Lecture 11

Kondo problem: derivation of the Bethe Ansatz

Michael Lashkevich
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Beginning in the 1930s, a minimum was observed in the temperature dependence
of the resistivity of some seemingly pure metals (Au, Ag, Cu) at low temperatures.
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Later it turned out that the anomaly is caused by the presence of a low
concentration of impurity atoms of transition metals (Mn, Fe, Cr, Co, Ce, Y).
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Kondo effect

Beginning in the 1930s, a minimum was observed in the temperature dependence
of the resistivity of some seemingly pure metals (Au, Ag, Cu) at low temperatures.

Resi i {T=0 Celsius) x 10000
(from W.J. de Haas and G.J. van den Barg,
Physica vol. 3, page 446, Y935)
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Later it turned out that the anomaly is caused by the presence of a low
concentration of impurity atoms of transition metals (Mn, Fe, Cr, Co, Ce, Y). Jun
Kondo (1964) explained this phenomenon by electron scattering on impurities
described by the interaction (sd model)

V= JZoSi(S(r—Ri) (1)
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sd Model

In the first (Born) approximation the scattering amplitude is
1
F8) ~ J(08) gy

It is of the same order as the potential scattering and does not change the
temperature behavior.
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In the first (Born) approximation the scattering amplitude is
1
180~ J(08) 04

It is of the same order as the potential scattering and does not change the
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we obtain the integral
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The second term diverges on the Fermi surface at T' = 0.
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sd Model

Integration gives the amplitude proportional to

€r
foro ~ J(08)ors (1 + Jp(er) log m) . (2)
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sd Model

Integration gives the amplitude proportional to

€r
foro ~ J(08)ors (1 + Jp(er) log m) . (2)

For the resistivity it means

€r
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where p, is the potential contribution.

This formula contains an energy scale called the Kondo temperature:

T ~ epe 1/ IPler) (3)

This is the only characteristic energy scale of the Kondo effect.

The formula (2) is applicable, if T > Tk . How to improve the result?
Abrikosov (1965) and Suhl (1965) independently summed up the diagrams that
contain powers of logarithm and found

i
p=pv+ .
T (1= Jp(er)log F)?
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sd Model

Integration gives the amplitude proportional to
€r
foro ~ J(08)gro | 1+ Jp(ep)log ————— | . (2)
max(lep —ep|,T)

For the resistivity it means

_ (0) €F
p=pv+p <1+2Jp(eF)log T).

where p, is the potential contribution.
This formula contains an energy scale called the Kondo temperature:

T ~ epe 1/ IPler) (3)

This is the only characteristic energy scale of the Kondo effect.

The formula (2) is applicable, if T > Tk . How to improve the result?
Abrikosov (1965) and Suhl (1965) independently summed up the diagrams that
contain powers of logarithm and found

Y
(1= Jp(er)log F)*

p=pv+

This formula makes it possible to approach Tk closer, but it has a singularity at
T = Tx. We need a nonperturbative approach at T' < Tk .
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Kondo effect. Characteristic features

Not only the resistivity has anomalies due to the Kondo effect, but also
thermodynamic quantities.
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const
pimp (T) = o2 I
08" T
const
2 T
log” 72

const

Cimp(T) ~

imp (1) ~ ———.
Ximp () = oo T

Lecture 11. Kondo problem: Bethe Ansatz



Kondo effect. Characteristic features

Not only the resistivity has anomalies due to the Kondo effect, but also
thermodynamic quantities.

Experimental data shows that for 7" > Tk the impurity contribution reads

const
pimp (T) = o2 I

8" Ty

const
Cump (1) = 757

& T

const

imp (1) ~ ———.
Ximp () = oo T

For T <« Tk it reads

Pimp(T) = Pimp(0) (1 — KR (%)2 +.. -)7
Chanp (T) = 7% (1 — ke (%)2 +.. )

Ximp (T) = X0 (1 — Ky (%)2 +-.->,

where kg, Ko, Ky are quantities of order one.

