Lecture 7

Thirring model: solution by the Bethe Ansatz method

model: Bethe



Thirring model: the Hamiltonian formulation

The action

ST, ) = [ o (50— moo — Ly u)?) M

() e Y e e
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Thirring model: the Hamiltonian formulation

The action

ST, ) = [ o (50— moo — Ly u)?) M

() e Y e e

The Hamiltonian

with

H= / da (—ip TP Du + movrt o + 299y pty) (3)
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Thirring model: the Hamiltonian formulation

The action

ST, ) = [ o (50— moo — Ly u)?) M

() e Y e e

The Hamiltonian

with

H= /dx (=i 0000 + mowt o2y + 290ty T vo) 3)
with the commutation relations

Yo (@) (@) + Yo (@), (2') = Sarad(a’ — ). (4)
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Thirring model: the Hamiltonian formulation

The action

ST, ) = [ o (50— moo — Ly u)?) M

() e Y e e

The Hamiltonian

with

H= /dx (=i 0000 + mowt o2y + 290ty T vo) 3)
with the commutation relations

Yo (@) (@) + Yo (@), (2') = Sarad(a’ — ). (4)

Conserved charges: the momentum P and the particle number operator @ are

P= —i/dxz/z+81w, Q= /dmpw. (5)
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Free fermion. Dirac’s picture

Consider the case g = 0: free Dirac fermion.
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Free fermion. Dirac’s picture

Consider the case g = 0: free Dirac fermion.
Define the ‘reference’ state |Q2):

Ya(2)|2) =0, (I (z)=0. (6)
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Free fermion. Dirac’s picture

Consider the case g = 0: free Dirac fermion.
Define the ‘reference’ state |Q2):

Ya(2)|2) =0, (I (z)=0. (6)

“N-particle” state:

) = /dexal--“N(:cl,...7xN)¢; (1) . 9, () 192)- %)
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Free fermion. Dirac’s picture

Consider the case g = 0: free Dirac fermion.
Define the ‘reference’ state |Q2):

Ya(2)|2) =0, (I (z)=0. (6)

“N-particle” state:

) = /dexal--“N(:cl,...7xN>¢; (1) . 9, () 192)- )

Qlxn)=Nlxy) = H~P Hy, Hy={veH|Qu=Nuv}. (8
N=0
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Free fermion. Dirac’s picture

Consider the case g = 0: free Dirac fermion.
Define the ‘reference’ state |Q2):

Ya(z)|2) =0, Qv (z) =o0.

“N-particle” state:

) = /dexal--“N(:cl,...7xN>¢; (1) . 9, () 192)-

Qlxn)=Nlxn) = H=E@PHy, Hy={veH|Qu=Nv}.
N=0

Define action Hy of H on the wave function:

Hixn) = / AV (Fy) 19N (21, . o), (1) . 02 (@n)I).
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Free fermion. Dirac’s picture

Consider the case g = 0: free Dirac fermion.
Define the ‘reference’ state |Q2):

Ya(z)|2) =0, Qv (z) =o0.

“N-particle” state:

) = /dexal--“N(:cl,...7xN>¢; (1) . 9, () 192)-

Qlxn)=Nlxn) = H~EP Hn, Hy={veM|Qu=Nuv}.
N=0

Define action Hy of H on the wave function:

Hixn) = / AV (Fy) 19N (21, . o), (1) . 02 (@n)I).

Explicitly, we have
N

Hy = Z(—ici@xk +moo?),
k=1

where cr,iC acts on the space of the kth particle:

(o_i':x)al... LanN Z(o_z)ak aq. LN
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(8)




Free fermion: wave functions

For N =1, the eigenfunction is

/2 L
XA(Z') = (i:*A/2> £iT™Mmo sh)\. (9)
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Free fermion: wave functions

For N =1, the eigenfunction is

/2 L
XA(Z') = (i:*A/2> £iT™Mmo sh)\. (9)

For general N we have the Slater determinant

N

XN (- :vm—Z( 17 H *(20y,)- (10)

The energy of the N-particle state is equal to

En(A1,.. ., AN) =D €M), €(A) =mgch) (11)
k=1
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Free fermion: wave functions

For N =1, the eigenfunction is

/2 P
XA(Z') = (i:*A/2> £iT™Mmo sh)\. (9)

For general N we have the Slater determinant

N

Xitl )\N(Ilv-- xN)_Z( 17 H ka) (10)

The energy of the N-particle state is equal to
N
En(A1,.. ., AN) =D €M), €(A) =mgch) (11)
k=1
The periodic boundary condition
X102 N (21 + Lyxo, .. on) = XM 0N (21, 72, .., TN)

yields )
gimoLsh\g — 1 k=1,...,N. (12)

Lecture 7. Thirring model: Bethe Ansatz



Free fermion: vacuum state

Take the logarithm on the last equation
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Free fermion: vacuum state

Take the logarithm on the last equation

sh A\, = oL s ng €7
Hence,
R .
A € ' = e(Ag) > 0;
R+im = e(Ag) <O.

