Lecture 12

Kondo Problem: Solving Bethe Equations

Michael Lashkevich
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Bethe equations

Recall the Bethe equations for the sd model:

) v; +1/2
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Bethe equations

Recall the Bethe equations for the sd model:

n .
: . i +1/2
ezpaL — ezJS Vi iy (1)
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. N . n .
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v; —i/2 vi —iS+1/g jzlvi—vj—i7

a=1,...,N, iL,wj=1,...,n,
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Bethe equations

Recall the Bethe equations for the sd model:

n .
¢iPal _ GiJS H v +1/2
v — /2

(vi+i/2>Nvi+iS+1/g__ movi—wj i
vi—i/2) wvi—iS+1/g

Il
Vi — i

a=1,...,N, iL,wj=1,...,n,

while

g tg J(S+1/2).

1
T S+1/2
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Bethe equations

Recall the Bethe equations for the sd model:

n .
’ ) i +1/2
ezpaL:ezJS Vi , 1
1]‘_{1)1'—7:/2 ()
(vi+i/2>Nvi+iS+1/g_ ﬁvi—vj-l—i @)
v; —i/2 vi —iS+1/g jzlvi—vj—i7
a=1,...,N, iL,wj=1,...,n,
while 1
= ——tgJ(S+1/2). 3
9= 571 B/ 1) ®)
The energy of the system is
N
E:pr (4)
a=1
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Bethe equations

Recall the Bethe equations for the sd model:

n .
’ ) i +1/2
ezpaL:ezJS Vi , 1
i:]‘_‘E’L)i—i/Q ()
(vi+i/2>Nvi+iS+1/g_ ﬁvi—vj-l—i @)
v; —i/2 vi —iS+1/g jzlvi—vj—i7
a=1,...,N, iL,wj=1,...,n,
while 1
= ——tgJ(S+1/2). 3
9= 571 B/ 1) ®)
The energy of the system is
N
E:pr (4)
a=1

Now we will study these equations in the thermodynamic limit L — oo, N — oo.
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

Pal =2mly+JS = > (7 +p(vi)),
i=1

p(v) = 2arctg 2v,

1, € Z,
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) + 0s(vs) = (6)
p(v) = 2arctg 2v, ds(v) = p((v+1/9)/25), (7)
I, €7, (8)
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) +ds(vi) = 2mJ; + Z (v —vj), (6)
j=1
p(v) =2arctg2v,  Is(v) =p((v+1/9)/25),  @(v) =p(v/2), (7)

z, N —ne€2z,

I.eZ, J;€
“ ‘ {Z+1/2. N-—ne€2Z+1.
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) +ds(vi) = 2mJ; + Z (v —vj), (6)
j=1
p(v) =2arctg2v,  Is(v) =p((v+1/9)/25),  @(v) =p(v/2), (7)

z, N —ne€2z,

8
Z+1/2. N—-—ne2Z+1. ®

1, € Z, Jie{

Besides, all the numbers J; should be pairwise distinct, and all the numbers I, too.
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) +ds(vi) = 2mJ; + Z (v —vj), (6)
j=1
p(v) =2arctg2v,  Is(v) =p((v+1/9)/25),  @(v) =p(v/2), (7)

z, N —ne€2z,

I.eZ, J;€
“ ‘ {Z+1/2. N-—ne€2Z+1.

Besides, all the numbers J; should be pairwise distinct, and all the numbers I, too.
The total energy:

E = Ee, + Exp, )

(10)

(11)
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) +ds(vi) = 2mJ; + Z (v —vj), (6)
j=1
p(v) =2arctg2v,  Is(v) =p((v+1/9)/25),  @(v) =p(v/2), (7)

z, N —ne€2z,

I.eZ, J;€
“ ‘ {Z+1/2. N-—ne€2Z+1.

Besides, all the numbers J; should be pairwise distinct, and all the numbers I, too.
The total energy:

E = Ech + Esp7 (9)
N
27 TN2
B =" Ia——r 10
ch I - a 2L ) ( )
a=1
(11
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) +ds(vi) = 2mJ; + Z (v —vj), (6)
j=1
p(v) =2arctg2v,  Is(v) =p((v+1/9)/25),  @(v) =p(v/2), (7)

z, N —ne€2z,

I.eZ, J;€
“ ‘ {Z+1/2. N-—ne€2Z+1.

Besides, all the numbers J; should be pairwise distinct, and all the numbers I, too.
The total energy:

E = Ech + Esp7 (9)
N
2m wN?2
E, = TZIH. oL’ (10)
a=1
7N? NJS N
Es, = - .
sp oL + L I i_l(ﬂ' +p(vz))

(11)
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) +ds(vi) = 2mJ; + Z (v —vj), (6)
j=1
p(v) =2arctg2v,  Is(v) =p((v+1/9)/25),  @(v) =p(v/2), (7)

z, N —ne€2z,

I.eZ, J;€
“ ‘ {Z+1/2. N-—ne€2Z+1.

