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Conformal invariance of the action
Recall the action of the O(N)-model

S[n, ω] =
1

2g

∫
d2x ((∂µn)2 − ω(n2 − 1)).

The equation of motion is

∂µ∂µn + ωn = 0, n2 = 1.

In the light cone coordinates z, z̄ we have

S[n, ω] = −
1

g

∫
dz dz̄

(
∂n∂̄n +

ω

4
(n2 − 1)

)
, (1)

and
4∂∂̄n = ωn, n2 = 1. (2)

The action is invariant with respect to pseudoconformal transformations

z → f1(z), z̄ → f2(z̄), ω →
ω

f ′1(z)f ′2(z̄)
. (3)

The transformations include, in particular, translations

f1(z) = z + c, f2(z̄) = z̄ + c̄,

scaling and Lorentz transformations, for which

f1(z) = λz, f2(z̄) = λ̄z̄,

and the inversion transformation

f1(z) = 1/z, f2(z̄) = 1/z̄.
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Classical conservation laws
Energy-momentum tensor:

Tzz =
1

g
(∂n)2, Tz̄z̄ =

1

g
(∂̄n)2, Tzz̄ = Tz̄z = −

ω

4g
(n2 − 1).

On the equations of motion Tµµ = −4Tzz̄ = 0, which also expresses conformal
invariance. The energy-momentum conservation:

∂̄(∂n)2 = 0, ∂(∂̄n)2 = 0. (4)

There are higher spin conservation laws in the O(N)-model. Indeed, it is easy to
check that

4∂̄(∂2n)2 = ∂(ω(∂n)2)− 3∂ω(∂n)2, 4∂(∂̄2n)2 = ∂̄(ω(∂̄n)2)− 3∂̄ω(∂̄n)2. (5)

Make a pseudoconformal transformation

dz′ =

∣∣∣∣∂n∂z
∣∣∣∣ dz,

In the new coordinates (∂n)2 = 1. Hence, there is a continuity equation

∂̄(∂∂n)2 = ∂(2∂n∂̄n).

Similarly
∂(∂̄∂̄n)2 = ∂̄(2∂̄n∂n).
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Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄.

Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0, but in quantum case has its

own anomaly:
∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative.

The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0, but in quantum case has its

own anomaly:
∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant.

In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0, but in quantum case has its

own anomaly:
∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.

Consider T 2
zz . In classical case it satisfied ∂̄T 2

zz = 0, but in quantum case has its
own anomaly:

∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0,

but in quantum case has its
own anomaly:

∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0, but in quantum case has its

own anomaly:
∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0, but in quantum case has its

own anomaly:
∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0, but in quantum case has its

own anomaly:
∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Quantum conservation laws: heuristic derivation
On the quantum level anomalies appear that formally retain the Lorentz and scale
invariance: z → λz, z̄ → λ̄z̄. Hence, the r.h.s. of the energy-momentum
conservation changes. It must be a ∂-derivative. The only admissible form is

∂̄(∂n)2 = −β∂ω, (6)

where β is a constant. In fact, it breaks the scaling invariance, since it means that
Tµν 6= 0.
Consider T 2

zz . In classical case it satisfied ∂̄T 2
zz = 0, but in quantum case has its

own anomaly:
∂̄(∂n)4 = −(2β + α′)(∂n)2∂ω + ∂(. . .). (7)

Similarly instead of (5) we have

∂̄(∂2n)2 = −(3 + α)(∂n)2∂ω + ∂(. . .). (8)

Hence,

∂̄

(
(∂2n)2 −

3 + α

2β + α′
(∂n)4

)
= ∂(. . .). (9)

We have two integrals of motion So, there are at least two integrals of motion of
spin 1 and spin 3:

I1 =

∫
dz

1

2
(∂n)2, I3 =

∫
dz

(
1

2
(∂2n)2 −

3 + α

2(2β + α′)
(∂n)4

)
, (10)

which satisfy the equations ∂̄I1 = 0, ∂̄I3 = 0.