In the ground state all one-particle states with e(Ag) < 0 must be filled up.
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Free fermion: vacuum state

Take the logarithm on the last equation

Hence,

R = e(Ag) > 0;
Ak € )
R+im = e(Ag) <O.
In the ground state all one-particle states with e(Ax) < 0 must be filled up. Let
A =im + &k, &k € R.

We have to cut the band from below:

A
€M) 2-A = -©<6 <O, Oxlog—— (13)
0
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Free fermion: vacuum state

Take the logarithm on the last equation

Hence,

R = e(Ag) > 0;
Ak € X
R+im = e(Ag) <O.

In the ground state all one-particle states with e(Ax) < 0 must be filled up. Let

A =im + &k, & € R

We have to cut the band from below:

A
€M) 2-A = -©<6 <O, Oxlog—— (13)
0

The vacuum energy in the thermodynamic limit L — oo:

dn

d¢

Here p(§) is the spectral density of states of the valence band.

© d T
Bo=—L [ S@moche, o6 = 2

= mgoché&.
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Free fermion: excitations

There are two types of excitations:
o Particles: A\ € R;
o Antiparticles or holes: absence of some A\ = im + .

e =mgchA\
A

N _.7 particle

> p=moshA\

Dirac sea

hole /
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Interaction: Hamiltonian and wave func liscontinuity

For g # 0 we have

N N
Ay = Z(—iai@xk +mood) + chS(:ck —x)(1 - aia}). (14)
k=1 k<l
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Interaction: Hamiltonian and wave function di

For g # 0 we have

N N
Hy = Z(—iai@xk +mood) + chS(:ck —x)(1 - aia}). (14)
k=1 k<l
Here
1 3 o 3\010h _ o o
5(1®1_U ®0%)aras = daida30ar,—as- (15)
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Interaction: Hamiltonian and wave func liscontinuity

For g # 0 we have

N N
Hy = Z(—iai@xk +mood) + chS(:ck —x)(1 - aia}). (14)
k=1 k<l
Here
1 3 o 3\010h _ o o
5(1®1_U ®0%)aras = daida30ar,—as- (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave
function is discontinuous at zj = x;, since the Schrodinger equation here is a first
order equation.
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Interaction: Hamiltonian and wave function di

For g # 0 we have

N N
Hy = Z(—iai@xk +mood) + chS(:ck —x)(1 - aia}). (14)
k=1 k<l
Here
1 3 o 3\010h _ o o
5(1®1_U ®0%)aras = daida30ar,—as- (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave
function is discontinuous at zj = x;, since the Schrodinger equation here is a first
order equation. Consider a simple equation

f'(@) = cd(2) f(z) = g(=, f(x))

Lecture 7. Thirring model: Bethe Ansatz



Interaction: Hamiltonian and wave function di

For g # 0 we have

N N
Hy = Z(—iai@xk +mood) + chS(:ck —x)(1 - aia}). (14)
k=1 k<l
Here
1 3 o 3\010h _ o o
5(1®1_U ®0%)aras = daida30ar,—as- (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave
function is discontinuous at zj = x;, since the Schrodinger equation here is a first
order equation. Consider a simple equation

f'(z) = cb(x) f(z) = g(=, f(z))
Let us regularize the delta-function in an arbitrary way:

f'(@) = cda(x) f(z) = g(x, f(x)), lim da(z) =d(x), suppda =[-a,a]. (16)

a—0
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Interaction: Hamiltonian and wave function discontinuity

For g # 0 we have

N N
Hy = Z(—iai@xk +mood) + chS(:ck —x)(1 - aia}). (14)
k=1 k<l
Here
1 3 o 3\010h _ o o
5(1®1_U ®0%)aras = daida30ar,—as- (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave
function is discontinuous at zj = x;, since the Schrodinger equation here is a first
order equation. Consider a simple equation

f'(@) = cd(2) f(z) = g(=, f(x))

