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The role of long-range thermal fluctuations in the condensed matter physics
is considered. As is known the most impressive effects related to fluctuations
are observed near second order phase transitions. We give a theory of these
transitions starting from the Landau expansion in the order parameter ψ. As
an introduction we consider the mean field theory, then we take into account
fluctuations the role of which can be examined in the framework of the per-
turbation theory formulated on the diagrammatic language. The ψ4-model is
examined in d = 4 using parquet summation methods, then the ϵ-expansion is
developed enabling one to estimate the values of the critical indices for d = 3.
The sheme can be generalized for the critical dynamics. The peculiarities of
a weak crystallization transition where fluctuations qualitatively change the
nature of the phase transition in comparison with the mean field picture are
treated on the same diagrammatic language. The theoretical approach based
on the Landau expansion is utilized to examine thermal fluctuation effects far
from phase transition points. We consider the long-scale properties of smectics
where fluctuations destroy the long-range order. Smectics are treated in the
framework of the renorm-group approach. The same renorm-group technique
is developed also for 2d ferromagnets where the effective coupling constant in-
creases with increasing scale what drastically change long-scale properties of
the system. Long-range fluctuations are also relevant for membranes which
are two-dimensional objects immersed into a three-dimensional fluid. Elastic
modules of a membrane are logarithmically renormalized, the renormaliza-
tion law can be found by using renorm-group methods. Of special interest is
Berezinskii-Kosterlitz-Thouless phase transition in superfluid, crystal or hex-
atic films which is related to appearing free point defects (vortices, dislocations
or disclinations). The problem can be mapped into sine-Gordon model and
then examined by renorm-group methods. We treat also dynamics of systems
with strong fluctuations. We present some facts concerning critical dynam-
ics and the so-called KPZ (Kardar-Parisi-Zhang) problem. Then we consider
peculiarities of the 2d hydrodynamics.
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1. MEAN FIELD THEORY

We will treat macroscopic processes which are described by quantities defined on scales r ≫ Λ−1 where Λ is a cutoff
(Λ−1 is of the order of a molecular size). We will be interested mainly in effects associated with fluctuations which are
variations with time of variables of a system. Near second order phase transitions and critical points fluctuations of a
quantity φ, which is called the order parameter, are relevant. The order parameter can have different physical nature.
Note, as examples, magnetization (near a ferromagnetic transition), Bose-condensate of atoms (near a superfluid
transition) or of electronic pairs (near a superconductor transition), displacement of sublattices (near a ferroelectric
transition), density of a fluid (near a critical point) etc. In the examples the number n of components of the order
parameter varies from one to three. Namely, n = 1 for an uniaxial ferroelectric transition, n = 2 for a superfluid or
for a superconductor phase transition, n = 3 for a ferromagnetic phase transition.
The order parameter is a macroscopic quantity, that is it is defined on scales, larger than the molecular size.

Formally, it can be written in terms of the Fourier series

φ(r) =
∑
q

φq exp(iqr) , (1.1)

where | q |< Λ. For a given volume of a system the number of φq in the series (1.1) is large but finite. Both, φ(r)
and φq in Eq. (1.1) are functions of time t. All physical effects, related to the order parameter, can be expressed in
terms of correlation functions of φ(t, r). It is the main object of our consideration.
It is well known that simultaneous correlation functions of any equilibrium system can be described in terms of the

Gibbs distribution. The microscopic Gibbs’ partition function is

exp

(
F − Ĥ
T

)
, (1.2)

where Ĥ is the Hamiltonian of a system, F is its free energy and T is the temperature. Summing the partition function
(1.2) over microscopic degrees of freedom at a given value of the order parameter φ(r) we come to the macroscopic
partition function

P = exp

(
F −FL

T

)
, (1.3)

where FL is a functional of φ which is called the Landau functional. The partition function (1.3) determines simul-
taneous correlation functions of φ. For example, the average value ⟨φ⟩ of φ is

⟨φ⟩ =
∫
Dφ exp

(
F −FL

T

)
φ . (1.4)

Here
∫
Dφ designates the functional (path) integration which can be treated as a multiple integral

∏
q

∫
dφq over

coefficients φq of the expansion (1.1). The normalization condition for the partition function (1.3) reads

exp(−F/T ) =
∫
Dφ exp(−FL/T ) . (1.5)

The relation gives the principal method for calculating F .
Generally, FL is the sum Freg+Fadd where Freg is a regular function of T independent of φ and Fadd is an analytical

function of φ. We are interested in the situation where the value of φ is small and we may expand Fadd in φ. Let us
suppose an absence of odd terms in the expansion what is characteristic of the second order phase transitions. This
property is usually associated with symmetry reasons. Then the first term of the expansion is

Fa =

∫
dr

a

2
φ2 , (1.6)

and the next term is

Fλ =

∫
dr

λ

24
φ4 . (1.7)
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This term (1.7) is relevant only if a is small. Just this case is realized near a second order phase transition, since the
coefficient a is equal to zero at the transition temperature Tc. Near Tc the factor a can be expanded in T − Tc, the
main term of the expansion is

a = α(T − Tc) . (1.8)

The expression (1.8) is correct if | τ |≪ 1, where

τ = (T − Tc)/Tc , (1.9)

the quantity τ is usually called the reduced temperature. We see that a is positive above the transition temperature
Tc and is negative below Tc. If the number n of the components of the order parameter differs from unity then φ2 in
(1.6,1.7) is φ2 = φ2

1 + φ2
2 + . . . .