Michael Lashkevich Lecture 6. O(N)-model: integrability



IMs and elasticity of scattering
By taking into account both components and both chiralities, we obtain four
integrals of motion (IMs): I±1, I±3, which satisfy the equations İs = 0. We have
I1 ∼ pz , I−1 ∼ pz̄ .

Let |θ1, . . . , θn〉 be a common eigenstate of IMs with n
particles with rapidities θi, i.e. piz = −m

2
eθi , piz̄ = m

2
e−θi . The eigenvalue of Is

must be a homogeneous Laurent polynomial of eθi of the power s.
Locality. Local IMs are space integrals, so that if particles are far from each other,
their eigenvalues must be sums of eigenvalues on one-particle states. Hence

Is|θ1, . . . , θn〉 = const
n∑
i=1

esθi |θ1, . . . , θn〉.

Consider a 2→ n particle scattering. Due to integrals of motion we have

esθ1 + esθ2 =

n∑
i=1

esθ
′
i (s = −3,−1, 1, 3).

Let us fix the rapidities θ′1, . . . , θ
′
n. We have four equations for two variables θ1, θ2,

which depend on n parameters. If n ≥ 3, these equations only have solutions for
special values of the parameters θ′i. But amplitudes must be analytic in θ′i. ⇒
Amplitudes of these processes are identically zero. ⇒ Only processes with n = 2
are allowed and θ′i = θi (up to an inessential permutation).
In fact, the model has integrals of motion with all s ∈ 2Z + 1. In this case only
n→ n processes are allowed with θ′i = θi. It is the ideally elastic scattering
characteristic for integrable models.
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Locality. Local IMs are space integrals, so that if particles are far from each other,
their eigenvalues must be sums of eigenvalues on one-particle states. Hence

Is|θ1, . . . , θn〉 = const
n∑
i=1

esθi |θ1, . . . , θn〉.

Consider a 2→ n particle scattering. Due to integrals of motion we have

esθ1 + esθ2 =
n∑
i=1

esθ
′
i (s = −3,−1, 1, 3).

Let us fix the rapidities θ′1, . . . , θ
′
n. We have four equations for two variables θ1, θ2,

which depend on n parameters. If n ≥ 3, these equations only have solutions for
special values of the parameters θ′i. But amplitudes must be analytic in θ′i. ⇒
Amplitudes of these processes are identically zero. ⇒ Only processes with n = 2
are allowed and θ′i = θi (up to an inessential permutation).
In fact, the model has integrals of motion with all s ∈ 2Z + 1.

In this case only
n→ n processes are allowed with θ′i = θi. It is the ideally elastic scattering
characteristic for integrable models.

Michael Lashkevich Lecture 6. O(N)-model: integrability



IMs and elasticity of scattering
By taking into account both components and both chiralities, we obtain four
integrals of motion (IMs): I±1, I±3, which satisfy the equations İs = 0. We have
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Factorizable scattering
For integrable models we have

Factorized scattering assumption

The scattering amplitude of n particles into n particles factorizes into the product
of all pairwise scattering amplitudes in any order with summation over the
internal states of the intermediate particles.

Graphically it can be depicted as

p1

p1

p2

p2

p3

p3

p4

p4

=

p1

p1

p2

p2

p3

p3

p4

p4

(11)
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Asymptotic n-particle wave function
Suppose there is some characteristic distance R beyond which virtual particles are
not born. Then on large distances |xi − xj | � R the wave eigenfunction is
indistinguishable from an n-particle wave function.

Due to an infinite number of
IMs all particles have constant momenta pi up to a permutation, and the wave
function is a combination of the same plain waves for any order of xi:
ψβ1p1,...,βnpn (α1x1, . . . , αnxn) =

∑
τ∈Sn

A
ασ1 ...ασn
β1 ...βn

[τ ]ei
∑n
i=1 pτixσi

for xσ1 < xσ2 < · · · < xσn , |xi − xj | � R. (12)

Here αi is an internal space of states of the particle located at xi. The function is
symmetric with respect to the permutations αixi ↔ αjxj .
The labels βi can be defined, e.g. by the requirement

Aα1...αn
β1...βn

[id] =
n∏
i=1

δ
αi
βi
.

