Lecture 9

Ice model and commuting transfer matrices
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Ice model: configurations

The ‘ice model’ (@ is Oxygen, o is Hydrogen):

ool d

Lecture 9. Ice model



Ice model: configurations

The ‘ice model’ (@ is Oxygen, o is Hydrogen):
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Ice model: configurations

The ‘ice model’ (@ is Oxygen, o is Hydrogen):
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Each oxygen atom has two hydrogen atom next to it. Small arrows on the right
figure define the orientation of the lattice lines and vertices, which will be
important later.
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Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

S
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Z = R&‘ligv R61€2 = €2 €9, 51+€2 =1 +e2|
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Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

=1
’ ’
7 = R51€2 R5152 _ . ’ /+ I +
- £1€29 e1ex — 2 €2, &1 €9 = €1 g9 |

configu- vertices A . T
rations 1 Ice (/()Ildltl()n

‘We have six vertices

Rif=a=o@-=> = +«}+, R =d = @o=<<= «}

~

RIZ=b=-@o= <= «—} R e +«—i»+

~
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Ice model: Boltzmann weights

Six-vertex model: the Boltzmann weights are associated with vertices:

el el
Z = § H RE}E;» Reisg = °2 “i‘ 51 +52 =¢e1+¢e2|

configu- vertices
rations Ice ¢ ()Ildltl()n

‘We have six vertices

Rii=ﬂ=°§=>§»=+«}+, R“:a’:ﬁo:%<=«}
S (R L= SLEE S SR
R+f=c=&=<¥>:<—¥j+, Rf+=c’=0#o:$:+{>

in the basis (++), (+=), (—=+), (—=).
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Six-vertex models: solvable case

The six-vertex model is solvable, if
’ / 1
—€1 —€2 _ pfi1f2
R—El —€o R€152

or
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ertex models: solvable case

The six-vertex model is solvable, if

’ / 1
R_El —€2 _ R5152
—e1 —eg ~ T€1€2

or
The transfer matrix

’ ! /7 ’ ’
€1---EN __ H2E] HHU3ES K1EN
T = Ryjei Ruses - Runeéy - (1)

M1 BN
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ertex models: solvable case

The six-vertex model is solvable, if

’ / 1
R_El —€2 _ R5152
—e1 —eg ~ T€1€2

or

The transfer matrix
£l el p2c] puseh p1e]
1SN _ 1 2 N
Tellen = E : Ryier Ruses - Ruyey - (1)
M1 BN

Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:
.2 2 2 2 £1€
R:C*®C*—>C*®C”, v€1®v€2»—>Rsiezvs/ ® Ve

1

Here v, is the natural basis in V = CZ2.
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Six-vertex models: solvable case

The six-vertex model is solvable, if
’ / 1
—€1 —€2 _ pfi1f2
R—El —€o R€152

or

The transfer matrix
5/1“‘53\, o p,gell ;1,36,2 ulslN
TEEN = Y RuieiRuges - Ry 1
Hi---IN
Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:
R:C?®C? = C?2eC?, Ve; ® Veqy HRE}Z?vs/l ®v€/2.
12
Here v, is the natural basis in V = C2. Consider the tensor product

Vi ®Va®---®Vj of identical spaces V; >~ V. Let R;; is the R matrix acting on
v, ®Vj.
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Six-vertex models: solvable case

The six-vertex model is solvable, if
’ / 1
—€1 —€2 _ pfi1f2
R—El —€o R€152

or

The transfer matrix
TE/I"‘5§V o Rugell R,u,gsé RulelN 1
€1-EN T E : pnierftuges - - fluyen - (1)
M1 N
Let us consider the matrix R as an operator in the tensor product of two two-
dimensional spaces:
2 2 2 2 £1€
R:C*®C*— C*xC~ v51®1}€2.—>R5i2 /1®v€/2.

v,
! Ve
=)

