Lecture 7 Thirring model: solution by the Bethe Ansatz method

The action

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\hat{\partial} - m_0)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right)$$
 (1)

with

$$\psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}, \qquad \gamma^0 = \begin{pmatrix} & -i \\ i & \end{pmatrix} = \sigma^2, \qquad \gamma^1 = \begin{pmatrix} & i \\ i & \end{pmatrix} = i\sigma^1. \tag{2}$$

The action

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\hat{\partial} - m_0)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right)$$
 (1)

with

$$\psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}, \qquad \gamma^0 = \begin{pmatrix} & -i \\ i \end{pmatrix} = \sigma^2, \qquad \gamma^1 = \begin{pmatrix} & i \\ i \end{pmatrix} = i\sigma^1.$$
 (2)

The Hamiltonian

$$H = \int dx \left(-i\psi^{+} \sigma^{3} \partial_{x} \psi + m_{0} \psi^{+} \sigma^{2} \psi + 2g \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-} \right)$$
(3)

The action

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\hat{\partial} - m_0)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right)$$
 (1)

with

$$\psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}, \qquad \gamma^0 = \begin{pmatrix} & -i \\ i \end{pmatrix} = \sigma^2, \qquad \gamma^1 = \begin{pmatrix} & i \\ i \end{pmatrix} = i\sigma^1.$$
 (2)

The Hamiltonian

$$H = \int dx \left(-i\psi^{+} \sigma^{3} \partial_{x} \psi + m_{0} \psi^{+} \sigma^{2} \psi + 2g \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-} \right)$$
(3)

with the commutation relations

$$\psi_{\alpha'}^+(x')\psi_{\alpha}(x) + \psi_{\alpha}(x)\psi_{\alpha'}^+(x') = \delta_{\alpha'\alpha}\delta(x'-x). \tag{4}$$

The action

$$S^{MT}[\psi,\bar{\psi}] = \int d^2x \left(\bar{\psi}(i\hat{\partial} - m_0)\psi - \frac{g}{2}(\bar{\psi}\gamma^{\mu}\psi)^2 \right)$$
 (1)

with

$$\psi = \begin{pmatrix} \psi_+ \\ \psi_- \end{pmatrix}, \qquad \gamma^0 = \begin{pmatrix} & -i \\ i \end{pmatrix} = \sigma^2, \qquad \gamma^1 = \begin{pmatrix} & i \\ i \end{pmatrix} = i\sigma^1.$$
 (2)

The Hamiltonian

$$H = \int dx \left(-i\psi^{+} \sigma^{3} \partial_{x} \psi + m_{0} \psi^{+} \sigma^{2} \psi + 2g \psi_{+}^{+} \psi_{+} \psi_{-}^{+} \psi_{-} \right)$$
(3)

with the commutation relations

$$\psi_{\alpha'}^+(x')\psi_{\alpha}(x) + \psi_{\alpha}(x)\psi_{\alpha'}^+(x') = \delta_{\alpha'\alpha}\delta(x'-x). \tag{4}$$

Conserved charges: the momentum P and the particle number operator Q are

$$P = -i \int dx \, \psi^{\dagger} \partial_x \psi, \qquad Q = \int dx \, \psi^{\dagger} \psi. \tag{5}$$

Consider the case g=0: free Dirac fermion.

Consider the case g=0: free Dirac fermion.

Define the 'reference' state $|\Omega\rangle$:

$$\psi_{\alpha}(x)|\Omega\rangle = 0, \qquad \langle \Omega|\psi_{\alpha}^{+}(x) = 0.$$
 (6)

Consider the case g=0: free Dirac fermion.

Define the 'reference' state $|\Omega\rangle$:

$$\psi_{\alpha}(x)|\Omega\rangle = 0, \qquad \langle \Omega|\psi_{\alpha}^{+}(x) = 0.$$
 (6)

"N-particle" state:

$$|\chi_N\rangle = \int d^N x \, \chi^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) \psi_{\alpha_1}^+(x_1) \dots \psi_{\alpha_N}^+(x_N) |\Omega\rangle. \tag{7}$$

Consider the case g=0: free Dirac fermion.

Define the 'reference' state $|\Omega\rangle$:

$$\psi_{\alpha}(x)|\Omega\rangle = 0, \qquad \langle \Omega|\psi_{\alpha}^{+}(x) = 0.$$
 (6)

"N-particle" state:

$$|\chi_N\rangle = \int d^N x \, \chi^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) \psi_{\alpha_1}^+(x_1) \dots \psi_{\alpha_N}^+(x_N) |\Omega\rangle. \tag{7}$$

$$Q|\chi_N\rangle = N|\chi_N\rangle \quad \Rightarrow \quad \mathcal{H} \simeq \bigoplus_{N=0}^{\infty} \mathcal{H}_N, \qquad \mathcal{H}_N = \{v \in \mathcal{H} \mid Qv = Nv\}.$$
 (8)

Consider the case g=0: free Dirac fermion.

Define the 'reference' state $|\Omega\rangle$:

$$\psi_{\alpha}(x)|\Omega\rangle = 0, \qquad \langle \Omega|\psi_{\alpha}^{+}(x) = 0.$$
 (6)

"N-particle" state:

$$|\chi_N\rangle = \int d^N x \, \chi^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) \psi_{\alpha_1}^+(x_1) \dots \psi_{\alpha_N}^+(x_N) |\Omega\rangle. \tag{7}$$

$$Q|\chi_N\rangle = N|\chi_N\rangle \quad \Rightarrow \quad \mathcal{H} \simeq \bigoplus_{N=0}^{\infty} \mathcal{H}_N, \qquad \mathcal{H}_N = \{v \in \mathcal{H} \mid Qv = Nv\}.$$
 (8)

Define action \hat{H}_N of H on the wave function:

$$H|\chi_N\rangle = \int d^N x \, (\hat{H}_N \chi)^{\alpha_1 \dots \alpha_N} (x_1, \dots, x_N) \psi_{\alpha_1}^+(x_1) \dots \psi_{\alpha_N}^+(x_N) |\Omega\rangle.$$

Consider the case g=0: free Dirac fermion.

Define the 'reference' state $|\Omega\rangle$:

$$\psi_{\alpha}(x)|\Omega\rangle = 0, \qquad \langle \Omega|\psi_{\alpha}^{+}(x) = 0.$$
 (6)

"N-particle" state:

$$|\chi_N\rangle = \int d^N x \, \chi^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) \psi_{\alpha_1}^+(x_1) \dots \psi_{\alpha_N}^+(x_N) |\Omega\rangle. \tag{7}$$

$$Q|\chi_N\rangle = N|\chi_N\rangle \quad \Rightarrow \quad \mathcal{H} \simeq \bigoplus_{N=0}^{\infty} \mathcal{H}_N, \qquad \mathcal{H}_N = \{v \in \mathcal{H} \mid Qv = Nv\}.$$
 (8)

Define action \hat{H}_N of H on the wave function:

$$H|\chi_N\rangle = \int d^N x \, (\hat{H}_N \chi)^{\alpha_1 \dots \alpha_N} (x_1, \dots, x_N) \psi_{\alpha_1}^+(x_1) \dots \psi_{\alpha_N}^+(x_N) |\Omega\rangle.$$

Explicitly, we have

$$\hat{H}_N = \sum_{k=1}^N (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2),$$

where σ_k^i acts on the space of the kth particle:

$$(\sigma_k^i\chi)^{\alpha_1...\alpha_k...\alpha_N} = \sum_{\alpha_k'} (\sigma^i)_{\alpha_k'}^{\alpha_k} \chi^{\alpha_1...\alpha_k'...\alpha_N}$$

Free fermion: wave functions

For N=1, the eigenfunction is

$$\chi_{\lambda}(x) = \begin{pmatrix} e^{\lambda/2} \\ ie^{-\lambda/2} \end{pmatrix} e^{ixm_0 \sinh \lambda}. \tag{9}$$