For p1 > p2 > · · · > pn, the parameters βi naturally describe the internal states of
the incoming particles.
Exchange of two neighboring particles means their scattering. Therefore

A
α1...αi+1αi...αn
β1...βi βi+1...βn

[τsi] =
∑

α′
iα

′
i+1

S
αiαi+1

α′
iα

′
i+1

(pτi , pτi+1 )A
α1...α

′
iα

′
i+1...αn

β1...βi βi+1...βn
[τ ]. (13)

Here si is the permutation of numbers i and i+ 1. The matrix S(p1, p2) is the
two-particle S-matrix. This defines the coefficients A and proves the factorization
assumption.
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Consistency requirements: three particle permutation
Due to the factorization the two-particle S-matrix satisfy a set of equations.

Let us inverse the order of three consecutive particles, say 1, 2, 3. We may do it in
two ways:

132 → 312
↗ ↘

123 321.
↘ ↗

213 → 231
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Consistency requirements: three particle permutation
The first way 123→ 132→ 312→ 321 leads to the relation
Aα3α2α1...
··· [321 . . .]

=
∑

β1,β2,β3

 ∑
γ1,γ2,γ3

Sα1α2
γ1γ2

(p1, p2)Sγ1α3
β1γ3

(p1, p3)Sγ2γ3β2β3
(p2, p3)

Aβ1β2β3...··· [123 . . .]

or graphically

∑
internal lines

p3

β3

γ3

α3

p2

β2

γ2

α2

p1

β1

γ1

α1

We will write it as

A321... = S12(p1, p2)S13(p1, p3)S23(p2, p3)A123...,
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Consistency requirements: three particle permutation
The second way 123→ 213→ 231→ 321 leads to the relation
Aα3α2α1...
··· [321 . . .]

=
∑

β1,β2,β3

 ∑
γ1,γ2,γ3

Sα2α3
γ2γ3

(p2, p3)Sα1γ3
γ1β3

(p1, p3)Sγ1γ2β1β2
(p1, p2)

Aβ1β2β3...··· [123 . . .],

or graphically

∑
internal lines

p3

β3

γ3

α3

p2

β2

γ2

α2

p1

β1

γ1

α1

We will write it as

A321... = S23(p2, p3)S13(p1, p3)S12(p1, p2)A123...,
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Consistency requirements: three particle permutation
The result of these two permutation processes must be the same. Hence, we have
the

Yang–Baxter equation∑
γ1,γ2,γ3

Sα1α2
γ1γ2

(p1, p2)Sγ1α3
β1γ3

(p1, p3)Sγ2γ3β2β3
(p2, p3)

=
∑

γ1,γ2,γ3

Sα2α3
γ2γ3

(p2, p3)Sα1γ3
γ1β3

(p1, p3)Sγ1γ2β1β2
(p1, p2), (14)

or, shorter,

S12(p1, p2)S13(p1, p3)S23(p2, p3) = S23(p2, p3)S13(p1, p3)S12(p1, p2), (15)

or, graphically,

p3

β3

α3

p2

β2

α2

p1

β1

α1

=

p3

β3

α3

p2

β2

α2

p1

β1

α1

(16)
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Consistency requirements: inversability
Now demand that two consequent permutation of the same two particle leads to
identical map: 12→ 21→ 12. This implies the

Unitarity condition ∑
γ1,γ2

Sα1α2
γ1γ2

(p1, p2)Sγ2γ1β2β1
(p2, p1) = δα1

β1
δα2
β2
, (17)

or
S12(p1, p2)S21(p2, p1) = 1, (18)

or

β2

α2

β1

α1

=

β2

α2

β1

α1

(19)
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Relativistic condition: crossing symmetry
The last condition is due to the theory is relativistic.

Crossing symmetry

Sα1α2
β1β2

(p1, p2) =
∑
α′
1β

′
1

Cβ1β′
1
S
α2β

′
1

β2α
′
1

(p2,−p1)Cα′
1α1

. (20)

The momenta p1, p2 are assumed here as space-time (2D), and C is the charge
conjugation matrix.