Consider the so-called mean field approximation which implies a smallness of fluctuations of φ. In this case the
integral (1.5) is determined by a narrow vicinity of φ = ⟨φ⟩ what means F ≃ FL(⟨φ⟩). The expressions (1.6,1.7) give
us [Landau, 1937]

F = FL(⟨φ⟩) = Freg + V

(
a

2
⟨φ⟩2 + λ

24
⟨φ⟩4

)
, (1.10)

where V is the volume of the system. We know that in equilibrium the free energy of a system achieves a minimum
value. Therefore to determine ⟨φ⟩ we should find the absolute minimum of F in terms of ⟨φ⟩. The minimum of the

expression (1.10) corresponds to ⟨φ⟩ = 0 if a > 0 and to ⟨φ⟩ =
√
6 | a | /λ if a < 0. We see that ⟨φ⟩ ∝

√
| a | and

consequently the value of ⟨φ⟩ is small near the transition point. Therefore the condition τ ≪ 1 justifies the expansion
of Fadd in φ. The substitution of the above values of ⟨φ⟩ into (1.10) shows us that in the mean field approximation
F = Freg, if a > 0 and

F = Freg −
3a2

2λ
= Freg −

3α2

2λ
(T − Tc)2 , (1.11)

if a < 0. Since the entropy is S = −∂F/∂T and the heat capacity is CV = T∂S/∂T we conclude that the heat
capacity experiences the jump

∆CV = 3V α2Tc/λ , (1.12)

near the second order transition point.
The peculiarity of a critical point is the presence of terms odd in φ in the expansion of Fadd. First such terms can

be written as ∫
dr

(
−hφ− µ

6
φ3

)
, (1.13)

where h and µ are new phenomenological factors. The terms (1.13) have to be added to (1.6,1.7) what gives Fadd.
It should be emphasized that the third order term determined by (1.13) can be eliminated from Fadd by the shift
φ→ φ+ µ/λ. Then we come to the Landau functional

Fadd =

∫
dr

(
−hφ+

a

2
φ2 +

λ

24
φ4

)
, (1.14)

with the redefined values of a and h. The expansion (1.14) is correct if the characteristic value of φ is small, it is the
reason why both a and h in (1.14) should be small. It is true in the vicinity of a single point on P − T plane which
is determined by the conditions a = 0 and h = 0 and is no other than the critical point. Note for comparison that a
line of second order phase transitions on P − T plane presents (determined by the condition a = 0).
Consider the average value ⟨φ⟩ near the critical point which is determined by the absolute minimum of Fadd(⟨φ⟩)

where Fadd is determined by (1.14). The extremum condition which can be derived at varying Fadd(⟨φ⟩) over ⟨φ⟩ is

a⟨φ⟩+ λ⟨φ⟩3/6 = h . (1.15)

It is not very difficult to find the solution of (1.15) in different limit cases. If a3 ≫ λh2 then ⟨φ⟩ ≃ h/a, if λh2 ≫| a |3
then ⟨φ⟩ ≃ (6h/λ)1/3. If a is negative and | a |3≫ λh2 then ⟨φ⟩ ≃ ±

√
6 | a | /λ, where the sign of ⟨φ⟩ is determined by
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the sign of h. We conclude that at h = 0 the average ⟨φ⟩ experiences the jump ⌊φ⌋ = 2
√

6 | a | /λ, what corresponds
to a first order phase transition. Thus we come to the phase diagram

-

6

a

h
⟨φ⟩ > 0

⟨φ⟩ < 0

first order
transition

which is plotted on the a − h plane. The phase diagram on the P − T plane will have the same topology. We see
that the critical point terminates the line of the first order transitions. Note that the analogous phase diagram can be
constructed for a ferromagnetic in the external magnetic field, the role of the magnetic field is played by the quantity
h.
Above we have treated the homogeneous average ⟨φ⟩. In a number of cases an inhomogeneous ⟨φ⟩ arises. It can be

forced by the external influence, ⟨φ⟩ does depend on coordinates near boundaries or near defects. In these cases we
should take into account the gradient term

Fgrad =

∫
dr
b

2
(∇φ)2 , (1.16)

which have to be included into Fadd. The term Fgrad is the first term of the expansion in q/Λ (where q is a
characteristic wave vector), q/Λ is a small parameter since we consider macroscopic scales. The formal reason for
introducing (1.16) besides (1.6) is the smallness of a. Comparing (1.16) and (1.6) we see that there exist the length

rc =
√
b/ | a | , (1.17)

which determines the characteristic scale in the mean field picture. The quantity rc is called correlation length or
correlation radius.
Consider now the peculiarities of the low-temperature phase if the number of the components of the order parameter

is not equal to unity. If n = 2 then it is convenient to rewrite the order parameter in terms of the complex field

ψ =
1√
2
(φ1 + iφ2) =| ψ | exp(iθ) , (1.18)

where θ is the phase of ψ. The Landau functional Fadd is determined by (1.6,1.7,1.16) (the odd in ψ terms are absent
since Fadd should be invariant under the transformation θ → θ + const). After substitution of (1.18) into Fadd we
find

Fadd =

∫
dr

(
a | ψ |2 +b(∇ | ψ |)2 +

λ | ψ |4 /6 + b | ψ |2 (∇θ)2
)
. (1.19)