Free fermion: wave functions

For N=1, the eigenfunction is

$$\chi_{\lambda}(x) = \begin{pmatrix} e^{\lambda/2} \\ ie^{-\lambda/2} \end{pmatrix} e^{ixm_0 \operatorname{sh} \lambda}.$$
 (9)

For general N we have the Slater determinant

$$\chi_{\lambda_1...\lambda_N}^{\alpha_1...\alpha_N}(x_1,...,x_N) = \sum_{\sigma} (-1)^{\sigma} \prod_{k=1}^N \chi_{\lambda_k}^{\alpha_{\sigma_k}}(x_{\sigma_k}). \tag{10}$$

The energy of the N-particle state is equal to

$$E_N(\lambda_1, \dots, \lambda_N) = \sum_{k=1}^N \epsilon(\lambda_k), \qquad \epsilon(\lambda) = m_0 \operatorname{ch} \lambda.$$
 (11)

Free fermion: wave functions

For N=1, the eigenfunction is

$$\chi_{\lambda}(x) = \begin{pmatrix} e^{\lambda/2} \\ ie^{-\lambda/2} \end{pmatrix} e^{ixm_0 \sinh \lambda}.$$
 (9)

For general N we have the Slater determinant

$$\chi_{\lambda_1...\lambda_N}^{\alpha_1...\alpha_N}(x_1,...,x_N) = \sum_{\sigma} (-1)^{\sigma} \prod_{k=1}^N \chi_{\lambda_k}^{\alpha_{\sigma_k}}(x_{\sigma_k}).$$
 (10)

The energy of the N-particle state is equal to

$$E_N(\lambda_1, \dots, \lambda_N) = \sum_{k=1}^N \epsilon(\lambda_k), \qquad \epsilon(\lambda) = m_0 \operatorname{ch} \lambda.$$
 (11)

The periodic boundary condition

$$\chi^{\alpha_1 \alpha_2 \dots \alpha_N}(x_1 + L, x_2, \dots, x_N) = \chi^{\alpha_1 \alpha_2 \dots \alpha_N}(x_1, x_2, \dots, x_N)$$

vields

$$e^{im_0 L \operatorname{sh} \lambda_k} = 1, \qquad k = 1, \dots, N. \tag{12}$$

Take the logarithm on the last equation

$$\operatorname{sh} \lambda_k = \frac{2\pi n_k}{m_0 L}, \qquad n_k \in \mathbb{Z}.$$

Take the logarithm on the last equation

$$\operatorname{sh} \lambda_k = \frac{2\pi n_k}{m_0 L}, \qquad n_k \in \mathbb{Z}.$$

Hence,

$$\lambda_k \in \begin{cases} \mathbb{R} & \Rightarrow \epsilon(\lambda_k) > 0; \\ \mathbb{R} + i\pi & \Rightarrow \epsilon(\lambda_k) < 0. \end{cases}$$

In the ground state all one-particle states with $\epsilon(\lambda_k) < 0$ must be filled up.

Take the logarithm on the last equation

$$\operatorname{sh} \lambda_k = \frac{2\pi n_k}{m_0 L}, \qquad n_k \in \mathbb{Z}.$$

Hence,

$$\lambda_k \in \begin{cases} \mathbb{R} & \Rightarrow \epsilon(\lambda_k) > 0; \\ \mathbb{R} + i\pi & \Rightarrow \epsilon(\lambda_k) < 0. \end{cases}$$

In the ground state all one-particle states with $\epsilon(\lambda_k) < 0$ must be filled up. Let

$$\lambda_k = i\pi + \xi_k, \qquad \xi_k \in \mathbb{R}.$$

We have to cut the band from below:

$$\epsilon(\lambda_k) \ge -\Lambda \quad \Rightarrow \quad -\Theta < \xi_k < \Theta, \qquad \Theta \simeq \log \frac{\Lambda}{m_0}.$$
 (13)

Take the logarithm on the last equation

$$\operatorname{sh} \lambda_k = \frac{2\pi n_k}{m_0 L}, \qquad n_k \in \mathbb{Z}.$$

Hence,

$$\lambda_k \in \begin{cases} \mathbb{R} & \Rightarrow \epsilon(\lambda_k) > 0; \\ \mathbb{R} + i\pi & \Rightarrow \epsilon(\lambda_k) < 0. \end{cases}$$

In the ground state all one-particle states with $\epsilon(\lambda_k) < 0$ must be filled up. Let

$$\lambda_k = i\pi + \xi_k, \qquad \xi_k \in \mathbb{R}.$$

We have to cut the band from below:

$$\epsilon(\lambda_k) \ge -\Lambda \quad \Rightarrow \quad -\Theta < \xi_k < \Theta, \qquad \Theta \simeq \log \frac{\Lambda}{m_0}.$$
 (13)

The vacuum energy in the thermodynamic limit $L \to \infty$:

$$E_0 = -L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho(\xi) m_0 \, \mathrm{ch} \, \xi, \qquad \rho(\xi) = \frac{2\pi}{L} \left| \frac{dn}{d\xi} \right| = m_0 \, \mathrm{ch} \, \xi.$$

Here $\rho(\xi)$ is the spectral density of states of the valence band.

Free fermion: excitations

There are two types of excitations:

- Particles: $\lambda_k \in \mathbb{R}$;
- Antiparticles or holes: absence of some $\lambda_k = i\pi + \xi_k$.

For $g \neq 0$ we have

$$\hat{H}_N = \sum_{k=1}^{N} (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2) + g \sum_{k (14)$$

For $g \neq 0$ we have

$$\hat{H}_N = \sum_{k=1}^{N} (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2) + g \sum_{k (14)$$

Here

$$\frac{1}{2}(1\otimes 1 - \sigma^3 \otimes \sigma^3)^{\alpha'_1\alpha'_2}_{\alpha_1\alpha_2} = \delta^{\alpha'_1}_{\alpha_1}\delta^{\alpha'_2}_{\alpha_2}\delta_{\alpha_1,-\alpha_2}.$$
 (15)

For $g \neq 0$ we have

$$\hat{H}_N = \sum_{k=1}^N (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2) + g \sum_{k (14)$$

Here

$$\frac{1}{2}(1\otimes 1 - \sigma^3 \otimes \sigma^3)^{\alpha'_1\alpha'_2}_{\alpha_1\alpha_2} = \delta^{\alpha'_1}_{\alpha_1}\delta^{\alpha'_2}_{\alpha_2}\delta_{\alpha_1,-\alpha_2}.$$
 (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave function is discontinuous at $x_k = x_l$, since the Schrödinger equation here is a first order equation.

For $g \neq 0$ we have

$$\hat{H}_N = \sum_{k=1}^N (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2) + g \sum_{k (14)$$

Here

$$\frac{1}{2}(1\otimes 1 - \sigma^3 \otimes \sigma^3)^{\alpha'_1\alpha'_2}_{\alpha_1\alpha_2} = \delta^{\alpha'_1}_{\alpha_1}\delta^{\alpha'_2}_{\alpha_2}\delta_{\alpha_1,-\alpha_2}.$$
 (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave function is discontinuous at $x_k = x_l$, since the Schrödinger equation here is a first order equation. Consider a simple equation

$$f'(x) - c\delta(x)f(x) = g(x, f(x))$$

For $g \neq 0$ we have

$$\hat{H}_N = \sum_{k=1}^N (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2) + g \sum_{k (14)$$