More concisely

S12(p1, p2) = C1S21̃(p2,−p1)C1,

where 1̃ means transposition in this space. Graphically

p2

β2

α2

p1

β1

α1

=

p2

β2

α2

β̄1

ᾱ1

−p1

(21)
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Bootstrap equations for the S-matrix
Finally, we obtain a set of equations, which are called bootstrap equations for the
S-matrix. Repeat them in terms of rapidities:

Bootstra equations

1 Yang–Baxter equation

S12(θ1 − θ2)S13(θ1 − θ3)S23(θ2 − θ3) = S23(θ2 − θ3)S13(θ1 − θ3)S12(θ1 − θ2).
(22)

2 Unitarity
S12(θ)S21(−θ) = 1. (23)

3 Crossing symmetry
S12(θ) = C1S21̃(iπ − θ)C1. (24)

The physical sheet:
0 ≤ Im θ < π, (25)

The Mandelstam variable

s = (pµ1 + pµ2 )2 = m2
1 +m2

2 + 2m1m2 ch θ.

The line Im θ = 0 corresponds to the cut [(m1 +m2)2,+∞).
The line Im θ = π corresponds to the cut (−∞, (m1 −m2)2].
The S-matrix is real on imaginary axis: S(iu) ∈ R for u ∈ R. The only poles
on the physical sheet is on the imaginary axis.
A pole iu0 ∈ [0, iπ] corresponds to a bound state, if Res

u=u0
Sαβαβ (iu) > 0.
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Bootstrap equations for the S-matrix of the O(N) model
Recall that for the O(N) (N ≥ 3) model we have

Sα
′β′

α β (θ) = δα
′β′
δαβS1(θ) + δα

′
α δβ

′

β S2(θ) + δβ
′
α δ

α′
β S3(θ). (26)

The Yang–Baxter equations takes the form The Yang–Baxter equation for it takes
the form

S2(θ)S3(θ + θ′)S3(θ′) + S3(θ)S3(θ + θ′)S2(θ′)

+ =

= S3(θ)S2(θ + θ′)S3(θ′), (27)

S2(θ)S1(θ + θ′)S1(θ′) + S3(θ)S2(θ + θ′)S1(θ′)

+ =

= S3(θ)S1(θ + θ′)S2(θ′),

(28)

NS1(θ)S3(θ + θ′)S1(θ′) + S1(θ)S3(θ + θ′)(S2(θ′) + S3(θ′))

+ (S2(θ) + S3(θ))S3(θ + θ′)S1(θ′)

+ S1(θ)(S1(θ + θ′) + S2(θ + θ′))S1(θ′)

+
S2 + S3

+

S2 + S3

+S1 + S2 =

= S3(θ)S1(θ + θ′)S3(θ′).

(29)

Let us solve these equations.
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Bootstrap equations for the S-matrix of the O(N) model
Solve the first equation

S2(θ)S3(θ + θ′)S3(θ′) + S3(θ)S3(θ + θ′)S2(θ′) = S3(θ)S2(θ + θ′)S3(θ′). (27)

Let h(θ) = S2(θ)/S3(θ). Then it takes the form

h(θ) + h(θ′) = h(θ + θ′).

Therefore, h(θ) ∼ θ and

S3(θ) = −i
λ

θ
S2(θ). (30)

Solve the second equation

S2(θ)S1(θ + θ′)S1(θ′) + S3(θ)S2(θ + θ′)S1(θ′) = S3(θ)S1(θ + θ′)S2(θ′). (28)

Let g(θ) = S2(θ)/S1(θ). Then

g(θ + θ′)− g(θ′) =
θ

iλ
.

This equation has a solution

g(θ) =
θ − iκ
iλ

.

Substituting it into the third equation (29), we get

κ =
N − 2

2
λ.