: Bethe Ansatz
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I will describe a solution to the sd model, which is correct under rather restrictive
assumptions, but exact. In fact, finite temperatures nor transport properties will
not be discussed here in any detail.
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sd Model. Simplifications

I will describe a solution to the sd model, which is correct under rather restrictive
assumptions, but exact. In fact, finite temperatures nor transport properties will

not be discussed here in any detail.
Consider an impurity in a metal, such that

o the metal is described by an isotropic Fermi gas of electrons;

o the impurity is described by a point-like spin with isotropic exchange
interaction and no potential interaction with the electron gas;
o Jp(er) < 1.
The Hamiltonian:
H = Hy + J(J'(O)S7

where

Ho = Z/d3xw;—(:v)e(V)wU(:r) = Zﬁpc;facpa,

po
U(O) = Z 111; (0)00'01/’0 (0) = Z CZIGIUU/JCPU'
oo p'o’,po
We will also assume that

o the spectrum is nearly linear: ep = €p +vp(p — pr).
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Reduction to a one-dimensional model

Decompose the creation-annihilation operators into spherical functions:

he =D Yim(P/P)C s (6)
lm
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H — H+ Nep, € —€e+ep, p—p+pp,

and choose measure units so that vy = 1.
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lm

Let us make the substitution (N being the number of electrons)
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Notice, that electrons with nonzero angular momenta do not interact with the
impurity and, therefore, do not contribute the Kondo effect. Get rid of them:

H= ch;rvcpg + JZC:;,O_,CPO-O'O.IO.S, (8)
po p'po’c
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Make a Fourier transform

clz) = (c ) ) Zem (C“) (9)
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Notice, that electrons with nonzero angular momenta do not interact with the
impurity and, therefore, do not contribute the Kondo effect. Get rid of them:
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Reduction to a one-dimensional model

Decompose the creation-annihilation operators into spherical functions:
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Let us make the substitution (N being the number of electrons)
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and choose measure units so that v = 1. Then
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Notice, that electrons with nonzero angular momenta do not interact with the
impurity and, therefore, do not contribute the Kondo effect. Get rid of them:
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We have a one-dimensional Hamiltonian. Particles move with the same velocity
from left to right.
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Reduction to a one-dimensional model

Decompose the creation-annihilation operators into spherical functions:

+a = Z Ylm(p/p)cj;lmo-' (6)
im

Let us make the substitution (N being the number of electrons)
H — H+ Nep, € —€e+ep, p—p+pp,
and choose measure units so that v = 1. Then
H= Z pc:lmvcplmd + JZC;,OOU,CPOOO-O'U/US. (7)
plmo p'o’ ,po

Notice, that electrons with nonzero angular momenta do not interact with the
impurity and, therefore, do not contribute the Kondo effect. Get rid of them:

H= ch;rvcpg + JZC:;,O_,CPO-O'O.IO.S, (8)
po p'po’c

Make a Fourier transform

clz) = (c ) ) Zem (C“) (9)

Then
H= /d:r (—icT (2)dzc(z) + JeT (z)(oS)c(z)d(x)). (10)
We have a one-dimensional Hamiltonian. Particles move with the same velocity

from left to right. The x < 0 semiaxis corresponds to the falling waves, while the
z > 0 semiaxis corresponds to the diverging waves.
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Many-particle states

Since the Hamiltonian preserves the number of particles N (now it will be s
electrons only), define the N-particle states.
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Since the Hamiltonian preserves the number of particles N (now it will be s
electrons only), define the N-particle states. First define the vacuum

co(@)|Q) = ST|Q) =0, ST =57 +i9Y. (11)

Then define the states

S
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The action of the Hamiltonian on the wave function is

N N
~ ’ N
HnNUo1ONS — 2 a‘TJ YOoL-ONS o ] § : § : 6(503')0'030/‘ SSS/\I/Ul...Uj...aN,a
‘ ‘ J
Jj=1 j=1 o;,s’

13
Consider the case N = 1. Look for the wave function in the form (13)

AZ%ePT <0
o,8 _ P I El
V() = {BZ’SeiW, x> 0. (14)

