationary point equation is

which results in

(8)

The parameter wg = m? is dimensional and finite. We will see that it is the mass
of particles.




Stationary point approximation as N — oo

The stationary point equation is

which results in
wo =m? = A%exp (—i> . (8)

The parameter wg = m? is dimensional and finite. We will see that it is the mass
of particles. Instead, the parameter g depends on the UV cutoff A and is non-
physical. Its dependence can be described by the RG equation

dg

= B(g) =~ N g2, (9)
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Stationary point approximation as N — oo

The stationary point equation is

which results in
wo =m? = A%exp (—i> . (8)

The parameter wg = m? is dimensional and finite. We will see that it is the mass
of particles. Instead, the parameter g depends on the UV cutoff A and is non-
physical. Its dependence can be described by the RG equation

dg . 7_& 2
dlog A =B(9) = 59 9)

This phenomenon is called the dynamic mass generation or dimensional
transmutation.




1/N expansion

Let

w(z) = m? + (2/N)/2p(x). (10)




1/N expansion

Let
w(w) = m? + (2/N)2p(z). (10)
Assuming G(z, ') = G(z,z'|m?) we have
N 1/2 (52 2y-1 L
Sefr [w] :const—&—zgtrlog (1+(2/N) / p(0, +m”) ) +Wtrp
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Let
w(w) = m? + (2/N)2p(z). (10)
Assuming G(z, ') = G(z,z'|m?) we have
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1/N expansion

Let
w(w) = m? + (2/N)2p(z). (10)
Assuming G(z, ') = G(z,z'|m?) we have
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The first parenthesis vanishes.
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Let
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1/N expansion

Let
w(w) = m? + (2/N)2p(z). (10)
Assuming G(z, ') = G(z,z'|m?) we have
N 1/2 (52 2y-1 L
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N oo
Seft|w] = const—i; Z

Michael La



1/N expansion: the D propagator

The term with n = 2 is a quadratic form in p:

%/d2w1 A’z p(z1)G(z1, 22)p(x2) G (22, 21).




1/N expansion: the D propagator

The term with n = 2 is a quadratic form in p:
i
§/d2w1 d%xo p(x1)G(x1, x2)p(x2) G2, 21).

Hence we will consider the inverse D(z1,z2) of its kernel

DY (z1,22) = G(z1,22)G (22, 71)

as a propagator of the field p(x).




1/N expansion: the D propagator

The term with n = 2 is a quadratic form in p:
i
§/d2w1 d%xo p(x1)G(x1, x2)p(x2) G2, 21).

Hence we will consider the inverse D(z1,z2) of its kernel
D™ (z1,22) = G(z1,22)G(w2, 1)

as a propagator of the field p(z). In the momentum space

_ k _ d?q 1 -1
Dlk) = --=-- T (/ (2m)2 (@2 —m2 +i0)((¢ + k)2 — m2 + iO)) - (12)
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1/N expansion: the D propagator

The term with n = 2 is a quadratic form in p:

%/d2w1 A’z p(z1)G(z1, 22)p(x2) G (22, 21).

Hence we will consider the inverse D(z1,z2) of its kernel

DY (z1,22) = G(z1,22)G (22, 71)

as a propagator of the field p(z). In the momentum space

D(k)szﬁ,, :7(/(01211 1

-1
2m)2 (¢2 —m?2 +1i0)((q + k)2 —m? + 'LO)) - (12

Explicitly, we have

4m?2
i 1 1-S=+1
D~ Yk) = lo . 13
(k) 27%2\/174%2 g\/174“;271 (13)
k k
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1/N expansion: the D propagator

The term with n = 2 is a quadratic form in p:

%

§/d2w1 d%xo p(x1)G(x1, x2)p(x2) G2, 21).
Hence we will consider the inverse D(z1,z2) of its kernel

DY (z1,22) = G(z1,22)G (22, 71)

as a propagator of the field p(z). In the momentum space

_ k _ d?q 1 -1
Dlk) = --=-- T (/ (2m)2 (@2 —m2 +i0)((¢ + k)2 — m2 + iO)) - (12)

Explicitly, we have

. _4'rn2
D (k) = — ! VIZ e (13)

k) = lo; .
2mk2 \/1 _ 4m?2 & \/1 _ 4m?2 1
k2 k2

This cumbersome formula becomes quite elementary in the appropriate
parameterization:

0 0
D(k) = 4mim? —, k? = —4m?sh? —. (14)
0 2
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1/N expansion: the G propagator and the vertex

Now expand the function G(z,z’|w):

Gl — L %
[UJ] - G-1 +’L(2/N)1/2p -

n=0
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1/N expansion: the G propagator and the vertex

Now expand the function G(z,z’|w):

1 > n n
Ol = Gy, ~ 2R ea
n=0
] 2 n/2
Glaraal) = 30" (2) [ G mpn)Gn, 1) o) Gl 22)
n=0
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1/N expansion: the G propagator and the vertex

Now expand the function G(z,z’|w):

1 > n
Ol = Gy, ~ 2R ea
n=0
] 2 n/2
Glaraal) = 30" (2) [ G mpn)Gn, 1) o) Gl 22)
n=0

Thus the expression for Seg and for G[w] can be written in terms of the propagator

p idij

Gij(p) = f—————————— ] = G(p)éij = m (15)
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1/N expansion: the G propagator and the vertex

Now expand the function G(z,z’|w):

1 > n
Ol = Gy, ~ 2R ea
n=0
] 2 n/2
Glaraal) = 30" (2) [ G mpn)Gn, 1) o) Gl 22)
n=0

Thus the expression for Seg and for G[w] can be written in terms of the propagator

p idij

Gij(p) = f—————————— ] = G(p)éij = m (15)

and the vertex

) . 1/2
L7 =7i(3) 5ij. (16)
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1/N expansion: Feynman rules

We can formulate Feynman rules:
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1/N expansion: Feynman rules

We can formulate Feynman rules:
@ A diagram consists of dashed lines (12), solid lines (15) and vertices (16).