It meas that
S1(θ) = −

iλ

i(N − 2)λ/2− θ
S2(θ). (31)
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Bootstrap equations for the S-matrix of the O(N) model
Now substitute it into the crossing symmetry equation

S2(θ) = S2(iπ − θ), (32)
S1(θ) = S3(iπ − θ). (33)

We obtain
λ =

2π

N − 2
. (34)

Now impose the unitarity condition:

+ =

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (35)

+ = 0

S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0,

(36)

NS1(θ)S1(−θ)

+

S2 + S3

+
S2 + S3

= 0

+ S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0

(37)

By substituting the solution of the YB equation to the crossing symmetry and
unitarity equations, we obtain

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

There are many solutions to these equations (the CDD (Castillejo–Dalitz–Dyson)
ambiguity). If we take any solution and multiply it by a factor

sh θ + i sinα

sh θ − i sinα
,

we will again have a solution. We will search the ‘minimal’ solution, which has the
least number of poles and zeros on the physical sheet.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
Now substitute it into the crossing symmetry equation

S2(θ) = S2(iπ − θ), (32)
S1(θ) = S3(iπ − θ). (33)

We obtain
λ =

2π

N − 2
. (34)

Now impose the unitarity condition:

+ =

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (35)

+ = 0

S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0,

(36)

NS1(θ)S1(−θ)

+

S2 + S3

+
S2 + S3

= 0

+ S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0

(37)

By substituting the solution of the YB equation to the crossing symmetry and
unitarity equations, we obtain

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

There are many solutions to these equations (the CDD (Castillejo–Dalitz–Dyson)
ambiguity). If we take any solution and multiply it by a factor

sh θ + i sinα

sh θ − i sinα
,

we will again have a solution. We will search the ‘minimal’ solution, which has the
least number of poles and zeros on the physical sheet.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
Now substitute it into the crossing symmetry equation

S2(θ) = S2(iπ − θ), (32)
S1(θ) = S3(iπ − θ). (33)

We obtain
λ =

2π

N − 2
. (34)

Now impose the unitarity condition:

+ =

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (35)

+ = 0

S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0, (36)

NS1(θ)S1(−θ)

+

S2 + S3

+
S2 + S3

= 0

+ S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0

(37)

By substituting the solution of the YB equation to the crossing symmetry and
unitarity equations, we obtain

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

There are many solutions to these equations (the CDD (Castillejo–Dalitz–Dyson)
ambiguity). If we take any solution and multiply it by a factor

sh θ + i sinα

sh θ − i sinα
,

we will again have a solution. We will search the ‘minimal’ solution, which has the
least number of poles and zeros on the physical sheet.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
Now substitute it into the crossing symmetry equation

S2(θ) = S2(iπ − θ), (32)
S1(θ) = S3(iπ − θ). (33)

We obtain
λ =

2π

N − 2
. (34)

Now impose the unitarity condition:

+ =

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (35)

+ = 0

S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0, (36)
NS1(θ)S1(−θ)

+

S2 + S3

+
S2 + S3

= 0

+ S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0 (37)

By substituting the solution of the YB equation to the crossing symmetry and
unitarity equations, we obtain

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

There are many solutions to these equations (the CDD (Castillejo–Dalitz–Dyson)
ambiguity). If we take any solution and multiply it by a factor

sh θ + i sinα

sh θ − i sinα
,

we will again have a solution. We will search the ‘minimal’ solution, which has the
least number of poles and zeros on the physical sheet.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
Now substitute it into the crossing symmetry equation

S2(θ) = S2(iπ − θ), (32)
S1(θ) = S3(iπ − θ). (33)

We obtain
λ =

2π

N − 2
. (34)

Now impose the unitarity condition:

+ =

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (35)

+ = 0

S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0, (36)
NS1(θ)S1(−θ)

+

S2 + S3

+
S2 + S3

= 0

+ S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0 (37)

By substituting the solution of the YB equation to the crossing symmetry and
unitarity equations, we obtain

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

There are many solutions to these equations (the CDD (Castillejo–Dalitz–Dyson)
ambiguity). If we take any solution and multiply it by a factor

sh θ + i sinα

sh θ − i sinα
,

we will again have a solution. We will search the ‘minimal’ solution, which has the
least number of poles and zeros on the physical sheet.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
Now substitute it into the crossing symmetry equation

S2(θ) = S2(iπ − θ), (32)
S1(θ) = S3(iπ − θ). (33)

We obtain
λ =

2π

N − 2
. (34)

Now impose the unitarity condition:

+ =

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (35)

+ = 0

S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0, (36)
NS1(θ)S1(−θ)

+

S2 + S3

+
S2 + S3

= 0

+ S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0 (37)

By substituting the solution of the YB equation to the crossing symmetry and
unitarity equations, we obtain

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

There are many solutions to these equations (the CDD (Castillejo–Dalitz–Dyson)
ambiguity). If we take any solution and multiply it by a factor

sh θ + i sinα

sh θ − i sinα
,

we will again have a solution.