Besides, all the numbers J; should be pairwise distinct, and all the numbers I, too.
The total energy:

E = Eq, + Esp, 9)
By 2% iv: L 7r2]22’ (10)
a=1
B = G+ 22 - 3 0t
:_%gh-&-% <g—n>+#+%g5s(w), (11)
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Logarithm of the Bethe equations

Take logarithm of the Bethe equations:

PaLZQTFIa-I—JS—Z(ﬂ""P(Ui))v (5)
i=1
Np(vi) +ds(vi) = 2mJ; + Z (v —vj), (6)
j=1
p(v) =2arctg2v,  Is(v) =p((v+1/9)/25),  @(v) =p(v/2), (7)

z, N —ne€2z,

I.eZ, J;€
“ ‘ {Z+1/2. N-—ne€2Z+1.

Besides, all the numbers J; should be pairwise distinct, and all the numbers I, too.
The total energy:

E = Ech + Esp7 (9)
N
2 N2
Ech=f§;1a T (10)
a=1
N2 NJS N & N
Esp = f + T - f , (7T+p(117;)) Z (I)(7),j — ?)j) =0
1=1 1,7=1
2 — 7r N NJS 1
=-T ity (5 ‘”) e g 2 ds (), <

=1




Charge energy for J = 0. Usual descri

Let J = 0: the case of free electrons. We have two pictures:
1. Usual description:
pal =2ml, I, €Z,

where pairs of I, may coincide, but if Iy = I (a #b), then Ve # a,b: I # I,.
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Let J = 0: the case of free electrons. We have two pictures:
1. Usual description:
pal =2ml, I, €Z,

where pairs of I, may coincide, but if Iy = I (a #b), then Ve # a,b: I # I,.
To make the total energy finite, we need a cutoff at negative momenta: p, > —ep.
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Charge energy for J = 0. Usual descri

Let J = 0: the case of free electrons. We have two pictures:
1. Usual description:
pal =2ml, I, €Z,

where pairs of I, may coincide, but if I, = I}, (a #b), then Ve # a,b: I. # I,.
To make the total energy finite, we need a cutoff at negative momenta: p, > —ep.
The density of states in the momentum space is 2%.

Lecture 11. Kondo Proble olving Bethe Equa



Charge energy for J = 0. Usual descri

Let J = 0: the case of free electrons. We have two pictures:
1. Usual description:
pal =2ml, I, €Z,

where pairs of I, may coincide, but if I, = I}, (a #b), then Ve # a,b: I. # I,.
To make the total energy finite, we need a cutoff at negative momenta: p, > —ep.
The density of states in the momentum space is 2%. Thus

L
N ==F (12)

s
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Charge energy for J = 0. Usual descri

Let J = 0: the case of free electrons. We have two pictures:
1. Usual description:
pal =2ml, I, €Z,

where pairs of I, may coincide, but if I, = I}, (a #b), then Ve # a,b: I. # I,.
To make the total energy finite, we need a cutoff at negative momenta: p, > —ep.
The density of states in the momentum space is 2%. Thus

L
N ==F (12)

s

We will be interested in the thermodynamic limit

F
L — oo, N — o0, — = — = const,
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Charge energy for J = 0. Usual description

Let J = 0: the case of free electrons. We have two pictures:
1. Usual description:

pal =2ml, I, €Z,

where pairs of I, may coincide, but if I, = I}, (a #b), then Ve # a,b: I. # I,.
To make the total energy finite, we need a cutoff at negative momenta: p, > —ep.
The density of states in the momentum space is 2%. Thus

L
N ==F (12)

s

We will be interested in the thermodynamic limit

N €
L — oo, N — o0, —:—F:const,
L s

The ground state is defined by 7% < I, <0, and the energy is equal to

wN?2 €N

FEqo =
0 2L 2
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Charge energy for J = 0. Bethe description

2. Bethe description:

n

paL =2rlo =Y (+p(vi)), la€Z,
=1

where I, are all different: I, # I, if a # b.
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Charge energy for J = 0. Bethe description

2. Bethe description:

n

paL =2rlo =Y (+p(vi)), la€Z,
=1

where I, are all different: I, # I, if a # b.
In the ground state the total spin is zero: n = N/2.
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Charge energy for J = 0. Bethe description

2. Bethe description:

n

paL =2rlo =Y (+p(vi)), la€Z,
=1

where I, are all different: I, # I, if a # b.
In the ground state the total spin is zero: n = N/2. From the XXZ model we
know that the total momentum in the spin space is equal to zero:

N/2

Z p(vy) = 0.
i=1
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Charge energy for J = 0. Bethe description

2. Bethe description:

n

paL =2rlo =Y (+p(vi)), la€Z,
=1

where I, are all different: I, # I, if a # b.
In the ground state the total spin is zero: n = N/2. From the XXZ model we
know that the total momentum in the spin space is equal to zero:

N/2

Z p(vy) = 0.
i=1

Hence
27 TN 2w €

Pa = —da — 77 = 7 da — —

L 2L L 2
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Charge energy for J = 0. Bethe description

2. Bethe description:

n

paL =2rlo =Y (+p(vi)), la€Z,
=1

where I, are all different: I, # I, if a # b.
In the ground state the total spin is zero: n = N/2. From the XXZ model we
know that the total momentum in the spin space is equal to zero:

N/2

Z p(vy) = 0.
i=1

Hence
_ 2 N _ 27 €p
po=pla-gp =Tl
The ground state energy is
er N N N
Ey=— +> I = > I.=0
a=1 a=1
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Charge energy for J = 0. Bethe description