Here v, is the natural basis in V = C2. Consider the tensor product

Vi ®Va®---®Vj of identical spaces V; >~ V. Let R;; is the R matrix acting on
VoV

Then the transfer matrix can be written as

T =try,(Ron ... Ro2Ro1): Vi@Ve® - @Vy 2 V1Q@V2® - ®@VN. (2)

The space V1 ® --- ® Vi is called quantum space, while the space Vj is called
auxiliary space.
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Six-vertex models: L operator

The operator under the trace is

L=RogN...Ro2Ro1: VodV1® - QVN >V V1 ®---® Vy. (3)
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Six-vertex models: L operator

The operator under the trace is
L=RogN...Ro2Ro1: VodV1® - QVN >V V1 ®---® Vy. (3)

We will consider it as an operator in the quantum space and a matrix in the
auxiliary space

L= (é g), ABCD:VigVh@ - 0Vy > ViaVhe o V.
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Six-vertex models: L operator

The operator under the trace is
L=RogN...Ro2Ro1: VodV1® - QVN >V V1 ®---® Vy. (3)

We will consider it as an operator in the quantum space and a matrix in the
auxiliary space

L= (é g), ABCD:VigVh@ - 0Vy > ViaVhe o V.

Then
T =try, L=A+D. (4)
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Commuting transfer matrices and Yang—Ba

Integrability demands the existence of extra commuting integrals of motion Iy,:
[T,In] =0, [Im,In]=0.

How to construct them?
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Commuting transfer matrices and Yang—Ba

Integrability demands the existence of extra commuting integrals of motion Iy,:
[T,In] =0, [Im,In]=0.

How to construct them?
Let use search for the operators T” = try, L', L' = R{y, ... R(, R, with some
matrix R'.

Lecture 9. Ice model



Commuting transfer matrices and Yang—B r equation

Integrability demands the existence of extra commuting integrals of motion Iy,:

[Ta In} =0, [Im’ In} =0.

How to construct them?
Let use search for the operators T” = try, L', L' = R{y, ... R(, R, with some
matrix R’.

If there exist nondegenerate matrices R/, R such that
Ry Ry3Ra3 = RogRy3 R,
or, graphically

» R R

R//

then
[T, 7' =0
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Commuting transfer matrices: a proof

A graphical proof:

T =
R//—l R//
R/l R//—l R//—l R//—l R//—l
< < I < < <
< < I < < <
! ! = ! ! = ! ! = = ! ! = ! ! = ! !
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | L/‘ ‘L | | | |
A A A R A
L L/ L I/ L' L L' L
=TT'. (7)
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Commuting transfer matrices: a proof

A graphical proof:

T'T =

RI’-1

R R/"-1 R/’-1 R/—1
< < R <
< < 7 <
| = | = | = = I I
| | | | | | | | | |
I I I I I I | | I I
I I I I I I | | L" ‘L
oA e A A
L L' L L/

A more conventional proof is based on the relation
12L1 L2 = LoLi Ry,

which is proved by induction.

Lecture 9. Ice model

A

A




Commuting transfer matrices: a proof

A graphical proof:

T =
R//—l R//
R/l R//—l R//—l R//—l R//—l
< < I < < <
< < I < < <
! ! = ! ! = ! ! = = ! ! = ! ! = ! !
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | L/‘ ‘L | | | |
A A A R A
L L/ L I/ L' L L' L
=TT'. (7)

A more conventional proof is based on the relation
12L1 L2 = LoLi Ry,
which is proved by induction. Then

T'T = try, gv, (L) L2) = try, g, (RY2) "' RY2 L) L) = trvy o v, (RY) ™' LaL) RY5)
= try, @v, (Rio(RY9) ' LaLl) = try, gv, (L2 L)) = TT'.
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Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form
R = R(\,u2 — u3),
R = R(\,u1 — u3), (8)
R’ = R(\,u1 — u2)

with a given matrix-valued function R(\,u).
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Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