Here

$$\frac{1}{2}(1\otimes 1 - \sigma^3 \otimes \sigma^3)^{\alpha'_1\alpha'_2}_{\alpha_1\alpha_2} = \delta^{\alpha'_1}_{\alpha_1}\delta^{\alpha'_2}_{\alpha_2}\delta_{\alpha_1,-\alpha_2}.$$
 (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave function is discontinuous at $x_k = x_l$, since the Schrödinger equation here is a first order equation. Consider a simple equation

$$f'(x) - c\delta(x)f(x) = g(x, f(x))$$

Let us regularize the delta-function in an arbitrary way:

$$f'(x) - c\delta_a(x)f(x) = g(x, f(x)), \quad \lim_{a \to 0} \delta_a(x) = \delta(x), \quad \text{supp } \delta_a = [-a, a]. \quad (16)$$

For $g \neq 0$ we have

$$\hat{H}_N = \sum_{k=1}^N (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2) + g \sum_{k (14)$$

Here

$$\frac{1}{2}(1\otimes 1 - \sigma^3 \otimes \sigma^3)^{\alpha'_1\alpha'_2}_{\alpha_1\alpha_2} = \delta^{\alpha'_1}_{\alpha_1}\delta^{\alpha'_2}_{\alpha_2}\delta_{\alpha_1,-\alpha_2}.$$
 (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave function is discontinuous at $x_k = x_l$, since the Schrödinger equation here is a first order equation. Consider a simple equation

$$f'(x) - c\delta(x)f(x) = g(x, f(x))$$

Let us regularize the delta-function in an arbitrary way:

$$f'(x) - c\delta_a(x)f(x) = g(x, f(x)), \quad \lim_{a \to 0} \delta_a(x) = \delta(x), \quad \operatorname{supp} \delta_a = [-a, a]. \quad (16)$$

Let $\delta_a(x) = \epsilon'_a(x)$. Then

$$\frac{f'(x)}{f(x)} = c\epsilon_a'(x) + \frac{g(x,f(x))}{f(x)} \quad \Rightarrow \quad f(x) = \mathrm{const}\,e^{c\epsilon_a(x)}.$$

For $g \neq 0$ we have

$$\hat{H}_N = \sum_{k=1}^N (-i\sigma_k^3 \partial_{x_k} + m_0 \sigma_k^2) + g \sum_{k (14)$$

Here

$$\frac{1}{2}(1\otimes 1 - \sigma^3 \otimes \sigma^3)^{\alpha'_1\alpha'_2}_{\alpha_1\alpha_2} = \delta^{\alpha'_1}_{\alpha_1}\delta^{\alpha'_2}_{\alpha_2}\delta_{\alpha_1,-\alpha_2}.$$
 (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave function is discontinuous at $x_k = x_l$, since the Schrödinger equation here is a first order equation. Consider a simple equation

$$f'(x) - c\delta(x)f(x) = g(x, f(x))$$

Let us regularize the delta-function in an arbitrary way:

$$f'(x) - c\delta_a(x)f(x) = g(x, f(x)), \quad \lim_{a \to 0} \delta_a(x) = \delta(x), \quad \operatorname{supp} \delta_a = [-a, a]. \quad (16)$$

Let $\delta_a(x) = \epsilon'_a(x)$. Then

$$\frac{f'(x)}{f(x)} = c\epsilon_a'(x) + \frac{g(x,f(x))}{f(x)} \quad \Rightarrow \quad f(x) = \mathrm{const}\,e^{c\epsilon_a(x)}.$$

$$f(+a) = e^{c} f(-a) \xrightarrow{a \to 0} f(+0) = e^{c} f(-0).$$
 (17)

Let

$$\chi_{\lambda_{1}\lambda_{2}}^{\alpha_{1}\alpha_{2}}(x_{1}, x_{2}) = \begin{cases} A_{12}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{21}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} < x_{2}, \\ A_{21}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{12}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} > x_{2}. \end{cases}$$

$$(18)$$

Let

$$\chi_{\lambda_{1}\lambda_{2}}^{\alpha_{1}\alpha_{2}}(x_{1}, x_{2}) = \begin{cases} A_{12}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{21}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} < x_{2}, \\ A_{21}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{12}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} > x_{2}. \end{cases}$$

$$(18)$$

It is antisymmetric:

$$\chi_{\lambda_1 \lambda_2}^{\alpha_1 \alpha_2}(x_1, x_2) = -\chi_{\lambda_1 \lambda_2}^{\alpha_2 \alpha_1}(x_2, x_1).$$

Let

$$\chi_{\lambda_{1}\lambda_{2}}^{\alpha_{1}\alpha_{2}}(x_{1}, x_{2}) = \begin{cases} A_{12}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{21}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} < x_{2}, \\ A_{21}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{12}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} > x_{2}. \end{cases}$$

$$(18)$$

It is antisymmetric:

$$\chi_{\lambda_1\lambda_2}^{\alpha_1\alpha_2}(x_1,x_2) = -\chi_{\lambda_1\lambda_2}^{\alpha_2\alpha_1}(x_2,x_1).$$

After applying the rule from the last slide we have

$$\frac{A_{21}}{A_{12}} = R(\lambda_1 - \lambda_2), \qquad R(\lambda) = e^{i\Phi(\lambda)} = \frac{\operatorname{ch} \frac{\lambda - ig}{2}}{\operatorname{ch} \frac{\lambda + ig}{2}}.$$
 (19)

Let

$$\chi_{\lambda_{1}\lambda_{2}}^{\alpha_{1}\alpha_{2}}(x_{1}, x_{2}) = \begin{cases} A_{12}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{21}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} < x_{2}, \\ A_{21}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{12}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} > x_{2}. \end{cases}$$

$$(18)$$

It is antisymmetric:

$$\chi_{\lambda_1\lambda_2}^{\alpha_1\alpha_2}(x_1,x_2) = -\chi_{\lambda_1\lambda_2}^{\alpha_2\alpha_1}(x_2,x_1).$$

After applying the rule from the last slide we have

$$\frac{A_{21}}{A_{12}} = R(\lambda_1 - \lambda_2), \qquad R(\lambda) = e^{i\Phi(\lambda)} = \frac{\operatorname{ch} \frac{\lambda - ig}{2}}{\operatorname{ch} \frac{\lambda + ig}{2}}.$$
 (19)

The function is periodic in g with the period 2π . Assume

$$-\pi < g < \pi. \tag{20}$$

Let

$$\chi_{\lambda_{1}\lambda_{2}}^{\alpha_{1}\alpha_{2}}(x_{1}, x_{2}) = \begin{cases} A_{12}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{21}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} < x_{2}, \\ A_{21}\chi_{\lambda_{1}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{2}}^{\alpha_{2}}(x_{2}) - A_{12}\chi_{\lambda_{2}}^{\alpha_{1}}(x_{1})\chi_{\lambda_{1}}^{\alpha_{2}}(x_{2}) & \text{for } x_{1} > x_{2}. \end{cases}$$

$$(18)$$

It is antisymmetric:

$$\chi_{\lambda_1\lambda_2}^{\alpha_1\alpha_2}(x_1,x_2) = -\chi_{\lambda_1\lambda_2}^{\alpha_2\alpha_1}(x_2,x_1).$$

After applying the rule from the last slide we have

$$\frac{A_{21}}{A_{12}} = R(\lambda_1 - \lambda_2), \qquad R(\lambda) = e^{i\Phi(\lambda)} = \frac{\operatorname{ch} \frac{\lambda - ig}{2}}{\operatorname{ch} \frac{\lambda + ig}{2}}.$$
 (19)

The function is periodic in g with the period 2π . Assume

$$-\pi < g < \pi. \tag{20}$$

For $\Phi(\lambda)$ assume the skew symmetry

$$\Phi(-\lambda) = -\Phi(\lambda),\tag{21}$$

with the cuts lie on the rays $(i(\pi-|g|), i\infty), (-i(\pi-|g|), -i\infty).$

The N-particle solution (Bethe Ansatz):

$$\chi_{\lambda_1 \dots \lambda_N}^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) = \sum_{\tau} (-1)^{\sigma \tau} A_{\tau} \prod_{k=1}^N \chi_{\lambda_{\tau_k}}^{\alpha_{\sigma_k}}(x_{\sigma_k}) \quad \text{for } x_{\sigma_1} < \dots < x_{\sigma_N}. \tag{22}$$