2. Bethe description:

n

pal =27la =Y (v +p(vi)), la€Z,

i=1

where I, are all different: I, # I, if a # b.
In the ground state the total spin is zero: n = N/2. From the XXZ model we
know that the total momentum in the spin space is equal to zero:

N/2

Z p(vy) = 0.
i=1

Hence
27 TN 2w €

- - — =1, — —

Pa = a

L 2L L 2
The ground state energy is

N N

EO:—EFQN-FZIG = Y L.=o
a=1 a=1

All other energies must be larger. Therefore, we obtain the admissibility condition
for solutions to the Bethe Ansatz equations

Io > —N/2.
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H—ep

€F

N

—€p
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€ € € €
1 ’ n1_ %
F5€E F5€
L] 2 F L] 2 F
L] L]
L] ‘L L]
.
Lo -0 Lo -0

T . T :

5 : i :

T i T M

T * T M

T . i .

i : i :

+ +

A A tp—ep [ TEF
L] L]
L] L]
L] L]
*r —5€F . »7%61:

I' = I, + LAE/2x.
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€ € € €
1 ’ n1_ %
F5€ F5€
L] 2 F L] 2 F
L] L]
L] T L]
.
Lo *-0 Lo e 0

T . T :

i : it :

T i 4 M

T * T M

T . i .

i : i :

+ +

T —ep o Ter L+ —ep TR
L] L]
L] L]
L] L]
*r —5€F o **%GF

I' = I, + LAE/2x.
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€ € € €
n = % -1
L]
L Le L lep
L] 2 F L] 2
L] L]
L] T L]
.
Lo *-0 Lo e 0
T . T :
it T
L] L]
B : P :
T * T M
T i T i
T * T M
T * T .
T ® T oL e
T —ep o Ter Tl —ep : F
L] L]
L] L]
L] L]
b b o

Il =1, + LAE/27 — 1 since A Y (—7 — p(v;)) =~ QW"
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Two descriptions: comparison

€ € € €
L]
X
1 1
F5€ F5€
L] 2 F L] 2 F
L] L]
L] ‘L L]
.
Lo *-0 Lo e 0
T . T :
i : it :
T i 4 M
T * T M
T . i .
i : i :
+ +
T —ep o Ter L+ —ep TR
L] L]
L] L]
L] L]
0»7361:‘ ‘**%GF

I, = I, + LAE/27 + 1?7 BUT: Calculation of state with n > % (Sg, <0)is
problematic within the Bethe Ansatz technique.
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States of nonzero spin

Assume J to be arbitrary. Return to the Bethe equations for v;:

Np(vi) +0g(vi) = 2mJ; + > ®(v; —v;), i=1,...,m. (6)
j=1
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States of nonzero spin

Assume J to be arbitrary. Return to the Bethe equations for v;:

n
Np(vi) +0g(vi) = 2mJ; + > ®(v; —v;), i=1,...,m. (6)
j=1
Since p(v), dg(v) and ®(v) are increasing odd functions and tend to 7 as v — oo,

we have
N+2—
J; —)i% as v; — foo.
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States of nonzero spin

Assume J to be arbitrary. Return to the Bethe equations for v;:

Np(vi) +0g(vi) = 2mJ; + > ®(v; —v;), i=1,...,m. (6)
j=1

Since p(v), dg(v) and ®(v) are increasing odd functions and tend to 7 as v — oo,

we have
N+2—
Ji — i% as v; — foo.
Hence N1 N1
,4%E£§L§4%fﬁ. (13)
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States of nonzero spin

Assume J to be arbitrary. Return to the Bethe equations for v;:

Np(vi) +0g(vi) = 2mJ; + > ®(v; —v;), i=1,...,m. (6)
j=1

Since p(v), dg(v) and ®(v) are increasing odd functions and tend to 7 as v — oo,

we have
N+2—
Ji — i% as v; — foo.
Hence N1 N1
,4%E£§L§4%fﬁ. (13)

The minimum of energy corresponds to larger v;s and, hence, to larger J;s.
Therefore, for the ground state in the spin space J;s densely fill the region

N+1—n

Jimin < J; < (14)

with a certain Jin
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States of nonzero spin

Assume J to be arbitrary. Return to the Bethe equations for v;:

Np(vi) +0g(vi) = 2mJ; + > ®(v; —v;), i=1,...,m. (6)
j=1

Since p(v), dg(v) and ®(v) are increasing odd functions and tend to 7 as v — oo,

we have
N+2—
Ji — i% as v; — foo.
Hence N1 N1
,4%E£§L§4%fﬁ. (13)

The minimum of energy corresponds to larger v;s and, hence, to larger J;s.
Therefore, for the ground state in the spin space J;s densely fill the region

N+1-—
Tin < Jy < YL

(14)
with a certain Jp;, This corresponds to the region

—-b<wv; <00

with a certain value b.
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Pauli paramagnet

It is easy to find the energy of these states in the case J = 0. Indeed, evidently

N+2-—-n
2

— Jmin =71
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It is easy to find the energy of these states in the case J = 0. Indeed, evidently

N+2-—-n
— Jmin =1
2
Hence
N+2—3n
Jmin:f~
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It is easy to find the energy of these states in the case J = 0. Indeed, evidently