R = R(\,u2 — u3),
= R(\, u1 —u3), (8)
R” = R\ u1 —u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a = 1. Trigonometric solution(s):

sinu shu
b = b =
(u) s1n( —u)’ (u) sh(A — u)
sin A sh A
elu) = s1n( —u) elu) = sh(A — u)
(a<b+c, b<a+c c<a+bd) (¢ >a+b).
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Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

R = R(\,u2 — u3),
= R(\, u1 —u3), (8)
R” = R\ u1 —u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a = 1. Trigonometric solution(s):

sinu shu
b = b -
(u) s1n( —u)’ (u) sh(A —u)’
sin A sh A
elu) = s1n( —u) elu) = sh(A — u)
(a<b+c, b<a+c c<a+bd) (¢ >a+b).

The cases a > b+ ¢ and b > a + ¢ and not interesting from the thermodynamic
point of view and will be discussed later.
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Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

R = R(\,u2 — u3),
= R(\, u1 —u3), (8)
R” = R\ u1 —u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a = 1. Trigonometric solution(s):

sinu shu
b = b -
(u) s1n( —u)’ (u) sh(A —u)’
sin A sh A
elu) = s1n( —u) elu) = sh(A — u)
(a<b+c, b<a+c c<a+bd) (¢ >a+b).

The cases a > b+ ¢ and b > a + ¢ and not interesting from the thermodynamic
point of view and will be discussed later. The parameter X is the same for
R, R',R"” and can be expressed as

—cos A _A7a2+b2—c2
—chA [~ 77 2ab
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Yang-Baxter equation: solution for the six-vertex model

The solution can be found in the form

R = R(\,u2 — u3),
= R(\, u1 —u3), (8)
R” = R\ u1 —u2)

with a given matrix-valued function R(\,u). Since the common factor of a, b, ¢ is
arbitrary, assume a = 1. Trigonometric solution(s):

sinu shu
b = b -
(u) s1n( —u)’ (u) sh(A —u)’
sin A sh A
elu) = s1n( —u) elu) = sh(A — u)
(a<b+c, b<a+c c<a+bd) (¢ >a+b).

The cases a > b+ ¢ and b > a + ¢ and not interesting from the thermodynamic
point of view and will be discussed later. The parameter X is the same for
R, R',R"” and can be expressed as

—cos A _A7a2+b2—c2
—chA [~ 77 2ab

Thus we will omit the parameter A from now on:

R(u) = R(\,u), a(u) = a(X, u) etc.
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Yang—Baxter equation: spectral parameter

The spectral parameters can be associated to lines:

€3

v
e3e
R()\,U—U)E‘;’Eg = &2 e4

€1
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Yang—Baxter equation: spectral parameter

The spectral parameters can be associated to lines:
€3
v

£3€
RN\ u—v)32 = €2 €4
u

€1
This R matrix is the solution to the Yang—Baxter equation in the form

Ria(A\ u1r —u2)Ri3(A, u1 — ug)Raz (A, uz — u3)

= Ro3(\, u2 — u3)Ri13(\, u1 — uz)Ri2(A, u1 — u2).

Graphically:

u3

u2 ul uz U1
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Yang—Baxter equation: spectral parameter

The spectral parameters can be associated to lines:
€3
v

£3€
RN\ u—v)32 = €2 €4
u

€1
This R matrix is the solution to the Yang—Baxter equation in the form

Ria(A\ u1r —u2)Ri3(A, u1 — ug)Raz (A, uz — u3)
= Ro3(\,u2 — u3)Ri3(\, u1 — uz)Ri2(A, u1 —u2). (10)

Graphically:
= (10)

u2 ul uz U1

Besides, the R matrix satisfy the relations

b(w)ROA — u)5354 = R(w) ~%3,  Ris(w)Rai(—u) =1, R(0)=P = Jr .