Let us regularize the delta-function in an arbitrary way:

f'(@) = cda(x) f(z) = g(x, f(x)), lim da(z) =d(x), suppda =[-a,a]. (16)

a—0

Let dq(z) = €, (x). Then

(=) =ce (x f z) = const e“¢a (@)
o~ T = s e
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Interaction: Hamiltonian and wave function discontinuity

For g # 0 we have

N N
Hy = Z(—iai@xk +mood) + chS(:ck —x)(1 - aia}). (14)
k=1 k<l
Here
1 3 o 3\010h _ o o
5(1®1_U ®0%)aras = daida30ar,—as- (15)

The interaction term in the Hamiltonian (14) is poorly defined. Indeed, the wave
function is discontinuous at zj = x;, since the Schrodinger equation here is a first
order equation. Consider a simple equation

f'(@) = cd(2) f(z) = g(=, f(x))

Let us regularize the delta-function in an arbitrary way:

f'(@) = cda(x) f(z) = g(x, f(x)), lim da(z) =d(x), suppda =[-a,a]. (16)

a—0

Let dq(z) = €, (x). Then

(=) =ce (x f z) = const e“¢a (@)
o~ T = s e

a—0

f(+a) =ef(-a) —= [f(+0) =€ f(-0). (17)
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Interaction: two-particle wave function

Let

0102 (2 2g) = A12X?\‘i (x1)x§‘§ (z2) — Azlxi‘; (xl)x‘;f(zg) for z1 < 2,
Az VD A21X§11 (ml)xis (z2) — Algxi‘; (xl)x‘;f (z2) for z1 > x2.
(18)
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Interaction: two-particle wave function

Let
0102 (2 2g) = A12X?\‘i (x1)x§‘§ (z2) — Azlxi‘; (xl)x‘;f(zg) for z1 < 2,
1 =
Az VD A21X§11 (ml)xis (z2) — Algxi‘; (xl)x‘;f (z2) for z1 > x2.
(18)
It is antisymmetric:
Xaing (@1,22) = —x575, (22, 21).
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Interaction: two-particle wave function

Let
0102 (2 2g) = A12X?\‘i (x1)x§‘§ (z2) — Azlxi‘; (xl)x‘;f(zg) for z1 < 2,
Az VD A21X§11 (ml)xis (z2) — Algxi‘; (xl)x‘;f (z2) for z1 > x2.
(18)
It is antisymmetric:
X3 ag (@1, 22) = =X375, (22, 21).
After applying the rule from the last slide we have
A—ig
Asgq - ch .
22— R(O1 — A2), R(\) =¢e®M) = =2 19
Ao (A1 —A2) N b X (19)
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Interaction: two-particle wave function

Let

0102 (2 2g) = A12X?\‘i (x1)x§‘§ (z2) — Azlxi‘; (xl)x‘;f(zg) for z1 < 2,
b « «
A1 A2 A21X§11 (ml)xis (z2) — A12X)\21 (-Z’I)XAT(ZQ) for x1 > xa.
(18)
It is antisymmetric:

X31ag (@1,32) = =X375; (2, 21).

After applying the rule from the last slide we have
ch A—ig

2
- (19)
2

A _
228 — R(A —X2), R\ =W =
A1z

The function is periodic in g with the period 27. Assume

—T<g<T. (20)
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Interaction: two-particle wave function

Let
X182 (21 ) = A12X?\‘i (Il)Xit; (x2) — A21X§21 (xl)X(;f(-Z’Q) for 1 < x2,
1, =
A1 A2 A21X§11 (ml)xis (z2) — A12X§:21 (‘Il)xif (z2) for m1 > x2.
(18)
It is antisymmetric:
X3 ag (@1, 22) = =X375, (22, 21).
After applying the rule from the last slide we have
A ) ch 2249
Lo RO - X)), R =N = — 2 (19)
A1z ch 241
The function is periodic in g with the period 27. Assume
-t <g<m. (20)
For ®(\) assume the skew symmetry
(=) = —2(N), (21)

with the cuts lie on the rays (i(m — |g|), i00), (—i(m — |g|), —i00).
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Interaction: Bethe Ansatz and Bethe equations

The N-particle solution (Bethe Ansatz):

N
XS (@) = D (-7 AL [ ] X‘jj: (To),) for Toy < ... < Toy. (22)
T k=1
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Interaction: Bethe Ansatz and Bethe equations

The N-particle solution (Bethe Ansatz):