N+2-—-n
— Jmin =1
2
Hence
N+2—3n
Jmin:f~

Now let us calculate the spin energy. Since ds(v) = 7, we have

2 A N n 2p (N 2 9
ESeIl>:_L } (Jmin+Z)+€F(5_n+N):T(E_n> _ N(S§1)2'
=0

The superscript el means that later we will separate this contribution as the
energy of the electron subsystem.
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Pauli paramagnetism

It is easy to find the energy of these states in the case J = 0. Indeed, evidently

N+2-—-n

B - Jmin =n
Hence
N+2—3n
Jmin = f'

Now let us calculate the spin energy. Since ds(v) = 7, we have

on "l . N n 2eF N 2 2ep
B = =20 S Cmin +i) +er (5 =t 2 ) = 2 (T -n) = 2532
i=0

The superscript el means that later we will separate this contribution as the
energy of the electron subsystem.
If we define external magnetic field H as ES) o () = ESCFI) — SZ H, and minimize this

energy in SZ, we obtain the Pauli paramagnetlsm of the s electrons:

4
H= %Sz — dep M, (15)

where M, is the magnetization, i.e. spin per electron.
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Pauli paramagnetism

It is easy to find the energy of these states in the case J = 0. Indeed, evidently

N+2-—-n

B - Jmin =n
Hence
N+2—3n
Jmin = f'

Now let us calculate the spin energy. Since ds(v) = 7, we have

on "l . N n 2eF N 2 2ep
B = =20 S Cmin +i) +er (5 =t 2 ) = 2 (T -n) = 2532
i=0

The superscript el means that later we will separate this contribution as the
energy of the electron subsystem.
If we define external magnetic field H as ES) o () = ESCFI) — SZ H, and minimize this

energy in SZ, we obtain the Pauli paramagnetlsm of the s electrons:

de
H= TFSZ = dep My, (15)
where M, is the magnetization, i.e. spin per electron. This formula will make it
possible to express impurity energy and magnetization in terms of external
magnetic field.
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Bethe equations in the thermodynamic limit

Let us write down the Bethe equations for the ground state in the spin space in
the thermodynamic limit:

/

p(v):al(’U)+%G2S(U+1/g)7[t%ag(v7y/)p(y/)7 —b<wv<oo, (16)

where
27w dJ (v) t

= ——, at(v) = ———.
N dv ¢ v2 +1¢2/4

p(v) 17)
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Bethe equations in the thermodynamic limit

Let us write down the Bethe equations for the ground state in the spin space in
the thermodynamic limit:

p(v):al(v)+%azs(v%»l/g)7/;0:6;—1;;(12(1;71/»(@/)7 —b<wv<oo, (16)

where o d .
s
_ared = 17
P =T 0= arar an
We have N N o g
S = +S-n= +S5- N/ Y p(v). (18)
b 271'
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Bethe equations in the thermodynamic limit

Let us write down the Bethe equations for the ground state in the spin space in
the thermodynamic limit:

p(v):al(v)+%azs(v%»l/g)7/;0:6;—1;;(12(1;71/»(@/)7 —b<wv<oo, (16)

where o d .
v
_2rdJ -t 17
o =T ) = (7
We have N N o g
S = +S-n= +S5- N/ Y p(v). (18)
b 271'
and N JS  New [ d
U
By = 255+ L2 - T [T o)+ p(0). (19)
T ™ _p 2m
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

o(0) = pow) + 2, (20)
where 0o gy
po(v) = a1(v) — [ CSrav =)0, —b<u<oc (21)
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity.
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity. The magnetization and the energy split as well:

S* = NMel + Mim»
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity. The magnetization and the energy split as well:

S = NMu + My, Ma=—=— [ % 0w
= el im» 61_2 2 pPolv),
_p 2m

Lecture 11. Kondo Probl



Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity. The magnetization and the energy split as well:

S? = NMg + M; M, :l, OO@ (v), My, =S-— . (23)
el im» el 2 , 27 polv im
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity. The magnetization and the energy split as well:

S = NMa+ M, Ma =5 = [~ S0 Mim=5— [~ L prto). 23)
and

Esp = Egy, + Eim, (24)

(25)

(26)
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity. The magnetization and the energy split as well:

. 1 > dv
S% = NMe + Mipy, Mo = 5 - ? pO(”) My, = S — (23)
—b
and

Bup = B + Bim, (29

erN  ep [ dv
Eg = -— —— po(v)(m + p(v)) (25)

2 T J_p 271
(26)
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p(v) = po(v) + plT(v), (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity. The magnetization and the energy split as well:

. 1 > dv
S = NMa+ Mim, Ma=5— [ “Zpo@), Mim=5- . (23)
—b
and

Esp = Eg, + Eim, (24)

erN € > dv
B == [ gy (0)(m + p(v)) = 2ep NM, (25)

2 T J_p 271
(26)
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Splitting the integral equation

Since the integral equation is linear, its solution can be exactly split into the sum

p1(v)

p(v) = po(v) + ==, (20)
where 0o gy
@ =a) = [ am=n@),  b<v<w (@)
and
pl(v):ags(v+1/g)—/_o:célﬂ_ag(v—v')pl(v/), —b<wv <oo. (22)