£1€2 €4 —€71°
(11)
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Integrals of motion
We have

[T(u), T(u)] =0 Vu,u'. (12)

But not all the integrals of motion T'(u) are independent.
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Integrals of motion

We have

[T(uw), T(w)] =0 Yu,u'. (12)
But not all the integrals of motion T'(u) are independent.
First of all, T(0) is nothing but the shift operator:

wed—
vl

(13)
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Integrals of motion

We have

[T(uw), T(w)] =0 Yu,u'. (12)
But not all the integrals of motion T'(u) are independent.
First of all, T(0) is nothing but the shift operator:

wed—
vl

7(0) L= (13)
| |
s
w
Then decompose the product 71 (0)T'(u) in wu:
o0 n
T~ H0)T(u) = 1 — nZ:l H::‘ . (14)
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Integrals of motion

We have
[T(uw), T(w)] =0 Yu,u'. (12)

But not all the integrals of motion T'(u) are independent.
First of all, T(0) is nothing but the shift operator:

wed—
vl

T(0) = I = I (13)
| |
| |
o
U
Then decompose the product 71 (0)T'(u) in wu:
oo H n
THO)T(w) =15 (14)
n!
n=1
Hamiltonians H, commute with 7T'(u) and mutually commute:
[T(0), Hn] = [Hm, Hn] =0 Vm,n. (15)

The set T(0), H1,...,Hy—_1 form a set of independent integrals of motion.
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Integrals of motion

We have

[T(uw), T(w)] =0 Yu,u'. (12)
But not all the integrals of motion T'(u) are independent.
First of all, T(0) is nothing but the shift operator:

U <
DI
T(0) = I = I (13)
| |
| |
u % dr
U
Then decompose the product 71 (0)T'(u) in wu:
oo H n
THO)T(w) =15 (14)
n!
n=1
Hamiltonians H, commute with 7T'(u) and mutually commute:
[T(0), Hn] = [Hm, Hn] =0 Vm,n. (15)

The set T(0), H1,...,Hy—_1 form a set of independent integrals of motion.
Operators Hj, are local in the sense that each of them is a sum of term, which
involves a finite number (n + 1) of neighboring nodes.
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

g ‘%L ~
0 el \ +<_2J L Vint2 :
0 «j <«

d N Vn41 d
2 - = &

u=0p=1 V,

— H, =T71(0)T"(0) =

Vn+1

I I
du | ,—g : : du u=0,p,—1 V, U
I I

< W) L .

u
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Six-vertex model and XXZ Heisenberg chain

Let us find the Hamiltonian H; explicitly:

—Hy =T710)T"(0) =
0 VN VN
[ D
0 < L I I
1 Vnﬁj L Vn+2
0 ej N N
d d Z Vin+1 d Z Vn+1
—_ I I = — = —
du|,—g : : du{,—g n—1 Vn du |y —g n=1 Vn U
| |
. B
M V:_J L v1<—
N
= Z R'In,n+1(0)7
n=1
where
a(u) 0
SN _ c(u) b(u) . U cosA 1 2
R(u) = PR(u) = b(u) c(u) = sin A\ 1 cosA +0(u%)
a(u) 0
u cos A
=1- - Oo(u?),
sin A ( 2 ) ()
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Six-vertex model and XXZ Heisenberg chain

Here L
h= —5(01®Uz+ay®ay —cosAo® ®o7).

Hence NA
Hjsin\ = Hxxz + T:

where Hxxz is the Hamiltonian of the XXZ Heisenberg chain:

N
1 -
Hxxz = ~3 D (ohoniy+ohol,, +Aoroniy) (16)
n=1
with A given by (9):
A a? +b% —c? _ —cos A
2ab —chA

Lecture 9. Ice model



XXZ Heisenberg chain: pseudov

Due to the ice condition the z component of total spin

z 1 N z
S* = EZU"
i=1

is a conserved charge:

[T'(u), S*] = [Hxxz,S*] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
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XXZ Heisenberg chain: pseudov

Due to the ice condition the z component of total spin

z 1 N z
S* = EZU"
i=1

is a conserved charge:

[T'(u), S*] = [Hxxz,S*] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
Define the pseudovacuums

Q) =vL£ Qv ®... Q@ v+ . (18)
_
N
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XXZ Heisenberg chain: pseudovacuums

Due to the ice condition the z component of total spin

1 N
S% — — z
3 2%
1=1
is a conserved charge:
[T'(u), S?] = [Hxxz,S*] = 0. (17)

Thus the space of states is split into the sum over eigenvalues of S*.
Define the pseudovacuums

Q1) =v+ Qv+ ®...Qvst. (18)
| ——
N
T(u)|24)
Evidently, +

S04 = 4T 104),  T]02) = (@ () + 6V @)I0),

+ 4+ + o+
+ o+ o+ o+

NA
Hxxz|Q+) = —T\Qﬂ-
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin S? = N/2 — k are linear combinations of the states

_ _ o +ioY
|n17---7nk>:Unl"'o—nk‘Q+>v O'i:T- (19)
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin S? = N/2 — k are linear combinations of the states

_ _ o +ioY
|n17---7nk>:Unl"'o—nk‘Q+>v O'i:T- (19)

Consider k£ = 1. The state
[W1(2)) =D 2"n). (20)
n
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin S? = N/2 — k are linear combinations of the states

+ o% +ioY

1) = oy o 04), 0 = T (19)
Consider k£ = 1. The state
[W1(2)) =D 2" n). (20)
n
is an eigenvector of the Hamiltonian,
NA
Hxxel () = (-5 +e@)) @) do=2a-2-571 (@)
if 2V =1
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin S? = N/2 — k are linear combinations of the states

+ o% +ioY

1) = oy o 04), 0 = T (19)

Consider kK = 1. The state
[Wi(2)) = > 2" [n). (20)

n
is an eigenvector of the Hamiltonian,
NA

Hxxel () = (-5 +e@)) @) do=2a-2-571 (@)

if 2V = 1. Three regimes:

o A > 1: ¢(z) >0 Vz. The states [2+) are ground states. The excitation are
physical excitations (magnons).
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin S? = N/2 — k are linear combinations of the states

+ o% +ioY

1) = oy o 04), 0 = T (19)

Consider kK = 1. The state
[Wi(2)) = > 2" [n). (20)

n
is an eigenvector of the Hamiltonian,
NA

Hxxel () = (-5 +e@)) @) do=2a-2-571 (@)

if 2V = 1. Three regimes:

o A > 1: ¢(z) >0 Vz. The states [2+) are ground states. The excitation are
physical excitations (magnons).

o A < —1: €(z) < 0 Vz. The states |Q2+) are states of the highest energy. The
ground state corresponds to S* = 0 or i%, and excited states separated by an
energy gap.
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin S? = N/2 — k are linear combinations of the states

+ o% +ioY

1) = oy o 04), 0 = T (19)

Consider kK = 1. The state
[Wi(2)) = > 2" [n). (20)

n
is an eigenvector of the Hamiltonian,
NA

Hxxel () = (-5 +e@)) @) do=2a-2-571 (@)

if 2V = 1. Three regimes:

o A > 1: ¢(z) >0 Vz. The states [2+) are ground states. The excitation are
physical excitations (magnons).

o A < —1: €(z) < 0 Vz. The states |Q2+) are states of the highest energy. The
ground state corresponds to S* = 0 or i%, and excited states separated by an
energy gap.

e —1 < A < 1: €(z) does not have definite sign. The ground state corresponds
to S* =0 or :I:%. No energy gap.
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XXZ Heisenberg chain: pseudoparticles

States of fixed spin S? = N/2 — k are linear combinations of the states

+ o% +ioY

1) = oy o 04), 0 = T (19)

Consider kK = 1. The state
[Wi(2)) = > 2" [n). (20)

n
is an eigenvector of the Hamiltonian,
NA

Hxxel () = (-5 +e@)) @) do=2a-2-571 (@)

if 2V = 1. Three regimes:

o A > 1: ¢(z) >0 Vz. The states [2+) are ground states. The excitation are
physical excitations (magnons).

o A < —1: €(z) < 0 Vz. The states |Q2+) are states of the highest energy. The
ground state corresponds to S* = 0 or i%, and excited states separated by an
energy gap.

e —1 < A < 1: €(z) does not have definite sign. The ground state corresponds
to S* =0 or :I:%. No energy gap.
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c. Ground configurations:
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c. Excitations?
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c.