Such expression arises e.g. in the theory of superfluidity.
If we consider the behavior of the order parameter ψ on scales r ≫ rc then the term b(∇ | ψ |)2 in (1.19) does not

play an essential role since it is negligible in comparison with the terms not containing ∇ | ψ |. It means that the
absolute value of | ψ | is practically equal to its equilibrium value in all points. We may say that | ψ | is “frozen” on
scales r ≫ rc. Besides the quantity θ is “soft” on scales r ≫ rc because (1.19) contains only terms with ∇θ (since
Fadd should be invariant under the transformation θ → θ + const). Therefore on scales r ≫ rc the energy (1.19) is
reduced to

Flong =

∫
dr
B

2
(∇θ)2 , (1.20)

where the module B is determined by the equilibrium value of the order parameter: B = 2b | ψ |2= 6 | a | b/λ. For
superfluid 4He instead of B the quantity ρs = Bm2/h̄2 is introduced which is called the superfluid density (m being
the mass of a 4He atom). The analogous scheme can be applied to the multi-component order parameter. It can be
represented in the following form

φµ =| φ | nµ , (1.21)
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where nµ is the unit vector. For a ferromagnetic nµ is the unit vector in the direction of magnetization. On scales
r ≫ rc the Landau functional is reduced to

Flong =

∫
dr

B

2
(∇nµ)2 , (1.22)

where B = 6 | a | b/λ.
In conclusion of this Lecture we will say some words about the applicability conditions of the mean field approx-

imation. We see that the order parameter become “softer” with decreasing | a | since the energy associated with a
fluctuation of φ decreases. That means that in a vicinity of Tc the mean field approximation breaks since fluctuations
of φ cannot be neglected. The quantitative criterium for the mean field theory to be applicable is

| τ |≫ Gi , (1.23)

where Gi is the so-called Ginzburg number

Gi =
Tcλ

2

αb3
. (1.24)

This criterium will be deduced at the next Lecture, at the same Lecture we will discuss the behavior of the system in
the region |τ | ≪ Gi. Here we would like to note that the region of applicability of the mean field theory (1.23) exists
only if Gi≪ 1. In the opposite case the mean field theory has no region of applicability, this case is realized e.g. for
the superfluid phase transition in 4He where Gi ∼ 1.

Problems

Problem 1.1
In the low-symmetry phase (for the one-component order parameter) there exist domain walls, which in the mean

field approximation can be described by a solution φ(z) with the asymptotics φ → ±φ0 at z → ±∞, where φ0 =√
6 | a | /λ. Find the function φ(z).

Solution of the Problem 1.1
The function φ(z) should correspond to an extremum of the Landau functional FL which is the sum of the expres-

sions (1.6,1.7,1.16). Therefore we get the equation

aφ+ λφ3/6− b∂2zφ = 0 . (1.25)

Basing on an analogy with the Newton equation, one can find the first integral of the equation (1.25) which on the
Newtonian language is energy

b

2
(∂zφ)

2 − a

2
φ2 − λ

24
φ4 .

A value of the first integral can be found from the boundary values φ = ±φ0. Then we get

∂zφ =
1√

2φ0rc

(
φ2
0 − φ2

)
,

where rc is defined by Eq. (1.17). A solution of this equation is

φ = φ0 tanh

(
z − z0√
2 rc

)
,

where z0 is an arbitrary constant determining a position of the domain wall.

2. FLUCTUATIONS, PERTURBATION THEORY

Here we are going to discuss quantitatively the role of fluctuations of the order parameter. Let us first discuss objects
of the investigation. All observable parameters (e. g. heat capacity) can be expressed via correlation functions of the
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order parameter. Therefore the basic problem of the theory is to determine correlation functions of φ. We will use
the special designation for the pair correlation function

G(r) = ⟨φ(r)φ(0)⟩ , (2.1)

the same designation G will be utilized for the Fourier transform

G(q) =

∫
dr exp(−iqr)G(r) . (2.2)

As previously

⟨φ(r1)φ(r2)⟩ =
∫
Dφ exp

(
F −FL

T

)
φ(r1)φ(r2) . (2.3)

where
∫
Dφ designates the functional (path) integral, it can be treated as the multiple integral over φq which are

coefficients of the expansion of φ(r) in the Fourier series.
The quantity FL can be taken as the sum Freg + F(2) + Fint (see Lecture 1), where

F(2) =

∫
dr

(
a

2
φ2 +

b

2
(∇φ)2

)
, (2.4)

Fint =

∫
dr

λ

24
φ4 . (2.5)

If to expand exp(−F(2)/T − Fint/T ) over Fint the integrals of the (2.3) type can be represented as a series over the
interaction constant λ. The series is called the perturbation series. First of all consider expressions for correlation
functions which can be derived neglecting Fint, they being called bare correlation functions. The expressions for bare
functions are calculated with the weight exp

(
(F0 −F(2))/T

)
, where

exp

(
−F0

T

)
=

∫
Dφ exp

(
−
F(2)

T

)
≡
∏
q

∫
dφq exp

(
−
F(2)

T

)
. (2.6)

So the bare pair correlation function is

G0(r1 − r2) = ⟨φ(r1)φ(r2)⟩0 ≡
∫
Dφ

exp

(
F0 −F(2)

T

)
φ(r1)φ(r2) . (2.7)

The explicit expression for G0(q) is (if a > 0)

G0(q) =
T

a+ bq2
. (2.8)

It can be found easily since F(2) is the sum of second order in φq terms, what means that the integral in (2.7) is
reduced to a product of single Gaussian integrals and can be immediately found explicitly what leads to (2.8). In the
r-representation

G0(r) =
T

4πbr
exp(−

√
a/b r) . (2.9)