The N-particle solution (Bethe Ansatz):

$$\chi_{\lambda_1 \dots \lambda_N}^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) = \sum_{\tau} (-1)^{\sigma \tau} A_{\tau} \prod_{k=1}^N \chi_{\lambda_{\tau_k}}^{\alpha_{\sigma_k}}(x_{\sigma_k}) \quad \text{for } x_{\sigma_1} < \dots < x_{\sigma_N}. \tag{22}$$

The coefficients A satisfy the relations

$$A_{...,i+1,i,...} = R(\lambda_i - \lambda_{i+1})A_{...,i,i+1,...}$$
(23)

The N-particle solution (Bethe Ansatz):

$$\chi_{\lambda_1 \dots \lambda_N}^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) = \sum_{\tau} (-1)^{\sigma \tau} A_{\tau} \prod_{k=1}^{N} \chi_{\lambda_{\tau_k}}^{\alpha_{\sigma_k}}(x_{\sigma_k}) \quad \text{for } x_{\sigma_1} < \dots < x_{\sigma_N}.$$
 (22)

The coefficients A satisfy the relations

$$A_{...,i+1,i,...} = R(\lambda_i - \lambda_{i+1})A_{...,i,i+1,...}$$
(23)

The periodic boundary condition

$$\chi^{\alpha_1\alpha_2...\alpha_N}(x_1+L,x_2,\ldots,x_N)=\chi^{\alpha_1\alpha_2...\alpha_N}(x_1,x_2,\ldots,x_N)$$

imposes on λ_k the system of Bethe equations:

$$e^{im_0 L \operatorname{sh} \lambda_k} \prod_{\substack{l=1\\l\neq k}}^N R(\lambda_k - \lambda_l) = 1.$$
 (24)

The N-particle solution (Bethe Ansatz):

$$\chi_{\lambda_1 \dots \lambda_N}^{\alpha_1 \dots \alpha_N}(x_1, \dots, x_N) = \sum_{\tau} (-1)^{\sigma \tau} A_{\tau} \prod_{k=1}^N \chi_{\lambda_{\tau_k}}^{\alpha_{\sigma_k}}(x_{\sigma_k}) \quad \text{for } x_{\sigma_1} < \dots < x_{\sigma_N}. \tag{22}$$

The coefficients A satisfy the relations

$$A_{...,i+1,i,...} = R(\lambda_i - \lambda_{i+1})A_{...,i,i+1,...}$$
(23)

The periodic boundary condition

$$\chi^{\alpha_1 \alpha_2 \dots \alpha_N}(x_1 + L, x_2, \dots, x_N) = \chi^{\alpha_1 \alpha_2 \dots \alpha_N}(x_1, x_2, \dots, x_N)$$

imposes on λ_k the system of Bethe equations:

$$e^{im_0 L \operatorname{sh} \lambda_k} \prod_{\substack{l=1\\l \neq k}}^N R(\lambda_k - \lambda_l) = 1.$$
 (24)

A set $\{\lambda_1, \ldots, \lambda_N\}$ that satisfy (24) is called a solution to the Bethe equations, while each element is called a root of the Bethe equations. All roots are different:

$$\lambda_k \neq \lambda_l, \quad \text{if } k \neq l.$$
 (25)

Ground state

Take logarithm of the Bethe equations:

$$m_0 L \operatorname{sh} \lambda_k + \sum_{l=1}^N \Phi(\lambda_k - \lambda_l) = 2\pi n_k, \qquad n_k \in \mathbb{Z}.$$
 (26)

Ground state

Take logarithm of the Bethe equations:

$$m_0 L \operatorname{sh} \lambda_k + \sum_{l=1}^N \Phi(\lambda_k - \lambda_l) = 2\pi n_k, \qquad n_k \in \mathbb{Z}.$$
 (26)

Energy and momentum:

$$E_N(\lambda_1, \dots, \lambda_N) = m_0 \sum_{i=1}^N \operatorname{ch} \lambda_i, \qquad P_N(\lambda_1, \dots, \lambda_N) = m_0 \sum_{i=1}^N \operatorname{sh} \lambda_i.$$
 (27)

Ground state

Take logarithm of the Bethe equations:

$$m_0 L \operatorname{sh} \lambda_k + \sum_{l=1}^N \Phi(\lambda_k - \lambda_l) = 2\pi n_k, \qquad n_k \in \mathbb{Z}.$$
 (26)

Energy and momentum:

$$E_N(\lambda_1, \dots, \lambda_N) = m_0 \sum_{i=1}^N \operatorname{ch} \lambda_i, \qquad P_N(\lambda_1, \dots, \lambda_N) = m_0 \sum_{i=1}^N \operatorname{sh} \lambda_i.$$
 (27)

Conjecture: all negative energy one-particle states are filled up in the ground (vacuum) state. Then

$$\lambda_k = i\pi + \xi_k, \qquad n_k = k_0 - k.$$

Ground state

Take logarithm of the Bethe equations:

$$m_0 L \operatorname{sh} \lambda_k + \sum_{l=1}^N \Phi(\lambda_k - \lambda_l) = 2\pi n_k, \qquad n_k \in \mathbb{Z}.$$
 (26)

Energy and momentum:

$$E_N(\lambda_1, \dots, \lambda_N) = m_0 \sum_{i=1}^N \operatorname{ch} \lambda_i, \qquad P_N(\lambda_1, \dots, \lambda_N) = m_0 \sum_{i=1}^N \operatorname{sh} \lambda_i.$$
 (27)

Conjecture: all negative energy one-particle states are filled up in the ground (vacuum) state. Then

$$\lambda_k = i\pi + \xi_k, \qquad n_k = k_0 - k.$$

Hence,

$$m_0 L \operatorname{sh} \xi_k = 2\pi (k - k_0) + \sum_{l=1}^{N} \Phi(\xi_k - \xi_l).$$
 (28)

Take the difference for neighboring k and divide by $L(\xi_{k+1} - \xi_k)$:

$$m_0 \frac{\operatorname{sh} \xi_{k+1} - \operatorname{sh} \xi_k}{\xi_{k+1} - \xi_k} = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} + \frac{1}{L} \sum_{l=1}^N \frac{\Phi(\xi_{k+1} - \xi_l) - \Phi(\xi_k - \xi_l)}{\xi_{k+1} - \xi_k}.$$

Take the difference for neighboring k and divide by $L(\xi_{k+1} - \xi_k)$:

$$m_0 \frac{\operatorname{sh} \xi_{k+1} - \operatorname{sh} \xi_k}{\xi_{k+1} - \xi_k} = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} + \frac{1}{L} \sum_{l=1}^N \frac{\Phi(\xi_{k+1} - \xi_l) - \Phi(\xi_k - \xi_l)}{\xi_{k+1} - \xi_k}.$$

In the limit $L \to \infty$ the values ξ_k become dense. Then define

$$\rho(\xi) = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} = \frac{2\pi}{L} \frac{dk}{d\xi}.$$
 (29)

Take the difference for neighboring k and divide by $L(\xi_{k+1} - \xi_k)$:

$$m_0 \frac{\operatorname{sh} \xi_{k+1} - \operatorname{sh} \xi_k}{\xi_{k+1} - \xi_k} = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} + \frac{1}{L} \sum_{l=1}^N \frac{\Phi(\xi_{k+1} - \xi_l) - \Phi(\xi_k - \xi_l)}{\xi_{k+1} - \xi_k}.$$

In the limit $L \to \infty$ the values ξ_k become dense. Then define

$$\rho(\xi) = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} = \frac{2\pi}{L} \frac{dk}{d\xi}.$$
 (29)

Substituting the sum by and integral, we obtain

$$m_0 \operatorname{ch} \xi = \rho(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi') \rho(\xi'). \tag{30}$$

We again need the ultraviolet cutoff Θ .