Hence, po(v) is the density of state for spins of free electrons, while p1(v) describes
the impurity. The magnetization and the energy split as well:

1 ° dv > dov
8% = NMe) + M, Mo = — 7/ a_ PO(”% My, =S 7/ - Pl(U)- (23)
2 _p 2T _p 27
and
Esp = ESL + Eim, (24)
erN € > dv
B = L= =2 [ po(0)(m + p(v)) = 2emN M3, (25)
2 T J_p 271
epJS € > dv
Bim = 2 = 22 [ == py (u)(7 + p(v)). (26)
™ T J_p 27
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e b= 0o case

In the b = co case we may use the Fourier transform. Since

© dv

e (k) = / D (w)eihy = =tk (27)

oo 2m
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In the b = co case we may use the Fourier transform. Since

0 g .
ﬁt(k) :/ lat(v)ezk'v _ e—t\k\/?}

oo 2m

we have

po(k) = e lkl/2 _ e_lk‘ﬁo(k:), pr(k) = e—Slkl—ik/g

(27)

— e *l5 (k).
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In the b = co case we may use the Fourier transform. Since
ﬁt(k) :/ l at(v)ezk'u _ e—t\k\/?}
oo 2m
we have
po(k) = e IFI/2 —e=IFl o k), pi(k) = e SIFI=ik/g — =Ml 5, (k).
The solution is
1 e—(S—1/2)k—ik/g

o (k) = O
PU() QChg Pl() 2Chg

(27)

(28)
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The b = oo case
In the b = co case we may use the Fourier transform. Since
eik'v _ e—t\k\/?} (27)

e (k) = /j:o ;L: ar(v)

p1(k) = e SIkI=ik/g _ o=Ikl5 (k).

we have
po(k) = e K172 — e~ Ikl 5o (),
The solution is
) 1 ) o (5—1/2)k—ik/g
po(k) = 2k pr(k) = 2enk (28)
(29)

The point k£ = 0 is of particular interest:
dv 1 dv 1
51(0) = [ — =,
£1(0) / 5. P1(v) =3

p0(0) = [ S o) = 3,
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The b = oo case
In the b = co case we may use the Fourier transform. Since
eik'v _ e—t\k\/?} (27)

e (k) = /j:o ;L: ar(v)

p1(k) = e SIkI=ik/g _ o=Ikl5 (k).

we have
po(k) = e K172 — e~ Ikl 5o (),
The solution is
. (k 1 5k e—(S—1/2)k—ik/g (28
PO )_QChg7 Pl()— 2Chg )
The point k£ = 0 is of particular interest:
dv 1 dv 1
50(0) = —_ == 01(0) = — = —. 29
w00 = [ o) =5 pr0) =[Sm0 = (29)
From this we obtain
Mo =1/2— 50(0) = 0, (30a)
Mim =S —p1(0) =S5 —1/2. (30b)
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The b = oo case
In the b = co case we may use the Fourier transform. Since
eik'v _ e—t\k\/?} (27)

e (k) = /j:o ;L: ar(v)

p1(k) = e SIkI=ik/g _ o=Ikl5 (k).

we have
po(k) = e K172 — e~ Ikl 5o (),
The solution is
otk 1 - o (5—1/2)k—ik/g (28
PO )_QChg7 Pl()— 2Chg )
The point k£ = 0 is of particular interest:
dv 1 dv 1
50(0) = —_ == 01(0) = — = —. 29
w00 = [ o) =5 pr0) =[Sm0 = (29)
From this we obtain
Mo =1/2— 50(0) = 0, (30a)
=S-1/2. (30b)

Mim =S —p1 (0)
The limit b — oo corresponds to H — 40. Therefore the total spin of the system

Lecture 11. Kondo Problem: Solving Bethe Equations

is S — 1/2 and, hence, the ground state is 2S-fold degenerate.




Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)
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Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)

These equations are solved by the Wiener—Hopf method.
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Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)

These equations are solved by the Wiener—Hopf method. Arbitrarily continue the
function g(z) to negative values of x. This continues the solution f(zx) to
negative z. Then perform the Fourier transform.
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Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)

These equations are solved by the Wiener—Hopf method. Arbitrarily continue the
function g(z) to negative values of x. This continues the solution f(zx) to
negative . Then perform the Fourier transform. Let

= *dx = 0 dr

frm = [T e, fw= [ e, (32)
0 2w oo 2T

The function f; (k) (f—(k)) has no singularities in the upper (lower) half-plane.

Here and below, such a property will be assumed for all functions with the +

subscripts.
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Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)

These equations are solved by the Wiener—Hopf method. Arbitrarily continue the
function g(z) to negative values of x. This continues the solution f(zx) to
negative . Then perform the Fourier transform. Let

oo 0
frm = [T e, fw= [ e, (32)
0 2w oo 2T

The function f; (k) (f—(k)) has no singularities in the upper (lower) half-plane.
Here and below, such a property will be assumed for all functions with the +
subscripts. We have _ . B

(1+ K (k) Fy (k) + - (k) = (k). (33)
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Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)

These equations are solved by the Wiener—Hopf method. Arbitrarily continue the
function g(z) to negative values of x. This continues the solution f(zx) to
negative . Then perform the Fourier transform. Let

oo 0
frm = [T e, fw= [ e, (32)
0 2w oo 2T

The function f; (k) (f—(k)) has no singularities in the upper (lower) half-plane.
Here and below, such a property will be assumed for all functions with the +
subscripts. We have _ . B