If a < 0 then the factor a in (2.8,2.9) should be substituted by 2 | a |.
The rules for calculating Fsing = F − Freg can be formulated starting from the formally exact relation

exp

(
−Fsing

T

)
=

∫
Dφ exp

(
−
F(2) + Fint

T

)
, (2.10)

what leads to

exp

(
F0 − Fsing

T

)
=

∞∑
n=0

(−1)n

n!
⟨(Fint/T )

n⟩0 ,
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where ⟨. . .⟩0 designates the average like in (2.7). Since F(2) is of the second order in φ all averages in the above sum
are determined by Gaussian integrals and can be found explicitly. Each such average is expressed through the pair
correlation function, namely the average ⟨φφ . . . φ⟩0 is equal to the sum of all possible terms which are products of
the functions G0 corresponding to the averages ⟨φφ⟩0. This assertion is known as Wick theorem. An example:

⟨φ(r1)φ(r2)φ(r3)φ(r4)⟩0 = G0(r1 − r2)G0(r3 − r4)+

G0(r1 − r3)G0(r2 − r4) +G0(r1 − r4)G0(r2 − r3) .

The pair correlation function (2.3) can be rewritten as

G(r1 − r2) = exp

(
Fsing −F0

T

)
×

∞∑
n=0

(−1)n

n!
⟨(Fint/T )

nφ(r1)φ(r2)⟩0 . (2.11)

A correlation function of φ can be presented in the form analogous to (2.11).
The terms of the form ⟨φ(r1)φ(r2) . . .⟩0 arising in the perturbation series for correlation functions can be depicted

via Feynmann diagrams. Each point on a diagram corresponds to an argument r1, r2, . . . of the order parameter
φ, each line on a diagram represents the bare correlation function G0 taken as the function of the differences of
coordinates of the two points which the line joints. The term of the n-th order in Fint for a correlation function
of m fields φ is represented by diagrams with m “external” points r1, r2, . . . and n “internal” points x1, x2, . . .
corresponding to the terms originating from (2.5). We see that there are four fields φ with an argument xi and
therefore four edges of the G0-lines meets in xi. Since the factor λ corresponds to a point xi, λ is usually called the
fourth order vertex. Note that the integration is performed over all “internal” points of a diagram xi.
The diagrammatic series for the G-function is determined by (2.11). All the diagrams for G have two “external”

points r1 and r2 and a number of “internal” points. Consider the contribution to G of the first order in λ. It is
determined by two terms one of which is

⟨φ(r1)(−Fint/T )φ(r2)⟩0 . (2.12)

It can be depicted as the sum

��
��

r �
���
��r
The first (irreducible) diagram gives the actual contribution to G, the second (reducible) is the product of G0 and
⟨(−Fint/T )⟩0. It is cancelled by the term originating from the expansion of exp((Fsing − F0)/T ) in (2.11) in λ. This
observation can be generalized: only irreducible diagrams contribute to G.
We see that G−G0 is determined by the sum of irreducible diagrams each containing two external G0-lines and a

block between these two lines. Let us take the sum of such blocks which cannot be cut along a single G0-line:

��
��

r
�
�

�
�r r q q q

We will designate this sum as Σ and depict it as a rectangular. Then the diagrammatic equation for G can be
formulated

Σ

where a thick line designates G. In the analytical form it is

G(r) = G0(r) +

∫
dr1 dr2G0(r − r1)Σ(r1 − r2)G(r2) . (2.13)

Taking into account (2.8) we conclude that in Fourier representation

G(q) =
T

a+ bq2 − TΣ(q)
. (2.14)
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The explicit expressions corresponding to the first diagrams depicted above are

Σ(1)(r) = − λ

2T
G0(r = 0)δ(r) , (2.15)

Σ(2)(r) =
λ2

6T 2
G3

0(r) . (2.16)

In Fourier representation

Σ(1)(k) = −λ
2

∫
dq

1

a+ bq2
. (2.17)

where dq ≡ d3q/(2π)3, actually Σ(1) not depending on the wave vector k.
The integral in (2.17) formally diverges at large q, actually this divergence is cut at q ∼ Λ (Λ is the cutoff). The

constant in Σ(1)(a = 0) determined by q ∼ Λ cannot be found in the framework of the presented long wavelength
theory, but this constant can be included into the redefinition of the transition temperature Tc. Namely, from the
expression (2.14) it follows that this redefinition is

Tc → Tc + (∂a/∂T )−1TcΣ
(1)(a = 0) . (2.18)

The difference Σ(1)(a)−Σ(1)(a = 0) is determined by large scales and can be consequently calculated in the framework
of the presented theory:

Σ(1)(a)− Σ(1)(a = 0) = −λ
2

∫
dq

(
1

a+ bq2
− 1

bq2

)
=

λa1/2

4πb3/2
. (2.19)

This correction can be neglected in comparison with the bare term a in (2.14) if | τ |≫ λ2Tc/αb
3 what is no other

then Ginzburg criterium | τ |≫ Gi (see Lecture 1). The correction (2.19) tends to zero at T → Tc, it is not so for the
correction (2.16). Basing on the expression (2.9) we conclude that at T = Tc (that is if a = 0) the Fourier transform
of (2.16) can be estimated as

Σ(2)(k) ∼ λ2T

b3
ln(Λ/k) .