Substituting it to the Schréodinger equation, we obtain

A0S — Z g/ss/Ba',s'7 R = ¢iJoS, (15)
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N = 2 states

Consider now the case N = 2.
Let \11010213(2717332) — A0102,8¢ip1T1+ip2T2 _ Atfztfl7581171702‘%2;02117 r1,22 < 0.
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But RooR10 # RioR20! Is it possible? Yes. For x1,z2 # 0 the Schrodinger
equation reads
E\I/(:L'l, :Eg) = 77;(811 + 812 )\P(:El s IQ)
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Consider now the case N = 2.
Let \11010213(2717332) — A0102,8¢ip1T1+ip2T2 _ Atfztfl7581171702‘%2;02117 r1,22 < 0.

xr2 .
s
s
’
s
’

| Rio R0 W10 -7
/ 10720 12/0/ " discontinuity
7/

s
s

R2oW120 ,
A

/ ,
/ s

( +" RaoR10¥120
( 7 ﬁ

xr1

Y120 Ri10¥120
~]

But RooR10 # RioR20! Is it possible? Yes. For x1,z2 # 0 the Schrodinger
equation reads
e
EVU(z1,72) = —i(0a, + O0ay)¥(x1,22) = W(zy,22) = B2 7 f(21 — 32)

with an arbitrary function f, including piecewise smooth.
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Consider now the case N = 2.
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But RooR10 # RioR20! Is it possible? Yes. For x1,z2 # 0 the Schrodinger

equation reads
e
EW(x1,22) = —i(ny + 0y)W(z1,22) = W(z1,a0) = P2~ flag — 29)

with an arbitrary function f, including piecewise smooth.
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Thus, we will search for the wave functions in the form

0102,8 gipyxitipa®sy . A9291,8 eiP221+iP112, 1 < x32;

\I/glaz’s(il,itz) — 12,e1€2 ) A 21,e2¢e1 ) )
01025 cipyrxy+ipexe _ A9291:5 oip2x1+ip122
A21,51526 A12,52516 y T1 > T2,

where ¢; = signx;. There are six groups of coefficients: A12 __, A12, 1, A12 ¢4,
Az1,——, Ao1 4, Aol 4.
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Thus, we will search for the wave functions in the form

0102,8 gipyxitipa®sy . A9291,8 eiP221+iP112, 1 < x32;

\I/glaz’s(il,itz) — 12,e1€2 ) A 21,e2¢e1 ) )
01025 cipyrxy+ipexe _ A9291:5 oip2x1+ip122
A21,51526 A12,52516 y T1 > T2,

where ¢; = signx;. There are six groups of coefficients: A12 __, A12, 1, A12 ¢4,
Ag1,—_, A21,4+—, A21,+4. The scattering on the impurity imposes the relations

’ ’ /
Af7_1f72a 2 :Ro'ls 0‘10275 A"?.IO-Q’ 2 :Ro'gs 0'.10'2,5/

1], €2 ols! g, +e2 17;,€1 — ols'“Tij,e1 +
al,s’ ol,s’

11. Kondo probler



N =2

at

Thus, we will search for the wave functions in the form

102,85 gipyx1tipa®sy . A9291,5 gip2x1+ip1as
\Ijo'lo'z,s(xl IQ) — 12,e1€2 21,e2¢e1
) o110 S
A 102,

, X1 < 22
ip1T1+ip2Te _ A9201,S i
21,61526 A

12’525161P211+i17112 1 > T3,
where ¢; = signx;. There are six groups of coefficients: A12 __, A12, 1, A12 ¢4,
Ag1,—_, A21,4+—, A21,+4. The scattering on the impurity imposes the relations
c.r.lag, Z Ro'ls 010275/ A"?.IO-Q’ Z Ro’gs O'lO'é,S/
ij,— €2 oys’ w,+ ez’ ij,e1 —
al,s’

als’ 1j751+ :
ol,s’

The scattering of electrons is very special. Due to this map from the 3D space to a
line, the unit S matrix in 3D maps to the transposition matrix P in 1D