Take the difference for neighboring k and divide by $L(\xi_{k+1} - \xi_k)$:

$$m_0 \frac{\operatorname{sh} \xi_{k+1} - \operatorname{sh} \xi_k}{\xi_{k+1} - \xi_k} = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} + \frac{1}{L} \sum_{l=1}^N \frac{\Phi(\xi_{k+1} - \xi_l) - \Phi(\xi_k - \xi_l)}{\xi_{k+1} - \xi_k}.$$

In the limit $L \to \infty$ the values ξ_k become dense. Then define

$$\rho(\xi) = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} = \frac{2\pi}{L} \frac{dk}{d\xi}.$$
 (29)

Substituting the sum by and integral, we obtain

$$m_0 \operatorname{ch} \xi = \rho(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi') \rho(\xi').$$
 (30)

We again need the ultraviolet cutoff Θ .

We have lost one equation. Thus substitute it by the normalization condition

$$\int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho(\xi) = \frac{N}{L}.\tag{31}$$

Take the difference for neighboring k and divide by $L(\xi_{k+1} - \xi_k)$:

$$m_0 \frac{\operatorname{sh} \xi_{k+1} - \operatorname{sh} \xi_k}{\xi_{k+1} - \xi_k} = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} + \frac{1}{L} \sum_{l=1}^N \frac{\Phi(\xi_{k+1} - \xi_l) - \Phi(\xi_k - \xi_l)}{\xi_{k+1} - \xi_k}.$$

In the limit $L \to \infty$ the values ξ_k become dense. Then define

$$\rho(\xi) = \frac{2\pi}{L(\xi_{k+1} - \xi_k)} = \frac{2\pi}{L} \frac{dk}{d\xi}.$$
 (29)

Substituting the sum by and integral, we obtain

$$m_0 \operatorname{ch} \xi = \rho(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi') \rho(\xi').$$
 (30)

We again need the ultraviolet cutoff Θ .

We have lost one equation. Thus substitute it by the normalization condition

$$\int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho(\xi) = \frac{N}{L}.\tag{31}$$

Approximate solution

$$\rho(\xi) = \rho_0 \operatorname{ch} \frac{\pi \xi}{\pi + q}, \qquad \rho_0 \sim m_0 e^{\frac{g\Theta}{\pi + g}}.$$
 (32)

 ρ_0 is finite \Rightarrow renormalization of m_0 .

Consider the Dirac sea with holes: n_k do not cover a segment of \mathbb{Z} . Then

$$m_0 L \operatorname{sh} \xi_k = -2\pi n_k + \sum_{l=1}^N \Phi(\xi_k - \xi_l).$$
 (33)

Consider the Dirac sea with holes: n_k do not cover a segment of \mathbb{Z} . Then

$$m_0 L \operatorname{sh} \xi_k = -2\pi n_k + \sum_{l=1}^N \Phi(\xi_k - \xi_l).$$
 (33)

Define $\xi(n)$ by the equation

$$m_0 L \operatorname{sh} \xi(n) = -2\pi n + \sum_{l=1}^{N} \Phi(\xi(n) - \xi_l)$$
 (34)

Evidently $\xi(n_k) = \xi_k$. In this case the state is filled. Otherwise it is empty.

Consider the Dirac sea with holes: n_k do not cover a segment of \mathbb{Z} . Then

$$m_0 L \operatorname{sh} \xi_k = -2\pi n_k + \sum_{l=1}^N \Phi(\xi_k - \xi_l).$$
 (33)

Define $\xi(n)$ by the equation

$$m_0 L \operatorname{sh} \xi(n) = -2\pi n + \sum_{l=1}^{N} \Phi(\xi(n) - \xi_l)$$
 (34)

Evidently $\xi(n_k) = \xi_k$. In this case the state is filled. Otherwise it is empty. Define two spectral densities:

• Density of states: $\rho(\xi(n)) = \frac{2\pi}{L|\xi(n+1)-\xi(n)|} \simeq \frac{2\pi}{L} \left| \frac{dn}{d\xi(n)} \right|$.

Consider the Dirac sea with holes: n_k do not cover a segment of \mathbb{Z} . Then

$$m_0 L \operatorname{sh} \xi_k = -2\pi n_k + \sum_{l=1}^N \Phi(\xi_k - \xi_l).$$
 (33)

Define $\xi(n)$ by the equation

$$m_0 L \operatorname{sh} \xi(n) = -2\pi n + \sum_{l=1}^{N} \Phi(\xi(n) - \xi_l)$$
 (34)

Evidently $\xi(n_k) = \xi_k$. In this case the state is filled. Otherwise it is empty. Define two spectral densities:

- Density of states: $\rho(\xi(n)) = \frac{2\pi}{L|\xi(n+1)-\xi(n)|} \simeq \frac{2\pi}{L} \left| \frac{dn}{d\xi(n)} \right|$.
- Density of particles $\rho^{\bullet}(\xi) = \left\langle \frac{2\pi}{L|\xi_{k+1} \xi_k|} \right\rangle_{\xi_k \simeq \xi} = \left\langle \frac{2\pi}{L} \left| \frac{dk}{d\xi_k} \right| \right\rangle_{\xi_k \simeq \xi}$.

There difference $\rho(\xi) - \rho^{\bullet}(\xi) = \rho^{\circ}(\xi)$ is the density of holes.

Integral equation for holes

Integral equation

$$m_0 \operatorname{ch} \xi = \rho(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi')(\rho(\xi') - \rho^{\circ}(\xi')).$$
 (35)

Integral equation for holes

Integral equation

$$m_0 \operatorname{ch} \xi = \rho(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi')(\rho(\xi') - \rho^{\circ}(\xi')).$$
 (35)

Let $\rho_{\text{vac}}(\xi)$ is the ground state (vacuum) density of states (32), which solves

$$m_0 \operatorname{ch} \xi = \rho_{\text{vac}}(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi') \rho_{\text{vac}}(\xi').$$
 (30)

Let

$$\delta \rho(\xi) = \rho(\xi) - \rho_{\text{vac}}(\xi).$$

Integral equation for holes

Integral equation

$$m_0 \operatorname{ch} \xi = \rho(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi')(\rho(\xi') - \rho^{\circ}(\xi')).$$
 (35)

Let $\rho_{\text{vac}}(\xi)$ is the ground state (vacuum) density of states (32), which solves

$$m_0 \operatorname{ch} \xi = \rho_{\text{vac}}(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi') \rho_{\text{vac}}(\xi').$$
 (30)

Let

$$\delta \rho(\xi) = \rho(\xi) - \rho_{\text{vac}}(\xi).$$

Take the difference of (35) and (30):

$$\delta\rho(\xi) + \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi') \delta\rho(\xi') = \int_{-\Theta}^{\Theta} \frac{d\xi'}{2\pi} \Phi'(\xi - \xi') \rho^{\circ}(\xi'). \tag{36}$$

Let us solve it in the limit $\Theta \to \infty$.