Excitations:
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c¢. Excitations:

+ o+ - -

S I o I e D N B
+ |+ |+ - |-

ol ++ -+ S B M
+ o+ |- |+ and -

S B R e -l =-l-01-1-
T S S s -

—+ [+ [+ |+ L i B R
+ Y+ Y Y - Y- V- V-

On a large lattice any excitations have vanishing weight. = Frozen order.
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c¢. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Ground configurations:

-+ -t + -+ -
S I I I S B I o R
+ - |+ |- -+ |-+
S R + o e R I o
-+ |- |+ and + |- |+ |-
S e I I o S I I o R
+ - |+ |- -+ -
D B + I e B I o e
- Y Yo vy + Y- vy v
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c¢. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations?

-+ -t + -+ -
S I I I S B I o R
+ - |+ |- -+ |-+
S R + o e R I o
-+ -+ and + |- |+ |-
I e I I o e S I I o R
+ - |+ |- -+ -
D B + I e B I o e
- Y Yo vy + Y- vy v
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c¢. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations:

-+ + + + -
S I I I S B I o R
+ - |+ |- -+ |-+
-l -1-1+ o e R I o
- |- |+ |+ and + |- |+ |-
S I B I e S I I o R
+ - |+ |- -+ -
+ + -1+ + -1+ |-
+ Y- v + Y- vy v

Lecture 9 e model



Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c¢. Excitations:

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations:

-+ -t + -+ -

S I I I S B I o R
+ - |+ |- -+ |-+

+ -l -1+ - |+ + | -
- |- |+ |+ and + |- |+ |-

S I B I e S I I o R
+ - |+ |- -+ -

+ + + |+ + | -
- Y+ + + Y- vt

The excitations have finite weight. = Nontrivial thermodynamics.
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Six-vertex model: three regimes

1. Ferroelectric regime: A > 0. Let a > b+ c¢. Excitations:

ol + + + | + i - -1 -
+ |+ |+ |- - |- - |-

ol ++ -+ -l =l =-1-1-
+ o+ |- |+ and - |- |- |-

S B R e -l =-l-01-1-
+ |+ |+ - |- - |-

—+ [+ [+ |+ L i B R
+ Y+ Y Y - Y- V- V-

On a large lattice any excitations have vanishing weight. = Frozen order.
2. Antiferroelectric regime: A < —1, ¢ > a + b. Excitations:

S I I I S B I o R
+ - |+ |- -+ |-+

-l -1-1+ o e R I o
- |- |+ |+ and + |- |+ |-

S I B I e S I I o R
+ - |+ |- -+ -

S Rl o R I e B I o e
+ Y- v + Y- vy v

The excitations have finite weight. = Nontrivial thermodynamics.
3. Disordered regime: |A] < 1. No ground configurations. It turns out that this
regime is always critical.
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Heisenberg chain: two-particle states

Consider the case k = 2. Let us search for an eigenstate in the form

(Wa(z1,22)) = D (Ar22]" 232 + Av1zy" 212) |, na). (22)

ni1<ng
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Heisenberg chain: two-particle states

Consider the case k = 2. Let us search for an eigenstate in the form

(Wa(z1,22)) = D (Ar22]" 232 + Av1zy" 212) |, na). (22)

ni1<ng

The action of the Hamiltonian moves n; by +1. Thus, the action on the
contributions with no — n1 > 1 does not differ from the action on the one-particle
state. Hence, if the state is an eigenstate, we have