A21,EE - PAI?,EE
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N =2

at

Thus, we will search for the wave functions in the form

102,85 gipyx1tipa®sy . A9291,5 gip2x1+ip1as
\Ijo'lo'z,s(xl IQ) — 12,e1€2 21,e2¢e1
) o110 S
A 102,

, X1 < 22
ip1T1+ip2Te _ A9201,S i
21,61526 A

12’525161P211+i17112 1 > T3,
where ¢; = signx;. There are six groups of coefficients: A12 __, A12, 1, A12 ¢4,
Ag1,—_, A21,4+—, A21,+4. The scattering on the impurity imposes the relations
c.r.lag, Z Ro'ls 010275/ A"?.IO-Q’ Z Ro’gs O'lO'é,S/
ij,— €2 oys’ w,+ ez’ ij,e1 —
al,s’

o 2s! 1j751 + -
ol,s’
The scattering of electrons is very special. Due to this map from the 3D space to a
line, the unit S matrix in 3D maps to the transposition matrix P in 1D

A21,EE - PAI?,EE
or, with all superscripts

A0102a AU2517
ij,e€

Giee e=4.
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N =2

at

Thus, we will search for the wave functions in the form

102,85 gipyx1tipa®sy . A9291,5 gip2x1+ip1as
\Ijo'lo'z,s(xl IQ) — 12,e1€2 21,e2¢e1
) o110 S
A 102,

, X1 < 22
ip1T1+ip2Te _ A9201,S i
21,61526 A

12’525161P211+i17112 1 > T3,
where ¢; = signx;. There are six groups of coefficients: A12 __, A12, 1, A12 ¢4,
Ag1,—_, A21,4+—, A21,+4. The scattering on the impurity imposes the relations
c.r.lag, Z Ro'ls 010275/ A"?.IO-Q’ Z Ro’gs O'lO'é,S/
ij,— €2 oys’ w,+ ez’ ij,e1 —
al,s’

als’ 1j751+ :
ol,s’

The scattering of electrons is very special. Due to this map from the 3D space to a
line, the unit S matrix in 3D maps to the transposition matrix P in 1D

A21,EE - PAI?,EE
or, with all superscripts

A0102a

AU2517
ij,e€

Giee e=4.

On the other hand, we may write a trivial identity

P12 R10R20 = R2oRi10P12,
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N =2

at

Thus, we will search for the wave functions in the form

102,85 gipyx1tipa®sy . A9291,5 gip2x1+ip1as
\Ijo'lo'z,s(xl IQ) — 12,e1€2 21,e2¢e1
) o110 S
A 102,

, X1 < 22
ip1T1+ip2Te _ A9201,S i
21,61526 A

12’525161P211+i17112 1 > T3,
where ¢; = signx;. There are six groups of coefficients: A12 __, A12, 1, A12 ¢4,
Ag1,—_, A21,4+—, A21,+4. The scattering on the impurity imposes the relations
c.r.lag, Z Ro'ls 010275/ A"?.IO-Q’ Z Ro’gs O'lO'é,S/
ij,— €2 oys’ w,+ ez’ ij,e1 —
al,s’

als’ 1j751+ :
ol,s’

The scattering of electrons is very special. Due to this map from the 3D space to a
line, the unit S matrix in 3D maps to the transposition matrix P in 1D

A21,EE - PAI?,EE
or, with all superscripts

A0102a

AU2517
ij,e€

Giee e=4.

On the other hand, we may write a trivial identity

PraRigR20 = ReoRi0 P12, (16)
which have the form of the Yang—Baxter equation

1. Kondo problem

: Bethe A




Formal Yang— er equation

Indeed, rewrite the equation
Pi12R10R20 = R2oR10P12 (16)

graphically.
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Formal Yang-Baxter equation

Indeed, rewrite the equation
Pi12R10R20 = R2oR10P12 (16)
graphically. If we assume

Mo K X =

1 0 1 2 1 2
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Formal Yang-Baxter equation

Indeed, rewrite the equation

P12 R10R20 = R2oR10P12 (16)

graphically. If we assume

Mo K X =

1 0 1 2 1 2

then eq. (16) reads
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Periodic boundary condition