(14 K(k)) f+ (k) + f-(k) = (k). (33)
Represent the kernel K (k) in the form

1+ K(k) = . (34)
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Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)

These equations are solved by the Wiener—Hopf method. Arbitrarily continue the
function g(z) to negative values of x. This continues the solution f(zx) to
negative . Then perform the Fourier transform. Let

oo 0
frm = [T e, fw= [ e, (32)
0 2w oo 2T

The function f; (k) (f—(k)) has no singularities in the upper (lower) half-plane.
Here and below, such a property will be assumed for all functions with the +
subscripts. We have _ . B

(14 K(k)) f+ (k) + f-(k) = (k). (33)
Represent the kernel K (k) in the form

1+ K(k) = . (34)

Besides, we set
K_(k)g(k) = G+ (k) + G- (k). (35)
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Wiener—Hopf method

For finite b both the equations for pg(v) and pi1(v) have the form

f@+ [ G K@—a)f@) =g@). >0, (31)

These equations are solved by the Wiener—Hopf method. Arbitrarily continue the
function g(z) to negative values of x. This continues the solution f(zx) to
negative . Then perform the Fourier transform. Let

oo 0
frm = [T e, fw= [ e, (32)
0 2w oo 2T

The function f; (k) (f—(k)) has no singularities in the upper (lower) half-plane.
Here and below, such a property will be assumed for all functions with the +
subscripts. We have _ . B

(14 K(k)) f+ (k) + f-(k) = (k). (33)
Represent the kernel K (k) in the form

1+ K(k) = Z o (34)
Besides, we set ~
K (k)g(k) = G+ (k) + G- (k). (35)
Multiplying (33) by K_ (k), we obtain
Ky (k) f+ (k) + K- (k) f- (k) = 4+ (k) + 4 (k). (36)
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Wiener—Hopf method

Thus ~ . ~ -
Ky (k) f+ (k) — 44 (k) = G- (k) — K_(k) f- (k).
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Wiener—Hopf method

Thus ~ . ~ -
Ky (k) f+ (k) — 44 (k) = G- (k) — K_(k) f- (k).

The left-hand side has no singularities in the upper half-plane, and the right-hand
side in the lower one. Thus, both sides of this equation have no singularities.
Under some additional restrictions on the growth of the functions (which must be
checked separately in each case), it follows that

K (k) f+(k) = r(k),  K_(k)f-(k) = - (k). (37)
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Wiener—Hopf method

Thus ~ . ~ -

K (k) fr(k) = G+ (k) = G- (k) — K (k) f- (k).
The left-hand side has no singularities in the upper half-plane, and the right-hand
side in the lower one. Thus, both sides of this equation have no singularities.

Under some additional restrictions on the growth of the functions (which must be
checked separately in each case), it follows that

Re®fr (k) = ar(k), K- (b)F-(k) = 4 (k). (37)
Finally,

[ q+ (k) o—ikz .
Flz) = [ e > 0. (38)
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Wiener—Hopf method. Application to b < oo

Let
fi(x) = pi(z —b).
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Wiener—Hopf method. Application to b < oo

Let
fi(x) = pi(z —b).
Then

f((k‘) _ e—|kz\7 §o(k) _ eikb—|k\/27 §1(k) _ eikb—ik/g—S\M. (39)
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Wiener—Hopf method. Application to b < oo

Let
fi(x) = pi(z —b).
Then
K(k)y=e M, go(k) =™K/ gy (k) = eomiR/o=5IHL 0 (39)
We use a trick to obtain a few simple results. Rewrite equation (33) in the form

fie(k) _ Gik)
1+ K(k) 1+K(k)

fir (k) + (40)
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Wiener—Hopf method. Application to b < oo

Let
fi(x) = pi(z —b).
Then

K(k)y=e M, go(k) =™K/ gy (k) = eomiR/o=5IHL 0 (39)
We use a trick to obtain a few simple results. Rewrite equation (33) in the form

fic (k) gi(k)

fig (k) + = 40
Fueh) + S = TR (40)
Perform the inverse Fourier transform:
0 da! , ,
fla)+ [ G Rle =) file) = (@), (41)
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Wiener—Hopf method. Application to b < oo

Let
fi(x) = pi(z —b).
Then

K(k)y=e M, go(k) =™K/ gy (k) = eomiR/o=5IHL 0 (39)
We use a trick to obtain a few simple results. Rewrite equation (33) in the form

fic (k) gi(k)

fig (k) + = 40
Fueh) + S = TR (40)
Perform the inverse Fourier transform:
0 da! , ,
fla)+ [ G Rle =) file) = (@), (41)
where
%) ¢S} —ikx
R(z) =/ dk e~ ke (% - 1) - —/ B —
—o0 1+K(k‘) — 00 1+e|k‘
- 0 (obi1) )e—(QS—l)\k|/2 (42)
h, = h = dk e "2~ 9
o(z) chm(z —b) ’ 1) /700 € 2ch %
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Application to b < oo

If b > 1, for small enough = we may approximate

ho(z) ~ 2me™(*=0), (43)

It works, if we want to calculate fo_ (k). Thus we have fo_ (k) ~ e~ ™.
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Application to b < oo

If b > 1, for small enough = we may approximate

ho(z) ~ 2me™(*=0), (43)
It works, if we want to calculate fo_ (k). Thus we have fo_ (k) ~ e~ ™.