This value is less than the bare value bq2 in (2.14) if q ≫ q⋆ where

q⋆ = Tλ/b2 . (2.20)

We conclude that the fluctuation contributions to Σ cannot be neglected if | τ |≪ Gi and q ≪ q⋆. These two
conditions determine the region near the origin on the τ − q plane where fluctuations essentially change the behavior
of correlation functions of the order parameter. This region is depicted as

-

6

τ

q' $
Gi−Gi

q⋆

strong

fluctuations

To examine the behavior of G(q) in the region of strong fluctuations one should take into account all higher-order in
λ contributions to G. It is a difficult task, we know only the main peculiarities of the behavior of correlation functions
of φ in this region. The origin on the τ − q plane proves to be a singular point therefore we can expect a standard
power-like behavior of all correlation functions near this point what is referred as scaling behavior. It means that a
correlation function (in Fourier representation) is a product of a dimension factor, a power of τ and of a function of
dimensionless combinations like qrc. Here rc is the correlation radius which behaves as

rc ∝| τ |−ν , (2.21)

where ν is an exponent which depends on the number of components of the order parameter. So, the pair correlation
function (2.2) is

G(q) ∝| τ |−γ g(qrc) , (2.22)
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where γ is the new exponent. One extra exponent characterizes the correlation function∫
dr exp(−iqr)⟨⟨φ2(r)φ2(0)⟩⟩ ∝| τ |−α g1(qrc) , (2.23)

where double angular brackets designate an irreducible correlation function. There are some relations between the
exponents, e.g. α = 2− dν (where d = 3 is the dimensionality of the space), only two exponents are independent.
Let us demonstrate how is it possible to establish the scaling behavior of some observable quantities. Fist from

(2.4,2.10) it follows

Csing ≃
V

4

(
∂a

∂T

)2 ∫
dr⟨⟨φ2(r)φ2(0)⟩⟩ , (2.24)

where V is the volume of the system. Comparing (2.23) and (2.24) we find that for τ ≪ Gi the singular part of the
heat capacity behaves as

Csing ∝| τ |−α , (2.25)

what means that Fsing ∝| τ |2−α. Suppose that an “external field” h is imposed on the system. Then the extra term

Fh = −
∫
dr hφ , (2.26)

should be added to FL. Calculating now the average ⟨φ⟩ like (2.3) we can found the value of ⟨φ⟩h induced by the
“external field” h. Expanding the exponent in Fh we get in the linear approximation

⟨φ(r1)⟩h = T−1

∫
dr2G(r1 − r2)h(r2) . (2.27)

Comparing this expression with (2.22) we conclude that for a homogeneous field

⟨φ(r1)⟩h = χh , χ ∝| τ |−γ . (2.28)

The laws (2.25,2.28) can be observed experimentally.

Problems

Problem 2.1
Landau functional for a Heisenberg ferromagnetic is

FL =

∫
dr

B

2
(∇ni)2 ,

where n is the unit vector along the direction of the magnetization. In the external magnetic field H there is the
additional contribution to the energy of a magnetic

FH = −
∫
drMHn ,

whereM is the absolute value of the magnetization. Find the fluctuational contribution into the longitudinal magnetic
susceptibility of a three-dimensional ferromagnetic.

Solution of the Problem 2.1
Suppose that H is directed along Z-axis. Then the magnetization ⟨M⟩ is also directed along Z-axis. Therefore we

should be interested in Mz =M⟨nz⟩. Fluctuations of n in 3d case are weak and we can expand nz ≈ 1−n2x/2−n2y/2.
Therefore the longitudinal magnetic susceptibility χ∥ can be written as

χ∥ ≡
∂⟨Mz⟩
∂H

≈ −M ∂

∂H
⟨n2x⟩ .

Next, using the same expansion nz ≈ 1− n2x/2− n2y/2 we find from FL + FH

⟨nxnx⟩ =
T

Bq2 +MH
.

Then we find

χ∥ =M2

∫
d3q

(2π)3
T

(Bq2 +MH)2
=

TM3/2

8πB3/2H1/2
.
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3. DIMENSION 4, PARQUET DIAGRAMS

We have seen that the behavior of correlation functions of φ near Tc is complicated. It proves that the problem
can be solved for the dimension d = 4 of the space. The main idea is that the dimension d = 3 is not far from d = 4.
Then it is worthwhile to consider the problem in the arbitrary dimension 4 − ϵ (where ϵ is a small parameter), and
then to believe ϵ = 1 [Wilson, 1972]. This procedure gives us physical quantities in the form of (asymptotic) series in
ϵ and is called ϵ-expansion.
First we should consider the problem in d = 4. It is determined by the same Landau expansion Freg +F(2) +Fint

(see Lectures 1,2), where

F(2) =

∫
dr

(
a

2
φ2 +

b

2
(∇φ)2

)
, (3.1)

Fint =

∫
dr

λ

24
φ4 , (3.2)

but integration is now performed over the four-dimensional space. As previously (see Lecture 2) we can formulate the
perturbation series. The bare pair correlation function G0 in Fourier representation has the form (at a > 0)

G0(q) =
T

a+ bq2
, (3.3)

coinciding formally with the expression for d = 3. In the r-representation it is (for d = 4)

G0(r) ≃
T

4π2br2
, (3.4)

this expression is correct if r ≪
√
(b/a), at r ≫

√
(b/a) the function G0(r) decreases exponentially.