Impose the periodic boundary condition
U(x1,...,T5,...,en) =¥(r1,...,z; + L,...,zN). (17)

In the physical 3D space it means that we have a spherical mirror of the radius
L/2 with an appropriate boundary condition.
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Periodic boundary condition

Impose the periodic boundary condition
U(x1,...,T5,...,en) =¥(r1,...,z; + L,...,zN). (17)

In the physical 3D space it means that we have a spherical mirror of the radius
L/2 with an appropriate boundary condition.
Introduce the operator

Ty = Pjj—1..-PnRjoPjN - .- Pjj41. (18)
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Periodic boundary condition

Impose the periodic boundary condition
U(x1,...,T5,...,en) =¥(r1,...,z; + L,...,zN). (17)

In the physical 3D space it means that we have a spherical mirror of the radius
L/2 with an appropriate boundary condition.
Introduce the operator

Ty = Pjj—1..-PnRjoPjN - .- Pjj41. (18)
Then the periodic boundary condition reads

ePily = 7,0 (19)
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Periodic boundary condition

Impose the periodic boundary condition
U(x1,...,T5,...,en) =¥(r1,...,z; + L,...,zN). (17)

In the physical 3D space it means that we have a spherical mirror of the radius
L/2 with an appropriate boundary condition.
Introduce the operator

Ty = Pjj—1..-PnRjoPjN - .- Pjj41. (18)
Then the periodic boundary condition reads
ePily = 7,0 (19)
Example: N =2. Let 1 <0 < 22 < x1 4+ L. Then
\1,0102,5(3517352) — Atlf%:izfeimmﬂmxz _ Agiilfeip2x1+ip1x27

0102,8 _ otP1L A0102,8 jip1x1tipexe _ ip2L p0201,S jipoxitipix2
LG P(x1+ Lyx2) =e Agilie e Aj3% e .
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Periodic boundary condition

Impose the periodic boundary condition
U(x1,...,T5,...,en) =¥(r1,...,z; + L,...,zN). (17)

In the physical 3D space it means that we have a spherical mirror of the radius
L/2 with an appropriate boundary condition.
Introduce the operator

Ty = Pjj—1..-PnRjoPjN - .- Pjj41. (18)
Then the periodic boundary condition reads
ip; Ly —
eIt = T;W. (19)
Example: N =2. Let 1 <0 < 22 < x1 4+ L. Then
0102,8 1 ) D 0201,8 1 )
@0102,5($17$2) — Al%,—er etP1z1tipaTy A2i+1* 6129237214%1)13027
o L 54 . oo L y .
WOL92:8 (21 + L, 9) = Pl Agllf’ffe’m“'“m”? _ etp2 Ai’g&fezmwﬁ-wwz.
By comparing the first terms we obtain
’ ’
ip1 L 0102, _ A0102,8 __ pO1,8 49102:8 _ po1,8 40207,8 0102,8
P AN R = AR = RO AG L = R Ay Jy = (RuoPizdar 14) :

Comparing the second terms give the same result up to the permutation 1 > 2.
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T} operators

Now rewrite the operators T;. We have

|
|
|
jj+1 N O 1  j—1

o--4--
—
<.
|
—
.
<.
+
—

S S A I

_

|
|

*

‘ |

| |

|

0 1 j—1jj+1

!

:T:tri(PiN“'PilRio) (20)
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T} operators

Now rewrite the operators T;. We have

S S A I

L1
N

*

‘ |

| |

|

0 1 j—1jj+1

|
|
|
jj+1 N O 1  j—1

!

1 j-1jj+1 N

o--4--

How to diagonalize the matrix 7’7 We want to immerse it into a set of commuting

transfer matrices T'(u), so that T' = T'(0).