We will search the ‘minimal’ solution, which has the
least number of poles and zeros on the physical sheet.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
Now substitute it into the crossing symmetry equation

S2(θ) = S2(iπ − θ), (32)
S1(θ) = S3(iπ − θ). (33)

We obtain
λ =

2π

N − 2
. (34)

Now impose the unitarity condition:

+ =

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1, (35)

+ = 0

S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0, (36)
NS1(θ)S1(−θ)

+

S2 + S3

+
S2 + S3

= 0

+ S1(θ)(S2(−θ) + S3(−θ)) + (S2(θ) + S3(θ))S1(−θ) = 0 (37)

By substituting the solution of the YB equation to the crossing symmetry and
unitarity equations, we obtain

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

There are many solutions to these equations (the CDD (Castillejo–Dalitz–Dyson)
ambiguity). If we take any solution and multiply it by a factor

sh θ + i sinα

sh θ − i sinα
,

we will again have a solution. We will search the ‘minimal’ solution, which has the
least number of poles and zeros on the physical sheet.

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
We have the equations

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

Unitarity equation ⇒ Simple zero θ = 0
crossing⇒ Simple zero θ = iπ

unitarity⇒ Simple

pole θ = −iπ crossing⇒ Simple pole θ = 2iπ
unitarity⇒ . . .

We have series of zeros and poles:

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(39)

Unitarity equation ⇒ Simple pole either at θ = −iλ (S(+) solution) or at θ = iλ
(S(−) solution). Similarly we obtain for S(±):

Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(40)

The function that has poles and zeros at (39) and (40) is

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π
− i θ

2π

)
Γ
(

1
2
− i θ

2π

)
Γ
(

1
2
± λ

2π
− i θ

2π

)
Γ
(
−i θ

2π

) . (41)

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
We have the equations

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

Unitarity equation ⇒ Simple zero θ = 0

crossing⇒ Simple zero θ = iπ
unitarity⇒ Simple

pole θ = −iπ crossing⇒ Simple pole θ = 2iπ
unitarity⇒ . . .

We have series of zeros and poles:

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(39)

Unitarity equation ⇒ Simple pole either at θ = −iλ (S(+) solution) or at θ = iλ
(S(−) solution). Similarly we obtain for S(±):

Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(40)

The function that has poles and zeros at (39) and (40) is

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π
− i θ

2π

)
Γ
(

1
2
− i θ

2π

)
Γ
(

1
2
± λ

2π
− i θ

2π

)
Γ
(
−i θ

2π

) . (41)

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
We have the equations

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

Unitarity equation ⇒ Simple zero θ = 0
crossing⇒ Simple zero θ = iπ

unitarity⇒ Simple

pole θ = −iπ crossing⇒ Simple pole θ = 2iπ
unitarity⇒ . . .

We have series of zeros and poles:

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(39)

Unitarity equation ⇒ Simple pole either at θ = −iλ (S(+) solution) or at θ = iλ
(S(−) solution). Similarly we obtain for S(±):

Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(40)

The function that has poles and zeros at (39) and (40) is

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π
− i θ

2π

)
Γ
(

1
2
− i θ

2π

)
Γ
(

1
2
± λ

2π
− i θ

2π

)
Γ
(
−i θ

2π

) . (41)

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
We have the equations

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

Unitarity equation ⇒ Simple zero θ = 0
crossing⇒ Simple zero θ = iπ

unitarity⇒ Simple

pole θ = −iπ

crossing⇒ Simple pole θ = 2iπ
unitarity⇒ . . .