Consider the self-energy function Σ related to the dressed function G as

G(q) =
T

a+ bq2 − TΣ(q)
. (3.5)

The first contributions to the self-energy function are depicted in Figure

r��
�� r r�

�
�
� q q q

The one-loop contribution for d = 4 is formally the same as for d = 3

Σ(1)(r) = − λ

2T
G0(r = 0)δ(r) . (3.6)

Passing into Fourier representation and subtracting the constant which should be included into redefinition of the
transition temperature we find

Σ(1)(k)− Σ(1)(k = 0, a = 0) =

−λ
2

∫
dq

(
1

a+ bq2
− 1

bq2

)
≃ λa

16π2b2
ln

(
Λ√
a/b

)
, (3.7)

where dq designates d4q/(2π)4 and Λ is the cutoff wave vector. Comparing this expression with (3.5) we conclude
that it gives the logarithmic renormalization of the coefficient α in the relation a = α(T − Tc).
The second contribution in r-representation is

Σ(2)(r) =
λ2

6T 2
G3

0(r) ≃
λ2T

3 · 27π6b3r6
, (3.8)

the last expression being correct if r ≪
√
b/a. Passing into Fourier representation and subtracting the constant which

should be included into redefinition of the transition temperature we find

Σ(2)(q)− Σ(2)(q = 0, a = 0) ≃
λ2T

3 · 27π6b3

∫
d4r

r6

(
exp(iqr)− 1

)
≃ − λ2T

3 · 29π4b3
q2 ln

(
Λ

q

)
, (3.9)
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which is correct for q ≫
√
a/b. Comparing Expression (3.9) with (3.5) we conclude that it gives the logarithmic

renormalization of the coefficient b.
Generalization – all higher order contributions to Σ give logarithmic corrections to α, b. These corrections should

be taken into account if

ξ > b2/(Tλ) , , (3.10)

where ξ = ln(Λ/q). To sum the main series over ξ we should introduce the new object which is the renormalized
vertex λr defined as the sum of four-legs irreducible diagrams which cannot be cut along one line. The series for λr
(which we will designate as a square) can be depicted as

r r��
�
�r r R

�
�

�
�

�
�r

r
r q q q

We will denote this renormalized vertex as λr, which is λ+λ(1)+λ(2)+ . . . . The term λ(1) determined by the one-loop
diagram is

λ(1)(r) = −3λ2

2T
G2

0(r) . (3.11)

We should compare with λ the Fourier-transform λ(1)(q) of (3.11)

λ(1)(q) = − 3λ2T

24π2b2
ξ , (3.12)

where we have used the expression (3.4) and the condition q ≫
√
a/b is implied. We again see that the logarithmic

corrections are relevant if (3.10) is satisfied.
Consider now the part of λ(2)(q) determined by the second diagram in Figure. This term is of the order of

(λ2Tξ/b2)2 and is therefore essential if (3.10) is satisfied. It is not very difficult to understand that the second power
of ξ originates from the region of integration R ≫ r where R and r are the separation distances depicted in Figure.
Generalization – the leading terms over ξ are determined by diagrams where separation distances can be ordered as
r1 ≫ r2 ≫ r3 . . . (which is known as the parquet sequence). The value of λr is actually a function of the largest
separation distance or (in Fourier representation) a function of the corresponding wave vector q.
Now we can find an equation for λr. Let us take the diagrammatic series for λr and mark at each diagram the loop

with the largest separation distance R. Then the blocks at the right and at the left sides after summation will give
λr again which is the function of R. The diagrammatic representation of this relation is

r � �
� �

In the analytical form it can be written as

λr(k) = λ− 3T

24π2b2

ξ∫
0

dξ′λ2r(q) , (3.13)

where ξ′ = ln(Λ/q) and the integral in (3.13) is taken in the limits 0 and ξ = ln(Λ/k). The integral equation (3.13)
is equivalent to the differential one

dλr/dξ = −
3T

24π2b2
λ2r , (3.14)

which has the following solution

λr(k) = λ

(
1 +

3Tλ

24π2b2
ln(Λ/k)

)−1

→ 24π2b2

3Tξ
, (3.15)

where the final expression is correct if ξ ≫ b2/(Tλ).
Now we can determine the behavior of the renormalized values ar = αr(T − Tc) and br which are the functions of

the wave vector k. To find the equation for αr we have to perform the same procedure – to take the loop with the
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largest separation in the diagrammatic series for ar an to sum left and right blocks what gives renormalized values.
The result can be extracted from (3.7) where the bare quantities λ and a should be substituted by their renormalized
values, it is

αr(k) = α− T

24π2b2

ξ∫
0

dξ′λrαr , (3.16)

where ξ = ln(Λ/k). The solution of (3.16) at ξ ≫ b2/(Tλ) is

αr(k) ∝ ξ−1/3 , (3.17)

what is the consequence of (3.15). To find the equation for br we should substitute in (3.9) the bare quantities λ and
b by their renormalized values. As a result we find the equation

br − b =
ξ∫

0

dξ′
T 2

3 · 29π4

λ2r
b3r
, (3.18)

which has the solution br → const where ξ → ∞. The point is that due to (3.15) the integral over ξ′ in (3.18)
converges at br = const. It justifies actually all above calculations since they implied the condition b = const. We
conclude that in the explicit expression of the (3.15) type is correct only in the asymptotic region ξ ≫ b2/(Tλ) where
we should substitute b by its asymptotic value br(∞). Let us stress that the relation (3.17) is not sensitive to the
value of b.
All said above is correct if we have possibility to neglect ar in comparison with brq

2 in the expression

G(q) = T/(ar + brq
2) , (3.19)

for the dressed pair correlation function. It is correct if q >
√
ar/br or, by other words, on scales r <