Lecture 11. Kondo problem: Bethe Ansatz




T} operators

Now rewrite the operators T;. We have

S I I N D O A N A
ST T T T
= | L] ] =T =tr;(Py... P;;Ry) (20)

1 j-1jj+1 N

o--4--

How to diagonalize the matrix 7’7 We want to immerse it into a set of commuting
transfer matrices T'(u), so that T' = T'(0).
To do it let us recall the trivial identity

P12R19R20 = R2oR10P12 (16)

and try to deform it.
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Matrices R(u) and S(u): requirements

Let us find the matrices R(u) and S(u), so that they satisfy the following
requirements:
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Matrices R(u) and S(u): requirements

Let us find the matrices R(u) and S(u), so that they satisfy the following
requirements: 1. The matrices R(u) and S(u) satisfy the Yang-Baxter equation:

S12(u1 — u2)Rio(u1 — uo)Rao(uz2 — uo) = R2o(u2 — uo)Rio(u1 — uo)S12(u1 — u2),
(21a)

S12(u1 — u2)S13(ur — uz)S23(uz — u3z) = Soz(uz — uz)S13(u1 — u3)S12(ur — uz).
(21b)
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Matrices R(u) and S(u): requirements

Let us find the matrices R(u) and S(u), so that they satisfy the following
requirements: 1. The matrices R(u) and S(u) satisfy the Yang-Baxter equation:

S12(ur — u2)Rio(u1 — ug)Rao(u2 — uo) = Rao(u2 — uo)Rio(ur — up)S12(ur — u2),

(21a)
S12(u1 — u2)S13(ur — uz)S23(uz — u3z) = Soz(uz — uz)S13(u1 — u3)S12(ur — uz).
(21b)

2. At special points, the matrices S(u) and R(u) coincide with S and R:
5(0)=P, R(1)=R=¢e"’5, (22)
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Matrices R(u) and S(u): requirements

Let us find the matrices R(u) and S(u), so that they satisfy the following
requirements: 1. The matrices R(u) and S(u) satisfy the Yang-Baxter equation:

S12(ur — u2)Rio(u1 — ug)Rao(u2 — uo) = Rao(u2 — uo)Rio(ur — up)S12(ur — u2),

(21a)
S12(u1 — u2)S13(u1 — u3)S23(uz — ug) = S23(uz — u3)S13(u1 — u3)S12(u1 — u2).
(21b)
2. At special points, the matrices S(u) and R(u) coincide with S and R:
S(0)=P, R(1)=R=¢e75. (22)
3. R-matrices satisfy the unitarity condition:
S12(u)S21(—u) =1, Rio(u)Rio(—u) = 1. (23)
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Matrices R(u) and S(u): requirements

Let us find the matrices R(u) and S(u), so that they satisfy the following
requirements: 1. The matrices R(u) and S(u) satisfy the Yang-Baxter equation:

S12(ur — u2)Rio(u1 — ug)Rao(u2 — uo) = Rao(u2 — uo)Rio(ur — up)S12(ur — u2),

(21a)
S12(u1 — u2)S13(u1 — u3)S2s(uz — uz) = S23(u2 — u3)S13(ur — u3)S12(u1 — u2).
(21b)
2. At special points, the matrices S(u) and R(u) coincide with S and R:
S(0)=P, R(1)=R=¢e75. (22)
3. R-matrices satisfy the unitarity condition:
S12(u)S21(—u) =1, Rio(u)Rio(—u) = 1. (23)
If we obtain such matrices, we will have a family of transfer matrices
T(u) = trj Li(u), Li(u) = Siy(u)...S7; (w)Ryg(u + 1), (24)

such that
T(0)=T, [T'(u), T(v)] = 0. (25)

Michael La



Matrices R(u) and S(u): solution

The solution can be represented as

S12(u) = wo(u) + w(u)oro2,

, , (26)
Rip = wy(u) + 2w’ (u)o1.So.
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Matrices R(u) and S(u): solution

The solution can be represented as

S12(u) = wo(u) + w(u)oro2,

, , (26)
Rip = wy(u) + 2w’ (u)o1.So.
It is convenient to introduce the notation
a=wy+w b=wy—w, c=2w,
’ ! ; / ! / ! / (27)
a =wy+w, b =wy —w, ¢ =2w'.
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Matrices R(u) and S(u): solution

The solution can be represented as

S12(u) = wo(u) + w(u)oro2,

, , (26)
Rip = wy(u) + 2w’ (u)o1.So.
It is convenient to introduce the notation
a=wy+ w, b=wy—w, c=2w,
’ ! ’ / ! / ! / (27)
a =wy+w, b =wy —w, ¢ =2w'.