Haxz | Wa(e1, 22)) = (—% e(en) + 6(22)> Wa (21, 22))-
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Heisenberg chain: two-particle states

Consider the case k = 2. Let us search for an eigenstate in the form

(Wa(z1,22)) = D (Ar22]" 232 + Av1zy" 212) |, na). (22)

ni1<ng

The action of the Hamiltonian moves n; by +1. Thus, the action on the
contributions with no — n1 > 1 does not differ from the action on the one-particle
state. Hence, if the state is an eigenstate, we have

Haxz | Wa(e1, 22)) = (—% e(en) + 6(22)> Wa (21, 22))-

When is it the case? First, check the action on the terms with no —ny = 1. We

obtain A 14 9A
21 Z2122 — z2
—— =8(z1,22) =

1t sz 2 (23)
Ais 1+ 2120 —2A21
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Heisenberg chain: two-particle states

Consider the case k = 2. Let us search for an eigenstate in the form

(Wa(z1,22)) = D (Ar22]" 232 + Av1zy" 212) |, na). (22)

ni1<ng

The action of the Hamiltonian moves n; by +1. Thus, the action on the
contributions with no — n1 > 1 does not differ from the action on the one-particle
state. Hence, if the state is an eigenstate, we have

Haxz | Wa(e1, 22)) = (—% e(en) + 6(22)> Wa (21, 22))-

When is it the case? First, check the action on the terms with no —ny = 1. We

obtain A - oA
21 Z2122 — z2
— =8S(z1,22) = —————. (23)
Ais 1+ 2120 —2A21
Second, we have to impose the periodicity condition:
AV S(z1,20) =1, 25 8(z2,21) = 1. (24)
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Heisenberg chain: Bethe Ansatz

Consider general k. The Bethe Ansatz is

I\pk(zlr--'vzk» = Z Z Aal oL HZUJ |n1,... )

n1<...<np €Sy
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Heisenberg chain: Bethe Ansatz

Consider general k. The Bethe Ansatz is

Wiz, )= D D Acyoy HZUJ [n1,.. ., ng).
n1<...<np €Sy

It is an eigenvector of the Hamiltonian, if (1)

jio S A g = S(zi, 25) (25)
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Heisenberg chain: Bethe Ansatz

Consider general k. The Bethe Ansatz is

V(21,05 28)) = Z Z Ay ..oy, HZUJ |1, ..., ng).

n1<...<np €Sy

It is an eigenvector of the Hamiltonian, if (1)

jio. JA. 5. = S(zi,25) (25)
and (2) the Bethe equations
2N T Seiz) =1 (26)
J, JFi

are satisfied.
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Heisenberg chain: Bethe Ansatz

Consider general k. The Bethe Ansatz is

V(21,05 28)) = Z Z Ay ..oy, HZUJ |1, ..., ng).

n1<...<np €Sy

It is an eigenvector of the Hamiltonian, if (1)

jio. JA. 5. = S(zi,25) (25)
and (2) the Bethe equations
2N T Seiz) =1 (26)
J, JFi

are satisfied. The eigenvalue is given by

NA &

Hxxz|W(21,...,2k)) = <—2 + 6(%)) [V (21,5 28)), (27)
1

i=
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Heisenberg chain: Bethe Ansatz

Consider general k. The Bethe Ansatz is

V(21,05 28)) = Z Z Ay ..oy, HZUJ |1, ..., ng).

n1<...<nj c€5y
It is an eigenvector of the Hamiltonian, if (1)
jio S A g = S(zi, 25) (25)
and (2) the Bethe equations
NI SGirz) =1 (26)
J, JFi
are satisfied. The eigenvalue is given by

NA &
Hxxz|¥k (21,5 28)) = <—2 + 6(%)) (Wi (21, -, 25)), (27)
i=1
Next time we rederive the Bethe equations in a different way and solve them for
the ground state. We also will find the corresponding eigenvalue of the transfer
matrix.
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Seminar
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