@ The outer lines of a diagram can only be solid lines corresponding to the
massive particles ¢; = g*1/2ni.




1/N expansion: Feynman rules

We can formulate Feynman rules:
@ A diagram consists of dashed lines (12), solid lines (15) and vertices (16).

@ The outer lines of a diagram can only be solid lines corresponding to the
massive particles ¢; = g*1/2ni.

@ Closed loops of solid lines must contain at least three vertices.
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We can formulate Feynman rules:
@ A diagram consists of dashed lines (12), solid lines (15) and vertices (16).

@ The outer lines of a diagram can only be solid lines corresponding to the
massive particles ¢; = g*1/2ni.
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For example, in the order 1/N one can obtain

Am 1 1 A2

2 2

—A -, — = 17
" P ( ) g + 4mm?2log(A2/m?2) an
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1/N expansion: Feynman rules

We can formulate Feynman rules:
@ A diagram consists of dashed lines (12), solid lines (15) and vertices (16).
@ The outer lines of a diagram can only be solid lines corresponding to the
massive particles ¢; = g*1/2ni.
@ Closed loops of solid lines must contain at least three vertices.

The relation between g, m and A is given by

N ) 1
<;%($)> = ;

For example, in the order 1/N one can obtain
4 1 1 A?
m?2 = A% exp (— il ) ,

= =4 17
(N —2)g' g 9 Trm?log(hZ/m?) )

The quadratic divergence originates in the rigid constraint n? = 1. Adding to the
action a term «a [ d?z w? mitigates it to a logarithmic one.




Two-particle scattering

We have particles ¢;, ¢ = 1,..., N of the mass m. Consider the scattering process
i +@; = pir + ;. Let p1 = msh6i, po = mshoz be the momenta of the
incoming particles, and pj = msh#6/, p, = msh6) be the momenta of the
outgoing particles. The 0 variables are called rapidities of particles.




Two-particle scattering

We have particles ¢;, ¢ = 1,..., N of the mass m. Consider the scattering process
i +@; = pir + ;. Let p1 = msh6i, po = mshoz be the momenta of the
incoming particles, and pj = msh#6/, p, = msh6) be the momenta of the
outgoing particles. The 6 variables are called rapidities of particles. The energy
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incoming particles, and pj = msh#6/, p, = msh6) be the momenta of the
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Two-particle scattering

We have particles ¢;, ¢ = 1,..., N of the mass m. Consider the scattering process
i +@; = pir + ;. Let p1 = msh6i, po = mshoz be the momenta of the
incoming particles, and pj = msh#6/, p, = msh6) be the momenta of the
outgoing particles. The 6 variables are called rapidities of particles. The energy
and momentum conservation equations

mch6, +mchOy = mch9’1 —i—mch%,
msh6; +mshfs = msh@i +msh€é

have two solutions: 0] = 01, 0} = 02 and 0] = 02, 6, = 1. Thus the S matrix can
be ngtlten as .,
S;; (01,02;01,05) = (2m)8(p} — p1)3(py — p2)S;;” (61 — 02)

+(2m)%5(py — p1)3(py — p2)SE;" (61 — 62).

We can rewrite the delta-function in terms of the delta-function over space-time
momenta:

SE (01,02; 04, 04) = (2m)262) (P! — p) 0L 02) gu'y

— =287 (01 — 0
ch@ychfy Y (04 2)
4m? sh(61 — 62)

= (2m)2@ (P - P)
4e1e90

i/j/
SL7 (61— 62),

where P* = p} +ph, P'* = pl* + pJf".

Lecture 5. O(N)-model: 1/N-expansion
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Hence

M 6100
4m2sh(0 — 02)

SET' 0y — 02) = 667 +




Two-particle scattering

Hence o

Y o M7 (01 — 02)

S (01 — 02) = &% & —
iy (61 =02) =000; + 705 sh(6; — 02)

The compatibility condition with the O(N)-symmetry gives

S29"(0) = 6117161551(8) + 6,1:8;1;S2(6) + 8,11:6,1;53(6). (18)

Lecture 5. O(N)-model: 1/N-expansion
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Two-particle scattering: 1/N contribution

Calculate the S matrix in the order 1/N. We will use the formula With the

formula b 9
D(k) = dmim? 57, K = —am’sh® . (14)
Then
, p1 O —im— 0 p1 omi
4m2sh6 Sy (0) = S . S0 = ——"
m”sh051(0) 10 =N =0
p2 p2
P——n
2711
4m2sh (S2(0) — 1) = 9 = . Sa(0)=1—
m”sho (S2(0) — 1) 19 =0 2(0) Nond
p2 ———— P2
pP—p2
omi
4m?sh 0 S3(0) = 319:9 , sg(e)z—%

Michael La