T

N
XS (@) = D (-7 AL [ ] X‘jj: (o) for 2o, <...<zoy. (22)
k=1

The coefficients A satisfy the relations

A it =R — XNig1)A i1, (23)
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Interaction: Bethe Ansatz and Bethe equations

The N-particle solution (Bethe Ansatz):

T

N
ag
X‘;llgjl\\r’ (1, ,xN) = Z(—I)UTAT H XAT: (o)) for e, <...<zoy. (22)
k=1
The coefficients A satisfy the relations
A it =R — XNig1)A i1, (23)
The periodic boundary condition
X2 (34 4 Lyag, . on) = X120 (31,35, TN

imposes on Ay the system of Bethe equations:

N
6im0Lsh)\k H R()‘k 7>‘l)

1=1
1#k

Il
—

(24)
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Interaction: Bethe Ansatz and Bethe equations

The N-particle solution (Bethe Ansatz):

N
ag
X‘;llgjl\\r’ (1, ,xN) = Z(—I)UTAT H XAT: (o)) for e, <...<zoy. (22)
T k=1
The coefficients A satisfy the relations
A it =R — XNig1)A i1, (23)
The periodic boundary condition

X0 ON (21 4 Lo, ..oy = XOLO2 0N (21,2, o)

imposes on Ay the system of Bethe equations:

N
emolsh A TT R(A, — X)) =1 (24)
1=1
£k
A set {A1,..., AN} that satisfy (24) is called a solution to the Bethe equations,
while each element is called a root of the Bethe equations. All roots are different:
A Z N, ifk#L (25)
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Ground state

Take logarithm of the Bethe equations:

N
moLsh A, + > &\ — i) = 27y, ny € Z. (26)
=1
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Ground state

Take logarithm of the Bethe equations:

N
moLsh A, + > &\ — i) = 27y, ny € Z. (26)
=1
Energy and momentum:
N N
En(A1,...,AN) =mo »_ch )i, Py(A1,..,An) =mo »_sh ;. (27)
i=1 i=1
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Ground state

Take logarithm of the Bethe equations:

N
moLsh A, + > &\ — i) = 27y, ny € Z. (26)
=1
Energy and momentum:
N N
En(A1,...,AN) =mo »_ch )i, Py(A1,..,An) =mo »_sh ;. (27)
i=1 i=1

Conjecture: all negative energy one-particle states are filled up in the ground
(vacuum) state. Then

A =i+ &k, ng = ko — k.
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Ground state

Take logarithm of the Bethe equations:

N
moLsh A, + > &\ — i) = 27y, ny € Z. (26)
=1
Energy and momentum:
N N
En(A1,...,AN) =mo »_ch )i, Py(A1,..,An) =mo »_sh ;. (27)
i=1 i=1

Conjecture: all negative energy one-particle states are filled up in the ground
(vacuum) state. Then

A =i+ &k, ng = ko — k.

Hence,
N

moLsh&y, =2m(k —ko) + Y ®(&x — &) (28)
=1
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Ground state: thermodynamic limit

Take the difference for neighboring k and divide by L(§x4+1 — &k):
N

o shépi1 —shé, 27 n 1 )y Q1 — &) — 26k — &)

Enp1 — & Ly —&) L= Eot1 — &k
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Ground state: thermodynamic limit

Take the difference for neighboring k and divide by L(§x4+1 — &k):
N

o shépi1 —shé, 27 n 1 )y Q1 — &) — 26k — &)

Enp1 — & Ly —&) L= Eot1 — &k
In the limit L — oo the values &, become dense. Then define

27 27 dk
p(§) = I = (29)

€1 —Ex) L dE
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Ground state: thermodynamic limit

Take the difference for neighboring k and divide by L(§x4+1 — &k):

N
mosh§k+1 —shé& _ 2 +lz P(Er+1 — &) — P&k — &)
Eot1 — &k L(€et1—&) L= Eot1 — &k
In the limit L — oo the values &, become dense. Then define
27 _ 2nmdk
&)=~ (29)
L(€p4r — &) L dE
Substituting the sum by and integral, we obtain
© dé‘ / ! !
moché = p(§) + (& —¢&)p(€). (30)

We again need the ultraviolet cutoff ©.
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Ground state: thermodynamic limit

Take the difference for neighboring k and divide by L(§x4+1 — &k):