The limit $\Theta \to \infty$. Fourier transform

For $\Theta \to \infty$ we may apply the Fourier transform:

$$\tilde{X}(\omega) = \int_{-\infty}^{\infty} \frac{d\xi}{2\pi} X(\xi) e^{i\xi\omega}, \quad X = \Phi', \delta\rho, \rho^{\circ}, \dots$$

The limit $\Theta \to \infty$. Fourier transform

For $\Theta \to \infty$ we may apply the Fourier transform:

$$\tilde{X}(\omega) = \int_{-\infty}^{\infty} \frac{d\xi}{2\pi} X(\xi) e^{i\xi\omega}, \quad X = \Phi', \delta\rho, \rho^{\circ}, \dots$$

Equation (36) takes the form

$$\delta \tilde{\rho}(\omega) + \tilde{\Phi}'(\omega)\delta \tilde{\rho}(\omega) = \Phi'(\omega)\tilde{\rho}^{\circ}(\omega).$$

The limit $\Theta \to \infty$. Fourier transform

For $\Theta \to \infty$ we may apply the Fourier transform:

$$\tilde{X}(\omega) = \int_{-\infty}^{\infty} \frac{d\xi}{2\pi} X(\xi) e^{i\xi\omega}, \quad X = \Phi', \delta\rho, \rho^{\circ}, \dots$$

Equation (36) takes the form

$$\delta \tilde{\rho}(\omega) + \tilde{\Phi}'(\omega) \delta \tilde{\rho}(\omega) = \Phi'(\omega) \tilde{\rho}^{\circ}(\omega).$$

It is easy to check that

$$\tilde{\Phi}'(\omega) = -\frac{\operatorname{sh} g\omega}{\operatorname{sh} \pi\omega}, \qquad \delta\tilde{\rho}(\omega) = -\frac{\operatorname{sh} g\omega}{2\operatorname{sh} \frac{\pi-g}{2}\omega\operatorname{ch} \frac{\pi+g}{2}\omega}\tilde{\rho}^{\circ}(\omega). \tag{37}$$

Effect of a cutoff: fractional charge. Formal charge of a hole is -1, but when holes are inserted, particles are pulled into the region $-\Theta \le \xi \le \Theta$ or pushed off it. We have two quantities:

$$\Delta N = -L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \rho^{\circ}(\xi) = -\tilde{\rho}^{\circ}(0), \quad \Delta Q = L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\delta \rho(\xi) - \rho^{\circ}(\xi)\right). \tag{38}$$

Effect of a cutoff: fractional charge. Formal charge of a hole is -1, but when holes are inserted, particles are pulled into the region $-\Theta \le \xi \le \Theta$ or pushed off it. We have two quantities:

$$\Delta N = -L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho^{\circ}(\xi) = -\tilde{\rho}^{\circ}(0), \quad \Delta Q = L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, (\delta \rho(\xi) - \rho^{\circ}(\xi)). \tag{38}$$

We obtain

$$\Delta Q = -\int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega\xi} \frac{\sinh \pi\omega}{2 \sinh \frac{\pi - g}{2} \omega \cosh \frac{\pi + g}{2} \omega} \tilde{\rho}^{\circ}(\omega) \simeq \frac{\pi}{\pi - g} \Delta N. \tag{39}$$

Effect of a cutoff: fractional charge. Formal charge of a hole is -1, but when holes are inserted, particles are pulled into the region $-\Theta \le \xi \le \Theta$ or pushed off it. We have two quantities:

$$\Delta N = -L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho^{\circ}(\xi) = -\tilde{\rho}^{\circ}(0), \quad \Delta Q = L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, (\delta \rho(\xi) - \rho^{\circ}(\xi)). \tag{38}$$

We obtain

$$\Delta Q = -\int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega\xi} \frac{\sinh \pi\omega}{2 \sinh \frac{\pi - g}{2} \omega \cosh \frac{\pi + g}{2} \omega} \tilde{\rho}^{\circ}(\omega) \simeq \frac{\pi}{\pi - g} \Delta N. \tag{39}$$

Then the charge of one hole is

$$z^{\circ} = -\frac{\Delta Q}{\Delta N} = -\frac{\pi}{\pi - g}.\tag{40}$$

Effect of a cutoff: fractional charge. Formal charge of a hole is -1, but when holes are inserted, particles are pulled into the region $-\Theta \le \xi \le \Theta$ or pushed off it. We have two quantities:

$$\Delta N = -L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho^{\circ}(\xi) = -\tilde{\rho}^{\circ}(0), \quad \Delta Q = L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, (\delta \rho(\xi) - \rho^{\circ}(\xi)). \tag{38}$$

We obtain

$$\Delta Q = -\int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega\xi} \frac{\sinh \pi\omega}{2 \sinh \frac{\pi - g}{2} \omega \cosh \frac{\pi + g}{2} \omega} \tilde{\rho}^{\circ}(\omega) \simeq \frac{\pi}{\pi - g} \Delta N.$$
 (39)

Then the charge of one hole is

$$z^{\circ} = -\frac{\Delta Q}{\Delta N} = -\frac{\pi}{\pi - g}.\tag{40}$$

It means that the quantity Q does not coincide with the physical number of particles. Hence,

$$Q = |z^{\circ}| \int dx \, \psi_{\text{phys}}^{+} \psi_{\text{phys}} + \text{const} \quad \Rightarrow \quad \psi = |z^{\circ}|^{1/2} \psi_{\text{phys}}. \tag{41}$$

Effect of a cutoff: fractional charge. Formal charge of a hole is -1, but when holes are inserted, particles are pulled into the region $-\Theta \le \xi \le \Theta$ or pushed off it. We have two quantities:

$$\Delta N = -L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho^{\circ}(\xi) = -\tilde{\rho}^{\circ}(0), \quad \Delta Q = L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, (\delta \rho(\xi) - \rho^{\circ}(\xi)). \tag{38}$$

We obtain

$$\Delta Q = -\int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega\xi} \frac{\sin \pi\omega}{2 \sin \frac{\pi - g}{2} \omega \cot \frac{\pi + g}{2} \omega} \tilde{\rho}^{\circ}(\omega) \simeq \frac{\pi}{\pi - g} \Delta N.$$
 (39)

Then the charge of one hole is

$$z^{\circ} = -\frac{\Delta Q}{\Delta N} = -\frac{\pi}{\pi - g}.\tag{40}$$

It means that the quantity Q does not coincide with the physical number of particles. Hence,

$$Q = |z^{\circ}| \int dx \, \psi_{\rm phys}^{+} \psi_{\rm phys} + \text{const} \quad \Rightarrow \quad \psi = |z^{\circ}|^{1/2} \psi_{\rm phys}. \tag{41}$$

It corresponds to the renormalization of the coupling constant g:

$$g_{\text{phys}} = g|z^{\circ}| = \frac{g}{1 - g/\pi} \quad \Leftrightarrow \quad \frac{1}{g_{\text{phys}}} = \frac{1}{g} - \frac{1}{\pi}.$$
 (42)

Effect of a cutoff: fractional charge. Formal charge of a hole is -1, but when holes are inserted, particles are pulled into the region $-\Theta \le \xi \le \Theta$ or pushed off it. We have two quantities:

$$\Delta N = -L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, \rho^{\circ}(\xi) = -\tilde{\rho}^{\circ}(0), \quad \Delta Q = L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \, (\delta \rho(\xi) - \rho^{\circ}(\xi)). \tag{38}$$

We obtain

$$\Delta Q = -\int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \int_{-\infty}^{\infty} d\omega \, e^{-i\omega\xi} \frac{\sin \pi\omega}{2 \sin \frac{\pi - g}{2} \omega \cot \frac{\pi + g}{2} \omega} \tilde{\rho}^{\circ}(\omega) \simeq \frac{\pi}{\pi - g} \Delta N. \tag{39}$$

Then the charge of one hole is

$$z^{\circ} = -\frac{\Delta Q}{\Delta N} = -\frac{\pi}{\pi - g}.\tag{40}$$

It means that the quantity Q does not coincide with the physical number of particles. Hence,

$$Q = |z^{\circ}| \int dx \, \psi_{\text{phys}}^{+} \psi_{\text{phys}} + \text{const} \quad \Rightarrow \quad \psi = |z^{\circ}|^{1/2} \psi_{\text{phys}}. \tag{41}$$

It corresponds to the renormalization of the coupling constant g:

$$g_{\rm phys} = g|z^{\circ}| = \frac{g}{1 - g/\pi} \quad \Leftrightarrow \quad \frac{1}{g_{\rm phys}} = \frac{1}{g} - \frac{1}{\pi}.$$

$$-\pi < g < \pi \quad \Leftrightarrow \quad -\frac{\pi}{2} < g_{\rm phys} < \infty$$
(42)

in consistency with the boson-fermion correspondence.