Take into account that K(0) = §;(0) = 1. Therefore
2fi+(0) + fi—(0) =1
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Application to b < oo

If b > 1, for small enough = we may approximate

ho(z) ~ 2me™(*=0), (43)
It works, if we want to calculate fo_ (k). Thus we have fo_ (k) ~ e~ ™.

Take into account that K(0) = §;(0) = 1. Therefore
2fi+(0) + fi—(0) =1

and hence
H 1 > dv 1 - 1=
=My == — - == 0) = - f_(0) ~ e~ b,
yo = /4} 27rPo(v) 3 0+(0) 5 (0) ~e
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Application to b < oo

If b > 1, for small enough = we may approximate

ho(z) ~ 2me™(*=0), (43)
It works, if we want to calculate fo— (k). Thus we have fo_ (k) ~ e~ 7.
Take into account that K(0) = §;(0) = 1. Therefore

2fi+(0) + fi (0) = 1

and hence
H 1 © dv 1 - 1=
=My == — - == 0) = - f_(0) ~ e~ b,
o =g /4) 2ﬂpo(v) 3 Jo+(0) 2f() e

More precisely (and it needs accurate solution of the integral equation)

H o (3) 1/2. (44)

2ep e
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Application to b < oo

If b > 1, for small enough = we may approximate

ho(z) ~ 2me™(*=0), (43)
It works, if we want to calculate fo— (k). Thus we have fo_ (k) ~ e~ 7.
Take into account that K(0) = §;(0) = 1. Therefore

2fi+(0) + fi (0) = 1

and hence
H 1 © dv 1 - 1=
=My == — - == 0) = - f_(0) ~ e~ b,
o =g /4) 2ﬂpo(v) 3 Jo+(0) 2f() e

More precisely (and it needs accurate solution of the integral equation)
H 9\ 1/2
— =7 (—) . (44)
2ep e

For very large b and for the impurity spin S = 1/2 we may also write

hi(z) ~ 2me™ (@ =07/, (45)
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Application to b < oo

If b > 1, for small enough = we may approximate

ho(z) ~ 2me™(*=0), (43)

It works, if we want to calculate fo_ (k). Thus we have fo_ (k) ~ e~ ™.

Take into account that K(0) = §;(0) = 1. Therefore
2fi+(0) + fi—(0) =1

and hence
H 1 * dv 1 . 1 -
— =My =—-— — v) = — — 0) = = f_(0) ~ e~ TP,
s = Ma= 5= [ o) = 5 — s () = 37-(0)
More precisely (and it needs accurate solution of the integral equation)
H 9\ 1/2
— =7 (—) . (44)
2ep e

For very large b and for the impurity spin S = 1/2 we may also write

hi(z) ~ 2me™ (@ =07/, (45)
Hence ;1‘ E:; = ¢™/9, and we have a precise result for the susceptibility:
0—
M, 1 M m/g
Xim= —m = —m £ g ) (46)

H  4ep My dep

Lecture 11. Kondo Problem: Solving Bethe Equations




Magnetization for finite H

An accurate calculation by the Wiener—-Hopf method gives the formula

M (H) = 5~ .+

L /00 J ( H )*21“ I(iw 4 1/2) (fiw+0)72is“’ (iw+0>i<25*1>“
_r w (L 7
473/2 [_ o Ty w + 10 e e

(47)
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Magnetization for finite H

An accurate calculation by the Wiener—-Hopf method gives the formula

1
Mim(H) = S = o+
N i /oo 4 ( H )721&.} F(ZUJ+1/2) (71’0.)«#0)721‘5“) (iw+0>i(2371)w
- w [ — ,
473/2 [_ o Ty w + 10 e e

where

27\ /2 2
Ty = (1) LEF —7/g ., Tk. (48)
e ™
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Magnetization for finite H

An accurate calculation by the Wiener—-Hopf method gives the formula

M (H) = 5~ .+

L /00 J ( H )*21“ I(iw 4 1/2) (fiw+0)72is“’ (iw+0>i<25*1>“
_r w (L 7
473/2 [_ o Ty w + 10 e e

(47)
where 1/2
2 2
Ty = (1) ZF =7/9 o Ty (48)
e ™
It provide the asymptotics
1 log log(H /T )?

Mim(H):S(l +~-'), H > Tk,

T log(H/Tk)2  log?(H/Tx)?
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Magnetization for finite H

An accurate calculation by the Wiener—-Hopf method gives the formula

M (H) = 5~ .+

L /00 J ( H )*21“ I(iw 4 1/2) (fiw+0)72is“’ (iw+0>i<25*1>“
_r w (L 7
473/2 [_ o Ty w + 10 e e

(47)
where 1/2
2 2
Ty = (1) ZF =7/9 o Ty (48)
e ™
It provide the asymptotics
1 log log(H /T )?
Mim(H):S(l— - gQg( /Kg + ) H> Tk,
log(H/Tk) log*(H/Tk)
and
1 log log(Tx / H)?