In this case, the matrix S(u) has the same form as the R-matrix of the XXZ
model:

b(u clu
S(u) = chg bEu;
a(u)
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Matrices R(u) and S(u): solution

The solution can be represented as

S12(u) = wo(u) + w(u)oro2,

, , (26)
Rip = wy(u) + 2w’ (u)o1.So.
It is convenient to introduce the notation
a=wy+ w, b=wy—w, c=2w, (27)
a =wjy +w, b =w)—w, =2
In this case, the matrix S(u) has the same form as the R-matrix of the XXZ
model:
a(u)
_ b(u)  c(u)
o= ) blu)
a(u)
By solving the Young—Baxter equation, we find
b(u) V(u)  u
a(u)  a'(u) u«lk'ig7 (28)
c(w) _ d(w)
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Matrices R(u) and S

Impose the unitarity condition

g2+u2

ataCzu) =1, a'e'(—0) = G T

(29)
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Matrices R(u) and S(u): solution

Impose the unitarity condition

2 4,2
_ / / _ g° +tuw
a(u)a(—u) =1, a’(u)a'(—u) = A1/ T (29)
Finally, the condition (22) gives
1+1 ; ;
a0) =1, ') = (S 4 ST (30)
and 1
= ———tgJ(S+1/2). 31
0= 5315 /5 +1/2) (3)

Otherwise, a(u), a/(u) are arbitrary functions.
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Algebraic Bethe Ansatz
Return to the definitions

T(’LL) = tri Li(u), Li (u) = SiN(u) - Sil(u)RiO(u + 1), (24)
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Algebraic Bethe Ansatz
Return to the definitions

T(u) = trj Li(u), Li(u) = Sin(u)...S7; (w)Ryg(u+ 1), (24)
The L operator satisfy the relation

Sts(ur — u2)Li(u1)Ls(u2) = Ls(uz)Lg(u1)Sis(u1 — u2). (32)
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Algebraic Bethe Ansatz
Return to the definitions

T(u) = trj Li(u), Li(u) = Sin(u)...S7; (w)Ryg(u+ 1), (24)
The L operator satisfy the relation
Siz(u1 —u2) Ly (u1)Lg(u2) = Lz (u2)Li(u1)Siz(ur — u2). (32)

and has the matrix form in the auxiliary space 1:

A(u)  B(u)
L(u) = (C’(u) D(u)) , (33)

Michael La C Lecture 11. Kondo problem: Bethe Ansatz



Algebraic Bethe Ansatz
Return to the definitions

T(u) = trj Li(u), Li(u) = Sin(u)...S7; (w)Ryg(u+ 1), (24)
The L operator satisfy the relation
Siz(u1 —u2) Ly (u1)Lg(u2) = Lz (u2)Li(u1)Siz(ur — u2). (32)

and has the matrix form in the auxiliary space 1:

Afu)  B(u)
1) = (&) ) (53)

Hence, we can apply the algebraic Bethe Ansatz. Define the pseudovacuum [ ):

C)| Q) = 0. (34)
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Algebraic Bethe Ansatz
Return to the definitions

T(u) = trj Li(u), Li(u) = Sin(u)...S7; (w)Ryg(u+ 1), (24)
The L operator satisfy the relation
Siz(u1 —u2) Ly (u1)Lg(u2) = Lz (u2)Li(u1)Siz(ur — u2). (32)

and has the matrix form in the auxiliary space 1:

Afu)  B(u)
1) = (&) ) (53)

Hence, we can apply the algebraic Bethe Ansatz. Define the pseudovacuum [ ):
C(w)[Q) = 0. (34)

We have
AW)|Qn) = Aa(u)Qn),
D)[n) = Ap(u)|Qn),
Aa(u) = ((S+1/2)a' (u+1) = (S = 1/2)t (u + 1))a’ (w),