We have series of zeros and poles:

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(39)

Unitarity equation ⇒ Simple pole either at θ = −iλ (S(+) solution) or at θ = iλ
(S(−) solution). Similarly we obtain for S(±):

Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(40)

The function that has poles and zeros at (39) and (40) is

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π
− i θ

2π

)
Γ
(

1
2
− i θ

2π

)
Γ
(

1
2
± λ

2π
− i θ

2π

)
Γ
(
−i θ

2π

) . (41)

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
We have the equations

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

Unitarity equation ⇒ Simple zero θ = 0
crossing⇒ Simple zero θ = iπ

unitarity⇒ Simple

pole θ = −iπ crossing⇒ Simple pole θ = 2iπ
unitarity⇒ . . .

We have series of zeros and poles:

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(39)

Unitarity equation ⇒ Simple pole either at θ = −iλ (S(+) solution) or at θ = iλ
(S(−) solution). Similarly we obtain for S(±):

Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(40)

The function that has poles and zeros at (39) and (40) is

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π
− i θ

2π

)
Γ
(

1
2
− i θ

2π

)
Γ
(

1
2
± λ

2π
− i θ

2π

)
Γ
(
−i θ

2π

) . (41)

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
We have the equations

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

Unitarity equation ⇒ Simple zero θ = 0
crossing⇒ Simple zero θ = iπ

unitarity⇒ Simple

pole θ = −iπ crossing⇒ Simple pole θ = 2iπ
unitarity⇒ . . .

We have series of zeros and poles:

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(39)

Unitarity equation ⇒ Simple pole either at θ = −iλ (S(+) solution) or at θ = iλ
(S(−) solution). Similarly we obtain for S(±):

Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(40)

The function that has poles and zeros at (39) and (40) is

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π
− i θ

2π

)
Γ
(

1
2
− i θ

2π

)
Γ
(

1
2
± λ

2π
− i θ

2π

)
Γ
(
−i θ

2π

) . (41)

Michael Lashkevich Lecture 6. O(N)-model: integrability



Bootstrap equations for the S-matrix of the O(N) model
We have the equations

S2(θ) = S2(iπ − θ), S2(θ)S2(−θ) =
θ2

θ2 + λ2
. (38)

Unitarity equation ⇒ Simple zero θ = 0
crossing⇒ Simple zero θ = iπ

unitarity⇒ Simple

pole θ = −iπ crossing⇒ Simple pole θ = 2iπ
unitarity⇒ . . .

We have series of zeros and poles:

Zeros: θ = −2πin, iπ + 2πin,

Poles: θ = −iπ − 2πin, 2πi+ 2πin, n = 0, 1, 2, . . .
(39)

Unitarity equation ⇒ Simple pole either at θ = −iλ (S(+) solution) or at θ = iλ
(S(−) solution).

Similarly we obtain for S(±):

Zeros: θ = ∓iλ− iπ − 2πin,±iλ+ 2πi+ 2πin,

Poles: θ = ∓iλ− 2πin,±iλ+ iπ + 2πin, n = 0, 1, 2, . . .
(40)

The function that has poles and zeros at (39) and (40) is

S
(±)
2 (θ) = Q(±)(θ)Q(±)(iπ − θ), Q(±)(θ) =

Γ
(
± λ

2π
− i θ

2π

)
Γ
(

1
2
− i θ

2π

)
Γ
(

1
2
± λ

2π
− i θ

2π

)
Γ
(
−i θ

2π

) . (41)
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S-matrix: N → ∞ behavior and final choice
Take the limit N →∞. We obtain

S
(±)
1 (θ) = −

2πi

N(iπ − θ)
, (42)

S
(±)
2 (θ) = 1∓

2πi

N sh θ
, (43)

S
(±)
3 (θ) = −

2πi

Nθ
. (44)

By comparing with the 1/N -expansion we conclude that the solution S(+)(θ) is
the S-matrix of the O(N)-model. The solution S(−)(θ) is the S-matrix of the N -
component fermion Neveu–Schwartz model (see a problem to the last lecture).
Notice, that

S
(±)
12 (0) = ∓P12, (45)

where P12 : a× b 7→ b× a is the permutation operator of the spaces 1 and 2. This
means that for the particles in the O(N)-model a kind of the Pauli principle
applies, although we considered the particles to be bosons. Two particles cannot
have the same momentum.
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