M; (H)=(S—1/2)(1+ +) H<Tx, S>1/2

log(Tx/H)?  log*(Tk /H)?

A B l oo n+% nJr% (71),,1 £ 2n41 B
M““"ﬁ%( e > nl(nt 1) (TH) . S=172
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String solutions

The Bethe equations admit complex roots. For large values of N these roots form
the so called strings:

WP = of 4 %(p—l— 1= 2k) + O~ N) Kk —1,2,....p. (19)

Real roots can be considered as 1-strings.
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String solutions

The Bethe equations admit complex roots. For large values of N these roots form
the so called strings:

WP = of 4 %(p—l— 1= 2k) + O~ N) Kk —1,2,....p. (19)

Real roots can be considered as 1-strings. As we already discussed at a seminar,
the difference between roots in a string corresponds to a zero in the r.h.s. of the
Bethe equation. The Bethe equations of the centers of strings are obtained by
multiplying Bethe equations for all roots that enter the string.
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String solutions

The Bethe equations admit complex roots. For large values of N these roots form
the so called strings:

WP = of 4 %(p—l— 1= 2k) + O~ N) Kk —1,2,....p. (19)

Real roots can be considered as 1-strings. As we already discussed at a seminar,
the difference between roots in a string corresponds to a zero in the r.h.s. of the
Bethe equation. The Bethe equations of the centers of strings are obtained by
multiplying Bethe equations for all roots that enter the string. For the Kondo
problem we have

ezT—’aL — e'LJS H H ep(v;?), (50)
p=1j=1
o0 Mim ,
(ep@)Neps(v? +1/g) = [ T Ewpr(0? = 7)), (51)
/=1j/=1
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String solutions

The Bethe equations admit complex roots. For large values of N these roots form
the so called strings:

WP = of 4 %(p—l— 1= 2k) + O~ N) Kk —1,2,....p. (19)

Real roots can be considered as 1-strings. As we already discussed at a seminar,
the difference between roots in a string corresponds to a zero in the r.h.s. of the
Bethe equation. The Bethe equations of the centers of strings are obtained by
multiplying Bethe equations for all roots that enter the string. For the Kondo
problem we have

oco Mp

eiT—’aL — eiJS H H (ip(’l)f), (50)
p=1j=1

oo Mm

(ep(@f)Nepswy +1/9) = [T T1 Epp (v = 7)), (51)

where

. P i
___iPy(v) _ v+ip/2 _ i, s(v) H 2

ep(v) =—e" P = s e V) = —e P =

r(v) v —1ip/2 ps(v) k:lv"'l

2
i@ 2 2
Epp(v) =€’ o' (V) = €lp—p' | (V)€)p_pr|42(V) - py o (V)epypr (V).
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Finite temperatures

Bethe equations may be applied to finite temperatures. To do it, we need to

introduce two types of densities: density of states pp(v) (p means the type of a
string) and density of particles pp(v). The Bethe equations make it possible to
express pp(v) in term of pp(v). It is convenient to use also the density of holes

PS(v) = pp(v) — pB(v).
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Finite temperatures

Bethe equations may be applied to finite temperatures. To do it, we need to
introduce two types of densities: density of states pp(v) (p means the type of a
string) and density of particles pp(v). The Bethe equations make it possible to
express pp(v) in term of pp(v). It is convenient to use also the density of holes
p3(v) = pp(v) — p3(v).

Introduce the entropy of a set of states described by these densities:

(Npp(v) 22)!
= lo u
gH (N (v) 22)1 (N pg (v) 221

fNZ / (o (v) 102 pp(v) — p(v) log p5(v) — P (W) log p3(v)).  (52)
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Bethe equations may be applied to finite temperatures. To do it, we need to
introduce two types of densities: density of states pp(v) (p means the type of a
string) and density of particles pp(v). The Bethe equations make it possible to
express pp(v) in term of pp(v). It is convenient to use also the density of holes
p3(v) = pp(v) — p3(v).

Introduce the entropy of a set of states described by these densities:

(Npp(v) 22)!
= lo u
gH (N (v) 22)1 (N pg (v) 221

fNZ / (o (v) 102 pp(v) — p(v) log p5(v) — P (W) log p3(v)).  (52)

Then we have to minimize the free energy

Flp*] = E—TS — HS.
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Bethe equations may be applied to finite temperatures. To do it, we need to
introduce two types of densities: density of states pp(v) (p means the type of a
string) and density of particles pp(v). The Bethe equations make it possible to
express pp(v) in term of pp(v). It is convenient to use also the density of holes
p3(v) = pp(v) — p3(v).

Introduce the entropy of a set of states described by these densities:

(Npp(v) 22)!
= lo u
gH (N (v) 22)1 (N pg (v) 221

fNZ / (o (v) 102 pp(v) — p(v) log p5(v) — P (W) log p3(v)).  (52)

Then we have to minimize the free energy
Flp*]=E—-TS — HS".

This minimization leads to a set of nonlinear equations (the Yang—Yang
equations) of the form

dv’ e (v 1 1
ep(v) +Z/§<I>pp,(v — ') log(1 + e~ ( >) == (Pp(v) + NAP7S(U) +pH) ,
p/

where pp(v) _ 1

pp(v) T e +1°
All thermodynamic quantities are expressed in terms of the pseudoenergies €p(v).
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