(35)
Ap(u) = ((S41/2)b (u+ 1) — (S — 1/2)a’ (u + 1))bY (u).
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Algebraic Bethe Ansatz
Return to the definitions

T(u) = trj Li(u), Li(u) = Sin(u)...S7; (w)Ryg(u+ 1), (24)
The L operator satisfy the relation
Siz(u1 —u2) Ly (u1)Lg(u2) = Lz (u2)Li(u1)Siz(ur — u2). (32)

and has the matrix form in the auxiliary space 1:

A(u)  B(u)
L(u) = (C’(u) D(u)) , (33)

Hence, we can apply the algebraic Bethe Ansatz. Define the pseudovacuum [ ):
C(w)[Q) = 0. (34)

We have
AW)|Qn) = Aa(u)Qn),

D(w)[2n) = Ap(w)|Q2n),
Aa(u) = ((S+1/2)a’(u+1) = (S = 1/2)b' (u + 1))a™ (u),

(35)
Ap(u) = ((S41/2)b (u+ 1) — (S — 1/2)a’ (u + 1))bY (u).
The Bethe Ansatz has the form
|ut,...,un) = B(u1) ... B(un)|2nN), S*=N/24+ S —n. (36)
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Bethe equations

The Bethe equations are written in the standard form

Ap(ui) _ 11 aluy — ui)b(u; —u5)
Aa(wi) 5 bluj —ui)alu; —uy)
J#L

(37)
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Bethe equations

The Bethe equations are written in the standard form

Ap(ui) _ 11 aluy — ui)b(u; —u5)
Aa(wi) 5 bluj —ui)alu; —uy)
J#L

The eigenvalues of T'(u) are given by

= a(u; — u) a(u — u;)
Alusut,...,un) = Aa(u) ——— 4+ Ap(u) —,
! N A L:Hl b(u; — u) b H b

(37)

(38)
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Bethe equations

The Bethe equations are written in the standard form

Ap(ui) _ ﬁ a(uj — ui)b(u; — uj) (37)
Aa(wi) 5 bluj —ui)alu; —uy)
JF#i
The eigenvalues of T'(u) are given by
n n
A, ... un) = Aa(u) H - +AD H‘ZZ_H . (38)
i=1 =1 7‘
Taking u = 0 we obtain
ePil = AO;uy,...,u (39)
i:l
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Bethe equations

The Bethe equations are written in the standard form

Ap(ui) ﬁ a(u; — uq)b(u; — uy)
b

- . (37
Aa(wi) 5 bluj —ui)alu; —uy) )
JF#i
The eigenvalues of T'(u) are given by
A( )=A ()ﬁ“(“i_”)JrA ﬁ““‘“ﬁ (38)
wul, .., un) = Aa(u ———= + Ap( —.
- b(ug —u) i b(u—ug)
Taking u = 0 we obtain
n
Pl = N0y, ... un) = Aa(0) [| a(u) (39)
b(u;)

It is convenient to use variables v;

uj = g(v; —1/2).
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Bethe equations

The Bethe equations are written in the standard form

Ap(ui) ﬁ a(u; — uq)b(u; — uy)
b

- . (37
Aa(wi) 5 bluj —ui)alu; —uy) )
JF#i
The eigenvalues of T'(u) are given by
A( )=A ()ﬁ“(“i_”)JrA ﬁ““‘“ﬁ (38)
U UL, ..., UN) = u —_— —.
i N AV b(u; — u) Dl - L b(u— )
i=1 i=1
Taking u = 0 we obtain
n
Pl = N0y, ... un) = Aa(0) [| a(u) (39)

i1 bui)

It is convenient to use variables v;
uj = g(v; —1/2).
Explicitly, the system of Bethe equations have the form

(vi+z’/z)NW+z‘s+1/g:_ﬁvﬁvfri (40)
v, —i/2 v, —iS+1/g ’

”Ui—vj—i

j=1
il — ¢iJS H vi +Zg (41)
v; — 1

This reduces the solution of the Kondo problem to the joint solution of the
equations (40) and (41).
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