Calculate the energy and momentum of a state with holes:

$$E[\rho^{\circ}] - E[0] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta\rho(\xi)\right) \operatorname{ch} \xi,$$
$$P[\rho^{\circ}] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta\rho(\xi)\right) \operatorname{sh} \xi.$$

Calculate the energy and momentum of a state with holes:

$$E[\rho^{\circ}] - E[0] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta \rho(\xi) \right) \operatorname{ch} \xi,$$
$$P[\rho^{\circ}] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta \rho(\xi) \right) \operatorname{sh} \xi.$$

Let g < 0. The integrals converge as $\Theta \to \infty$, but at $\Theta = \infty$ we have $E[\rho^{\circ}] - E[0] = P[\rho^{\circ}] = 0$. Thus m_0 must be renormalized to infinity.

Calculate the energy and momentum of a state with holes:

$$E[\rho^{\circ}] - E[0] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta \rho(\xi) \right) \operatorname{ch} \xi,$$
$$P[\rho^{\circ}] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta \rho(\xi) \right) \operatorname{sh} \xi.$$

Let g < 0. The integrals converge as $\Theta \to \infty$, but at $\Theta = \infty$ we have $E[\rho^{\circ}] - E[0] = P[\rho^{\circ}] = 0$. Thus m_0 must be renormalized to infinity. Leg g > 0. The integrals diverge as $\Theta \to \infty$. Thus m_0 must be renormalized to zero.

Calculate the energy and momentum of a state with holes:

$$E[\rho^{\circ}] - E[0] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta \rho(\xi) \right) \operatorname{ch} \xi,$$
$$P[\rho^{\circ}] = m_0 L \int_{-\Theta}^{\Theta} \frac{d\xi}{2\pi} \left(\rho^{\circ}(\xi) - \delta \rho(\xi) \right) \operatorname{sh} \xi.$$

Let g < 0. The integrals converge as $\Theta \to \infty$, but at $\Theta = \infty$ we have $E[\rho^{\circ}] - E[0] = P[\rho^{\circ}] = 0$. Thus m_0 must be renormalized to infinity. Leg g > 0. The integrals diverge as $\Theta \to \infty$. Thus m_0 must be renormalized to zero.

Assuming Θ large but finite, we can obtain

$$E[\rho^{\circ}] - E[0] = L \int_{-\infty}^{\infty} \frac{d\xi}{2\pi} \, \epsilon(\xi) \rho^{\circ}(\xi), \qquad P[\rho^{\circ}] = L \int_{-\infty}^{\infty} \frac{d\xi}{2\pi} \, p(\xi) \rho^{\circ}(\xi) \tag{43}$$

where

$$\epsilon(\lambda) = m \operatorname{ch} \frac{\pi \lambda}{\pi + g}, \qquad p(\lambda) = m \operatorname{sh} \frac{\pi \lambda}{\pi + g}, \qquad m = \frac{M}{g} \operatorname{ctg} \left(\frac{\pi}{2} \frac{\pi - g}{\pi + g} \right)$$
 (44)

and

$$m_0 = M \exp\left(-\frac{g}{\pi + q}\Theta\right) \sim M\left(\frac{m_0}{\Lambda}\right)^{g/(\pi + g)}.$$
 (45)

Masses and scales

Thus, the particles have a relativistic spectrum with the mass

$$m \sim m_0 \exp\left(\frac{g}{\pi + g}\Theta\right)$$

and the rapidity

$$\theta = \frac{\pi \xi}{\pi + g}.$$

Masses and scales

Thus, the particles have a relativistic spectrum with the mass

$$m \sim m_0 \exp\left(\frac{g}{\pi + g}\Theta\right)$$

and the rapidity

$$\theta = \frac{\pi \xi}{\pi + g}.$$

Comparing with the estimation

$$m_0 \sim m^{2-\beta^2}$$
,

where β is the coupling constant of the sine-Gordon model, we obtain

$$\frac{g}{\pi} = 1 - \beta^2.$$

Masses and scales

Thus, the particles have a relativistic spectrum with the mass

$$m \sim m_0 \exp\left(\frac{g}{\pi + g}\Theta\right)$$

and the rapidity

$$\theta = \frac{\pi \xi}{\pi + g}.$$

Comparing with the estimation

$$m_0 \sim m^{2-\beta^2}$$
,

where β is the coupling constant of the sine-Gordon model, we obtain

$$\frac{g}{\pi} = 1 - \beta^2.$$

In terms of the physical coupling constant $g_{\rm phys}$ it reads

$$\frac{g_{\text{phys}}}{\pi} = \beta^{-2} - 1,$$

in consistency with the bosonization.

Consider the model system of 'spinless' fermions with the S matrix $S(\theta) = e^{i\Psi(\theta)}$, $\Psi(-\theta) = -\Psi(\theta)$. If particles are far from each other we may apply the Bethe Ansatz to them and obtain the Bethe equations

$$e^{imL \operatorname{sh} \theta_k} \prod_{\substack{l=1\\l \neq k}}^{N} S(\theta_l - \theta_k) = 1, \tag{46}$$

where θ_k are physical rapidities of the particles and m is their physical mass.

Consider the model system of 'spinless' fermions with the S matrix $S(\theta) = e^{i\Psi(\theta)}$, $\Psi(-\theta) = -\Psi(\theta)$. If particles are far from each other we may apply the Bethe Ansatz to them and obtain the Bethe equations

$$e^{imL \operatorname{sh} \theta_k} \prod_{\substack{l=1\\l \neq k}}^{N} S(\theta_l - \theta_k) = 1, \tag{46}$$

where θ_k are physical rapidities of the particles and m is their physical mass. By taking logarithm we obtain the equations

$$mL \operatorname{sh} \theta_k + \sum_{l=1}^{N} \Psi(\theta_k - \theta_l) = 2\pi n_k.$$

$$(47)$$

Consider the model system of 'spinless' fermions with the S matrix $S(\theta) = e^{i\Psi(\theta)}$, $\Psi(-\theta) = -\Psi(\theta)$. If particles are far from each other we may apply the Bethe Ansatz to them and obtain the Bethe equations

$$e^{imL \operatorname{sh} \theta_k} \prod_{\substack{l=1\\l \neq k}}^{N} S(\theta_l - \theta_k) = 1, \tag{46}$$

where θ_k are physical rapidities of the particles and m is their physical mass. By taking logarithm we obtain the equations

$$mL \operatorname{sh} \theta_k + \sum_{l=1}^N \Psi(\theta_k - \theta_l) = 2\pi n_k.$$

$$(47)$$

Define $\theta(n)$ by the equation

$$mL \operatorname{sh} \theta(n) = \sum_{l=1}^{N} \Psi(\theta(n) - \theta_l) = 2\pi n.$$
(48)

Consider the model system of 'spinless' fermions with the S matrix $S(\theta) = e^{i\Psi(\theta)}$, $\Psi(-\theta) = -\Psi(\theta)$. If particles are far from each other we may apply the Bethe Ansatz to them and obtain the Bethe equations

$$e^{imL \operatorname{sh} \theta_k} \prod_{\substack{l=1\\l \neq k}}^{N} S(\theta_l - \theta_k) = 1, \tag{46}$$

where θ_k are physical rapidities of the particles and m is their physical mass. By taking logarithm we obtain the equations

$$mL \operatorname{sh} \theta_k + \sum_{l=1}^N \Psi(\theta_k - \theta_l) = 2\pi n_k.$$

$$(47)$$

Define $\theta(n)$ by the equation

$$mL \operatorname{sh} \theta(n) = \sum_{l=1}^{N} \Psi(\theta(n) - \theta_l) = 2\pi n.$$
(48)