N
mosh§k+1 —shé& _ 2 +lz P(Er+1 — &) — P&k — &)
Eot1 — &k L(€et1—&) L= Eot1 — &k
In the limit L — oo the values &, become dense. Then define
27 _ 2nmdk
&)=~ (29)
L(€pt1— &) L de’
Substituting the sum by and integral, we obtain
© dé‘ / ! !
moché = p(§) + (& —¢&)p(€). (30)
We again need the ultraviolet cutoff ©.
We have lost one equation. Thus substitute it by the normalization condition
© de N
= = 31
JIR-ZGES, (31)
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Ground state: thermodynamic limit

Take the difference for neighboring k and divide by L(§x4+1 — &k):
N
h —sh 2 1 P — &) — D(& —
mo® Eky1 —shép u s (Err1 — &) — P(&k §l)'

Enp1 — & Ly —&) L= Eot1 — &k
In the limit L — oo the values &, become dense. Then define

2 27 dk
L(€ki1 — &) L de

Substituting the sum by and integral, we obtain

p(§) = (29)

€]
mo ch€ = p(¢ +/ df'@—eww» (30)

We again need the ultraviolet cutoff ©.
We have lost one equation. Thus substitute it by the normalization condition

© d¢ N
JIR-TGEES (31)

Approximate solution

i 9©
p(€) = poch wi-fg’ po ~ moeTt9. (32)

po is finite = renormalization of mg.
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Excitations in the thermodynamic limit: holes

Consider the Dirac sea with holes: nj do not cover a segment of Z. Then

N

moLsh&, = —2mny, + Y (& — &) (33)
=1
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Excitations in the thermodynamic limit: holes

Consider the Dirac sea with holes: nj do not cover a segment of Z. Then

N
moLsh&, = —2mny, + Y (& — &) (33)
=1
Define £(n) by the equation
N
moLshé(n) = —2mn+ Y ®(é(n) - &) (34)
=1

Evidently &(ng) = k. In this case the state is filled. Otherwise it is empty.

Lecture 7. Thirring model: Bethe Ansatz



Excitations in the thermodynamic limit: holes

Consider the Dirac sea with holes: nj do not cover a segment of Z. Then

N
moLsh&, = —2mny, + Y (& — &) (33)
=1
Define £(n) by the equation
N
moLshé(n) = —2mn+ Y ®(é(n) - &) (34)
=1

Evidently &(ng) = £k. In this case the state is filled. Otherwise it is empty. Define
two spectral densities:

e Density of states: p(&(n)) = L|§(n+217;7§(n)| ~ 2% ’dg(’b )
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Excitations in the thermodynamic limit: holes

Consider the Dirac sea with holes: nj do not cover a segment of Z. Then

N
moLsh&, = —2mny, + Y (& — &) (33)
=1
Define £(n) by the equation
N
moLshé(n) = —2mn+ Y ®(é(n) - &) (34)
=1

Evidently &(ng) = £k. In this case the state is filled. Otherwise it is empty. Define
two spectral densities:

e Density of states: p(&(n)) = L|§(n+217;7§(n)| ~ 2% ’dg(’b )

PR R

There difference p(§) — p® (&) = p° (&) is the density of holes.
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Integral equation for holes

Integral equation

[S] ’
moch = p(6)+ [ (=)0l — 7). (3)

Lecture 7. Thirring model: Bethe Ansatz



Integral equation for holes

Integral equation
© de’
moche=p(©) + [ L@ (E-N0le) - p°(€). (3)
_e 2m
Let pvac(€) is the ground state (vacuum) density of states (32), which solves
© de’
moch€ = puac©) + [ 5506~ €)puacl) (30)
_e 2m

Let
6/’(5) = P({) - pvac(g)'
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Integral equation for holes

Integral equation
© de’
moche=p(©) + [ L@ (E-N0le) - p°(€). (3)
_e 2m
Let pvac(€) is the ground state (vacuum) density of states (32), which solves
© de’
moch€ = puac©) + [ 5506~ €)puacl) (30)
_e 2m

Let
5p(&) = p(&) — pvac(§)-
Take the difference of (35) and (30):

© / © /
sn©)+ [ G vie—ooe) = [ Eee-eme). (o)

_e 27

Let us solve it in the limit ® — oo.
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The limit ©® — co. Fourier transform

For © — oo we may apply the Fourier transform:

. A e
Xw) = [~ SEX@, X =0 0p,7,...
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The limit ©® — co. Fourier transform

For © — oo we may apply the Fourier transform:

o= [ i
Xw) = [~ SEX@, X =0 0p,7,...

Equation (36) takes the form

5p(w) + & ()55(w) = ¥ ()7° ().
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The limit ©® — co. Fourier transform

For © — oo we may apply the Fourier transform:

o= [ i
Xw) = [~ SEX@, X =0 0p,7,...