Introduce the densities:

$$\rho_*(\theta(n)) = \frac{2\pi}{L|\theta(n+1) - \theta(n)|} \simeq \frac{2\pi}{L} \left| \frac{dn}{d\theta(n)} \right|,$$

$$\rho_*^{\bullet}(\theta) = \left\langle \frac{2\pi}{L|\theta_{k+1} - \theta_k|} \right\rangle_{\theta_k \simeq \theta} = \left\langle \frac{2\pi}{L} \left| \frac{dk}{d\theta_k} \right| \right\rangle_{\theta_k \simeq \theta}.$$
(49)

In the same way we obtain the integral equation

$$m \operatorname{ch} \theta + \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta') = 2\pi \rho_*(\theta).$$
 (50)

In the same way we obtain the integral equation

$$m \operatorname{ch} \theta + \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta') = 2\pi \rho_*(\theta).$$
 (50)

If $\rho_*^{\bullet}(\theta) = 0$, we immediately obtain $\rho_{*\text{vac}}(\theta) = m \operatorname{ch} \theta$. With $\delta \rho_* = \rho_* - \rho_{*\text{vac}}$ we have

$$\delta \rho_*(\theta) = \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \, \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta'). \tag{51}$$

In the same way we obtain the integral equation

$$m \operatorname{ch} \theta + \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta') = 2\pi \rho_*(\theta).$$
 (50)

If $\rho_*^{\bullet}(\theta) = 0$, we immediately obtain $\rho_{*\text{vac}}(\theta) = m \operatorname{ch} \theta$. With $\delta \rho_* = \rho_* - \rho_{*\text{vac}}$ we have

$$\delta \rho_*(\theta) = \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \, \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta'). \tag{51}$$

For the Fourier transforms we have

$$\delta \tilde{\rho}_*(\omega) = \tilde{\Psi}'(\omega) \rho_*^{\bullet}(\omega). \tag{52}$$

In the same way we obtain the integral equation

$$m \operatorname{ch} \theta + \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta') = 2\pi \rho_*(\theta).$$
 (50)

If $\rho_*^{\bullet}(\theta) = 0$, we immediately obtain $\rho_{*\text{vac}}(\theta) = m \operatorname{ch} \theta$. With $\delta \rho_* = \rho_* - \rho_{*\text{vac}}$ we have

$$\delta \rho_*(\theta) = \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \, \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta'). \tag{51}$$

For the Fourier transforms we have

$$\delta \tilde{\rho}_*(\omega) = \tilde{\Psi}'(\omega) \rho_*^{\bullet}(\omega). \tag{52}$$

Identify

$$\rho^{\circ}(\xi) = \frac{d\theta}{d\xi} \rho_{*}^{\bullet}(\theta), \quad \delta\rho(\xi) = \frac{d\theta}{d\xi} \delta\rho_{*}(\theta), \quad \theta = \frac{\pi}{\pi + g} \xi.$$
 (53)

In the same way we obtain the integral equation

$$m \operatorname{ch} \theta + \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta') = 2\pi \rho_*(\theta).$$
 (50)

If $\rho_*^{\bullet}(\theta) = 0$, we immediately obtain $\rho_{*\text{vac}}(\theta) = m \operatorname{ch} \theta$. With $\delta \rho_* = \rho_* - \rho_{*\text{vac}}$ we have

$$\delta \rho_*(\theta) = \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \, \Psi'(\theta - \theta') \rho_*^{\bullet}(\theta'). \tag{51}$$

For the Fourier transforms we have

$$\delta \tilde{\rho}_*(\omega) = \tilde{\Psi}'(\omega) \rho_*^{\bullet}(\omega). \tag{52}$$

Identify

$$\rho^{\circ}(\xi) = \frac{d\theta}{d\xi} \rho_{*}^{\bullet}(\theta), \quad \delta\rho(\xi) = \frac{d\theta}{d\xi} \delta\rho_{*}(\theta), \quad \theta = \frac{\pi}{\pi + g} \xi.$$
 (53)

In the Fourier transforms

$$\tilde{\rho}^{\circ}\left(\frac{\pi}{\pi+g}\omega\right) = \tilde{\rho}_{*}^{\bullet}(\omega), \qquad \delta\tilde{\rho}\left(\frac{\pi}{\pi+g}\omega\right) = \delta\tilde{\rho}_{*}(\omega).$$
 (54)

Thirring model: S matrix

Comparing it with (37) we obtain

$$\Psi(\theta) = i \int_{-\infty}^{\infty} \frac{d\omega}{\omega} \frac{\sinh \frac{\pi\omega}{2} \sinh \frac{\pi(p-1)\omega}{2}}{\sinh \pi\omega \sinh \frac{\pi p\omega}{2}} e^{-i\theta\omega}$$

$$= 2 \int_{0}^{\infty} \frac{d\omega}{\omega} \frac{\sinh \frac{\pi\omega}{2} \sinh \frac{\pi(p-1)\omega}{2}}{\sinh \pi\omega \sinh \frac{\pi p\omega}{2}} \sin \theta\omega, \quad \beta^{2} = 1 - \frac{g}{\pi} = 2 \frac{p}{p+1}.$$
 (55)

This identifies the function $S(\theta)=e^{i\Psi(\theta)}$ with the matrix element $S(\theta)^-_-$ of two antifermions in the Thirring model.

Thirring model: S matrix

Comparing it with (37) we obtain

$$\Psi(\theta) = i \int_{-\infty}^{\infty} \frac{d\omega}{\omega} \frac{\sinh \frac{\pi\omega}{2} \sinh \frac{\pi(p-1)\omega}{2}}{\sinh \pi\omega \sinh \frac{\pi p\omega}{2}} e^{-i\theta\omega}$$

$$= 2 \int_{0}^{\infty} \frac{d\omega}{\omega} \frac{\sinh \frac{\pi\omega}{2} \sinh \frac{\pi(p-1)\omega}{2}}{\sinh \pi\omega \sinh \frac{\pi p\omega}{2}} \sin \theta\omega, \quad \beta^{2} = 1 - \frac{g}{\pi} = 2 \frac{p}{p+1}.$$
 (55)

This identifies the function $S(\theta) = e^{i\Psi(\theta)}$ with the matrix element $S(\theta)^{--}_{--}$ of two antifermions in the Thirring model.

Other matrix elements can be found by means of the Yang-Baxter equations and in the basis (++,+-,-+,--) are given by

$$S(\theta) = \left(S_{\beta_1 \beta_2}^{\alpha_1 \alpha_2}(\theta)\right) = \begin{pmatrix} a(\theta) & b(\theta) & c(\theta) \\ & c(\theta) & b(\theta) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{pmatrix}, \tag{56}$$

where $a(\theta) = e^{i\Psi(\theta)}$, and

$$\frac{b(\theta)}{a(\theta)} = \frac{\sinh\frac{\theta}{p}}{\sinh\frac{i\pi-\theta}{p}}, \qquad \frac{c(\theta)}{a(\theta)} = \frac{\sinh\frac{i\pi}{p}}{\sinh\frac{i\pi-\theta}{p}}.$$
 (57)

Thirring model: bound states

For g<0 (or $g_{\rm phys}<0$, $\beta^2<1$, p<1) the elements $b(\theta)$ and $c(\theta)$ have poles on the physical sheet at the points

$$\theta_n = i\pi - i\pi pn, \qquad n = 1, 2, \dots, \left\lfloor \frac{1}{p} \right\rfloor,$$
 (58)

which correspond to the neutral bound states with the masses

$$M_n = 2m\sin\frac{\pi pn}{2} \tag{59}$$

In the sine-Gordon model these bound states correspond to the breather excitations, and in the classical limit $\beta^2 \to 0$ their spectrum becomes continuous in consistency with the classical field theory.

Seminar