Equation (36) takes the form
5p(w) + &' (w)6p(w) = @' (w)5°(w).
It is easy to check that

sh gw

sh gw
N T 9ah ™=9,,ch Tt9,,
2sh Twch —rw

& (w) =

5p(w) = (). (37)

b
sh 7w
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Fractional charge of a hole

Effect of a cutoff: fractional charge. Formal charge of a hole is —1, but when holes
are inserted, particles are pulled into the region —© < & < © or pushed off it. We
have two quantities:

(S ©
aN=-L [ Ee© =70, sQ=L[ G- @)
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Fractional charge of a hole

Effect of a cutoff: fractional charge. Formal charge of a hole is —1, but when holes
are inserted, particles are pulled into the region —© < & < © or pushed off it. We
have two quantities:

_ S] df ° _ - _ [S] dé— .
ANf—L/ieﬂp (&) = =p°(0), AQfL/ie 5 (0p(&) = (&) (38)
We obtain
= ® fpemiwt___Shmw o
A= /9 27 / 2sh WT_gUJCh WT-;-gwp (w) >~ ﬂ_gAN. (39)
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Fractional charge of a hole

Effect of a cutoff: fractional charge. Formal charge of a hole is —1, but when holes
are inserted, particles are pulled into the region —© < & < © or pushed off it. We
have two quantities:

e df o ~0 6 ds o
aN=-L [ @ =-r0, aQ=1[ F6p©-rE©). 6
_e 2w _e 2w
We obtain
ad ; sh ww s
AQ = / / D P L R— L] %) P AN. (39
@= o 2m 2sh"T_gwch7rTﬂwp( ) T—g (39)
Then the charge of one hole is
oo R0 _ 7™ (40)
AN o g
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Fractional charge of a hole

Effect of a cutoff: fractional charge. Formal charge of a hole is —1, but when holes
are inserted, particles are pulled into the region —© < & < © or pushed off it. We

have two quantities:

(O e
an=-r [ -

We obtain

a0 [ [

Then the charge of one hole is

©
70), AQ= L[@ =

) =

(6p(&) —p°(8)).  (38)

™

=9

AN.  (39)

(40)

It means that the quantity @ does not coincide with the physical number of

particles. Hence,

= |z°|/dxw;rhys¢phys +const = Y= |z°\1/21/)phys, (41)
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Fractional charge of a hole

Effect of a cutoff: fractional charge. Formal charge of a hole is —1, but when holes
are inserted, particles are pulled into the region —© < & < © or pushed off it. We
have two quantities:

e df o ~0 @ ds o
AN =—-L [ =p°(§)=-p°0), AQ=L [ =(6p(§)—p°(§). (38)
_e 2w _e 2w
We obtain
oo ) sh
AQ = / / we it ST o)~ —_AN.  (39)
o 21 2sh 5 %wch 74w T—g
Then the charge of one hole is
A
oo B __ T (40)
AN o g
It means that the quantity @ does not coincide with the physical number of
particles. Hence,
= |z°\/dx1/1;rhys¢phys +const = Y= |z°\1/21/)phys, (41)
It corresponds to the renormalization of the coupling constant g:
g 1 1 1
pnys = 9l2°| = & =-—— (42)
phye 1- g/7r 9phys g ™
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Fractional charge of a hole

Effect of a cutoff: fractional charge. Formal charge of a hole is —1, but when holes
are inserted, particles are pulled into the region —© < & < © or pushed off it. We
have two quantities:

e df o ~0 6 ds o
AN =—-L [ =p°(§)=-p°0), AQ=L [ =(6p(§)—p°(§). (38)
_e 2w _e 2w
We obtain
oo ) sh
AQ = / / et STV o)~ AN, (39)
o 21 2sh"Tgwch7rTﬂw T—g
Then the charge of one hole is
A
oo B __ T (40)
AN o g
It means that the quantity @ does not coincide with the physical number of
particles. Hence,
= |z°\/dx1/1;rhys¢phys +const = Y= |z°\1/21/)phys, (41)
It corresponds to the renormalization of the coupling constant g:
g 1 1 1
pnys = 9l2°| = & =-—— (42)
phye 1- g/7r 9phys g ™

™
—T<g<mT << *§<9phys<oo

in consistency with the boson—fermion correspondence.
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Mass of a hole

Calculate the energy and momentum of a state with holes:

e
Blp?] - El0] = moL [ i

£ (5°(§) — p(©)) ch,
_e 2w

(S]
Plot) = moL [ 3% (°(6) = dp(e)) she.
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Mass of a hole

Calculate the energy and momentum of a state with holes:

e
Blp?] - El0] = moL [ &

£ (5°(§) — p(©)) ch,
_e 2w

(S]
Plot) = moL [ 3% (°(6) = dp(e)) she.

Let g < 0. The integrals converge as ® — oo, but at ® = co we have
E[p°] — E[0] = P[p°] = 0. Thus mo must be renormalized to infinity.
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Mass of a hole

Calculate the energy and momentum of a state with holes:

e
Blp?] - El0] = moL [ &

£ (5°(§) — p(©)) ch,
_e 2w

(S]
Plot) = moL [ 3% (°(6) = dp(e)) she.

Let g < 0. The integrals converge as ® — oo, but at ® = co we have
E[p°] — E[0] = P[p°] = 0. Thus mo must be renormalized to infinity.

Leg g > 0. The integrals diverge as © — oco. Thus mg must be renormalized to
Zero.
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Mass of a hole

Calculate the energy and momentum of a state with holes:

e
Blp?] - El0] = moL [ &

£ (5°(§) — p(©)) ch,
_e 2w

(S]
Plot) = moL [ 3% (°(6) = dp(e)) she.

Let g < 0. The integrals converge as ® — oo, but at ® = co we have
E[p°] — E[0] = P[p°] = 0. Thus mo must be renormalized to infinity.
Leg g > 0. The integrals diverge as © — oco. Thus mg must be renormalized to

Zero.
Assuming © large but finite, we can obtain

> d, > d,
B -E0 =L [~ Ea@r©.  Pi=t [ SExere @)
where
. A B A _ M TT—g
e()\)fmchﬂ__i_g7 p()\)fmshﬂp_‘_g, m= gCtg<27r+g> (44)
and

mo )9/(7r+g) ' (45)
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Masses and scales

Thus, the particles have a relativistic spectrum with the mass
m ~ mg exp (L®>
T+ g

and the rapidity
m§
™+ g '
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Masses and scales

Thus, the particles have a relativistic spectrum with the mass
m ~ mg exp (L®>
T+ g

and the rapidity
m§
™+ g '

Comparing with the estimation
2
mog ~ m27B ’
where 3 is the coupling constant of the sine-Gordon model, we obtain

912

™
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Masses and scales

Thus, the particles have a relativistic spectrum with the mass
m ~ mg exp (L®>
T+ g

and the rapidity
m§
™+ g '

Comparing with the estimation
2
mog ~ m27B ’
where 3 is the coupling constant of the sine-Gordon model, we obtain

912

™

In terms of the physical coupling constant gphys it reads

Yphys 2
Jphys -1,
- B

in consistency with the bosonization.
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Model system

Consider the model system of ‘spinless’ fermions with the S matrix S(8) = ¥ (9),
W(—0) = —¥(0). If particles are far from each other we may apply the Bethe

Ansatz to them and obtain the Bethe equations

N
eimLsh oy H S(0; —0) =1, (46)
17

where 0 are physical rapidities of the particles and m is their physical mass.
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Model system

Consider the model system of ‘spinless’ fermions with the S matrix S(8) = ¥ (9),
W(—0) = —¥(0). If particles are far from each other we may apply the Bethe

Ansatz to them and obtain the Bethe equations

N
eimLsh oy H S(0; —0) =1, (46)
.
z#i
where 0 are physical rapidities of the particles and m is their physical mass. By
taking logarithm we obtain the equations

N
mLsh0y + Y W(by — 60,) = 2mn. (47)
=1
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Model system

Consider the model system of ‘spinless’ fermions with the S matrix S(8) = ¥ (9),
W(—0) = —¥(0). If particles are far from each other we may apply the Bethe

Ansatz to them and obtain the Bethe equations

N
eimLsh oy H S(0; —0) =1, (46)
.
z#i
where 0 are physical rapidities of the particles and m is their physical mass. By
taking logarithm we obtain the equations

N
mLsh0y + Y W(by — 60,) = 2mn. (47)
=1
Define 0(n) by the equation
N
mLshO(n) =" ¥(0(n) — 0;) = 27n. (48)
=1
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Model system

Consider the model system of ‘spinless’ fermions with the S matrix S(8) = ¥ (9),
W(—0) = —¥(0). If particles are far from each other we may apply the Bethe
Ansatz to them and obtain the Bethe equations

N
eimLsh oy H S(0; —0) =1, (46)
17

where 0 are physical rapidities of the particles and m is their physical mass. By
taking logarithm we obtain the equations

N
mLsh0y + Y W(by — 60,) = 2mn. (47)
=1

Define 0(n) by the equation

N
mLshO(n) =" ¥(0(n) — 0;) = 27n. (48)
=1
Introduce the densities:
27 2w | dn
« (0 =~ — ,
p+(8(n)) LIo(n+1)—0(n)| L |do(n)

dk (49)

oy,

>9k29

2 27
2O~ (o =) oos T
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Model system: integral equations

In the same way we obtain the integral equation

mch0 + /00 C;i U (0 —0")p2(0) = 2mp«(0). (50)

oo 2T
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Model system: integral equations

In the same way we obtain the integral equation

oo de/
mch + / o U (0 —0")p2(0) = 2mp«(0). (50)
oo 2m
If p$(0) = 0, we immediately obtain pivac(f) = mch@. With dpx = px — psvac wWe
have
> de/ !’ / (] /
sou@) = [ w0 0)pt@) (51)
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Model system: integral equations

In the same way we obtain the integral equation

oo de/
mch + / o U (0 —0")p2(0) = 2mp«(0). (50)
oo 2m
If p$(0) = 0, we immediately obtain pivac(f) = mch@. With dpx = px — psvac wWe
have
> de/ !’ / (] /
sou@) = [ w0 0)pt@) (51)

For the Fourier transforms we have

5pe () = ¥ ()P (). (52)
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Model system: integral equations

In the same way we obtain the integral equation

it da, !/ / o /
mch6 + 2—\11(9—0),0*(9):27rp*(9).

oo 2T

(50)

If p2(0) = 0, we immediately obtain psvac(6) = mch6. With dp. = psx — psvac wWe

have S
3p.0) = [ SO 002(0).

Lo 2T
For the Fourier transforms we have

5pe () = ¥ ()P ().

Identify
T

DB 26), 50(6) = Lopu0), 6=
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Model system: integral equations

In the same way we obtain the integral equation

oo de/
mch0 + / — W0 —0")p2(0") = 2mp«(0). (50)
Lo 2T
If p$(0) = 0, we immediately obtain pivac(f) = mch@. With dpx = px — psvac wWe
have
> de/ !’ / (] /
500 = [ Lwo—e0)p20). (51)
oo 2m

For the Fourier transforms we have

57 (w) = ' (@)ph (). (52)
Identify
orpy _ A0 o _de _
PO = O, 50&) = Feopel6), 0= & (53)
In the Fourier transforms
of T e (T s
5 (ng) =), ap(ﬂgw) = 57 (w). (54)
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Thirring model: S matrix

Comparing it with (37) we obtain

oo sh mw gy mp—Dw
‘1,(9) _ ’L/ aw 2 2 —10w

e
co w  shrwsh ™52
% duw sh T sh mp—Dw
:2/ 2T 3 g, B=1-L=2-L
0o w shrwsh = T p+1

This identifies the function S(8) = e?¥(?) with the matrix element S(§)~Z

antifermions in the Thirring model.

(55)

of two
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Thirring model: S matrix

Comparing it with (37) we obtain

0 du sh T@ gh Te—Dw
‘1,(9) — ’L/ w 2 2 —10w

w2
co w  shrwsh ™52
% duw sh T sh mp—Dw

:2/ —wﬁsmew, ﬁ2:1—€:2%. (55)
0o w shrwsh™® ™ P

This identifies the function S(0) = e?%(9) with the matrix element S(6)—_ of two
antifermions in the Thirring model.

Other matrix elements can be found by means of the Yang-Baxter equations and
in the basis (++, +—, —+, ——) are given by

a(0)
5(0) = (85152(0)) = ggzg Zgzg ’ 56)
a(0)
where a(0) = ¢?¥(®) and
bO) _ hg ) _ hE
(l(@) B sh %7 a(@) - sh % (57)
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Thirring model: bound states

For g < 0 (or gphys < 0, 82 < 1, p < 1) the elements b(#) and c(#) have poles on
the physical sheet at the points

1
0y = im — iTpn, nzl,Q,...,{fJ, (58)
p
which correspond to the neutral bound states with the masses
Ton

M, = 2msin e (59)

In the sine-Gordon model these bound states correspond to the breather
excitations, and in the classical limit 32 — 0 their spectrum becomes continuous
in consistency with the classical field theory.
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