√
br/ar. On

larger scales the renormalization is finished. That implies e. g. that on these scales G will have the form (3.19) with
the values ar and br which were reached on scales where ar ∼ brq2. Let us find the singular part of the heat capacity
which can be written as

Csing =
V

4

∫
dr⟨⟨α2φ2(r)φ2(0)⟩⟩ . (3.20)

The expression (3.20) can be deduced by direct differentiation of the free energy. The main contribution to the average
(3.20) will be produced as previously by parquet diagrams. If to take the loop with the largest separation distance
then the blocks at the right and at the left will give after summation the renormalized value of the quantity α. This
result is presented by the diagram

��
� �
� �

��
where the semicircles correspond to αr. In the analytical form

Csing =
V

2

∫
drα2

rG
2(r) . (3.21)

After substitution of (3.17,3.19) we find

Csing ∝ ξ1/3 , (3.22)

where ξ ≃ ln(Λ
√
b/a).

Some words about dimensions 4− ϵ. If we consider small ϵ then the proposed scheme will be practically the same.
We can derive the equations of (3.13,3.16,3.18) type but now an additional factor Nϵq

−ϵ appears in (3.13,3.16) where
Nϵ is a geometrical factor, the additional factor in (3.18) being (Nϵq

−ϵ)2. Then we find instead of (3.15)

λr(k)→
24π2b2ϵ

3NϵTqϵ
. (3.23)
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The solutions of (3.16,3.18) will be now powerlike:

αr(k) ∝ kϵ/3 , br(k) ∝ k−ϵ2/54 . (3.24)

Comparing (3.24) with the definition of the exponents ν and γ (see Lecture 2) we conclude that the first terms of
their expansion in ϵ are ν = 1/2 + ϵ/12 and γ = 1 + ϵ/6. The index α of the heat capacity can be found if to use
(3.21,3.24), the result is α = ϵ/6. If the number of the components n of the order parameter is taken into account the
expressions for the exponents in the first ϵ approximation are

ν =
1

2
+

n+ 2

4(n+ 8)
ϵ , γ = 1 +

n+ 2

2(n+ 8)
ϵ , α =

4− n
2(n+ 8)

ϵ . (3.25)

Of course these values coincide with the given above for n = 1.
Despite the proposed procedure is rough (it gives asymptotical series in the parameter ϵ = 1) the derived expressions

for the critical exponents are in a reasonable agreement with experiment.

4. RENORM-GROUP, ϵ-EXPANSION

Here, we start from rederiving the results obtained in the previous section using another language which is more
convenient and permits wide generalization. Remind, that the problem under consideration is described by Landau
functional

F =

∫
dr

{
a

2
φ2 +

b

2
(∇φ)2 + λ

24

(
φ2
)2}

, (4.1)

where φ is a n-component order parameter and

φ2 ≡
n∑
1

φ2
b .

As previously a ∝ T − Tc. Remind also that the problem implies the presence of the ultraviolet cutoff Λ.
As we saw at examining the diagrammatic expansion for the dimensionality d = 4 variables characterizing order

parameter correlation functions at a given scale r are strongly renormalized due to the interaction of fluctuations
of φ at the scale r with fluctuations with the wave vectors r−1 < q < Λ. Generally the renormalization is strong.
Nevertheless the coupling constant is small. Therefore one expects that the interaction with fluctuations in the
restricted phase volume will produce only a small renormalization of the variables characterizing the order parameter
correlation functions at the scale r. That is the motivation for the following multistep procedure.
Let us devide the order parameter field into the ‘slow’ part φ′ and the ‘fast’ part φ̃:

φ = φ′ + φ̃ , (4.2)

where φ̃ contains the fastest Fourier harmonics of φ. Next, we want to exclude from the consideration φ integrating
the probability distribution function exp(−F/T ) over φ̃:

exp

[
−F

′(φ′)

T

]
=

∫
Dφ̃ exp

[
−F(φ

′ + φ̃)

T

]
, (4.3)

where we introduced the designation F ′ for Landau functional of the slow field φ′. The functional contains the
complete information about the correlation functions of the slow part of φ. Say, knowing F ′ we can principally
calculate

G(r) =

∫
Dφ̃′ exp

[
−F

′(φ′)

T

]
φ′(r)φ′(0) , (4.4)

if Λr ≫ 1 since the contribution to G(r) from fast degrees of freedom is negligible. Producing the procedure (4.3)
again and again we can exclude from the consideration Fourier harmonics of φ with wave vectors r−1 < q < Λ. Then
it will be possible to calculate the correlation function (4.4) in terms of the conventional perturbation expansion.
Of course F ′ differs from F . But if the phase volume of φ̃ is small enough then it is possible to calculate the

difference in terms of the conventional perturbation expansion. Then the parameters describing F will be changed
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gradually at the introduced multistep procedure. The variation can be described in terms of the corresponding
differential equations which are called renorm-group (RG) equations. Let us find RG-equations for Landau functional
(4.1) regarding the space of dimensionality d = 4.
First, we should define more presicely the decomposition (4.2) producing at a single step of the introduced multistep

procedure. We will believe that, say, the fast component φ̃ is the sum of Fourier harmonics with wave vectors
Λ′ < q < Λ, then the slow component φ′ will be the sum of Fourier harmonics with wave vectors q < Λ′. We will
suggest two conditions:

Λ≫ Λ′ , (4.5)

g ln(Λ/Λ′)≪ 1 , (4.6)

where we introduced the dimensionless coupling constant g the exact definition of which will be done below. Of course
the conditions (4.5) and (4.6) are compatible only if g ≪ 1 what is the applicability condition of RG technique. The
condition (4.6) permits to produce the conventional perturbation expansion and the condition (4.5) permits to keep
terms containing the large logarithms ln(Λ/Λ′) only what is an effective selection rule.
Substituting the decomposition (4.2) into (4.1) we get

F = F(φ′) + F (2)
int + F (2)(φ̃) + . . . , (4.7)

F (2)
int =

∫
dr

{
λ

12
φ′2φ̃2 +

λ

6
(φ′φ̃)

2
+
a

2
φ̃2

}
, (4.8)

F (2)(φ̃) =

∫
dr

b

2
(∇φ̃)2 , (4.9)

where . . . mean omitted terms. We neglected the term∫
dr

λ

6
(φ̃φ′)φ′2 ,

since it cannot produce the corrections to F proportional to the large logarithm ln(Λ/Λ′). The reason is that the
term is non-zero only for harmonics in φ̃ with wave vectors q close to Λ′. We neglected in (4.7) also terms of the third
and of the fourth order over φ̃ since they produce only a small contribution into the renormalization of F due to the
condition (4.6).
Substituting (4.8) into (4.3) we get

exp

[
−F

′(φ′)−F(φ′)

T

]
=

∫
Dφ̃ exp

[
−F(φ̃) + Fint

T

]
. (4.10)

Due to the condition (4.6) the difference F ′(φ′) − F(φ′) is small and we can expand the exponent in LHS of (4.10)

over the difference. The same reasoning enables to expand RHS of (4.10) over F (2)
int . As a result we obtain

F ′(φ′)−F(φ′) =
⟨
F (2)

int

⟩
− 1

2T

⟨⟨(
F (2)

int

)2⟩⟩
. (4.11)

Here, the angular brackets designate averaging over the statistics of the fast variable. We have kept in (4.11) two first

terms of the expansion of the exponent over F (2)
int . The general rule is that we should keep all the terms containing

the large logarithm ln(Λ/Λ′) and producing a renormalization of different terms in F . Note that we should take the
irreducible average of the second term in (4.11) (designating by double angular brackets) since the corresponding
reducible part contributes really to the second-order term of the expansion of LHS of the relation (4.10).
In the main approximation statistics of the fast degrees of freedom is determed by the probability distribution

function

P(φ̃) ∝ exp

[
−F

(2)(φ̃)

T

]
. (4.12)

Since the probability distribution function (4.12) is Gaussian all the correlation functions of φ̃ are reduced to G̃ where
by definition

⟨φ̃a(r1)φ̃b(r2)⟩ = G̃(r1 − r2)δab .
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The function can be calculated starting from (4.12):

G̃(r) =

Λ∫
Λ′

d4q

(2π)4
T

bq2
exp(iqr) ≈ T

4π2br2
, (4.13)

The last expression is correct for Λ′−1 > r > Λ−1.
Since the probability distribution function (4.12) is Gaussian we can easily find the averages in (4.11) explicitly.

Say, ⟨
F (2)

int

⟩
=

∫
dr

λ

12
(n+ 2)φ′2 ⟨φ̃2

1

⟩
+ . . . , (4.14)

where we have taken into account that ⟨φ̃aφ̃b⟩ ∝ δab. The average
⟨
φ̃2
1

⟩
figuring in (4.14) can be found using the

expression (4.13)

⟨
φ̃2
1

⟩
=

Λ∫
Λ′

d4q

(2π)4
T

bq2
.

The integral is determined by the upper limit, therefore the term (4.14) should be incorporated into the redefinition
of the transition temperature Tc. Analogously one can recognize that the term proportional to a and designated by
dots in (4.14) is also irrelevant. Now, let us turn to the second term in (4.11). Substituting (4.8) we find the following
expression

F ′(φ′)−F(φ′)← − 1

T

∫
dr1 dr2 G̃

2(r1 − r2){
(n+ 8)λ2

4 · 27
φ′2(r1)φ

′2(r2) +
(n+ 2)λa

12
φ′2(r1) +

na2

4

}
. (4.15)

The characteristic scale where the function G̃(r) decays is Λ′−1 whereas the field φ′ varies on larger scales. Therefore

in the main approximation we can substitute φ′2(r2)→ φ′2(r1) in the first term in (4.15) and we get the contribution

F ′ −F ← − λ2

36T

∫
dr φ′4(r)

∫
dR G̃2(R) . (4.16)

The integral here can be found from (4.13): ∫
dR G̃2(R) ≈ T 2S4

(2π)4b2
∆ξ , (4.17)

where S4 = 2π2 is the surface of the four-dimensional sphere. We see that the contribution (4.16) contains the large
logarithm and produces the renormalization of the fourth-order term in F . The renormalization can be written in
terms of the correction to the factor λ:

∆λ = −n+ 8

6

S4

(2π)4
T

b2
λ2∆ξ , (4.18)

where ∆ξ = ln(Λ/Λ′). Next, using (4.17) we can find the second and the third contributions to F ′−F in (4.15). The
second contribution gives the renormalization of a which can be written as

∆a = −n+ 2

6

S4

(2π)4
T

b2
λa∆ξ . (4.19)

And the last term gives the contribution to the free energy

∆F = −na
2

4

S4

(2π)4
T

b2
∆ξ . (4.20)



17

As follows from (4.19,4.18) the relative corrections to a and λ at the step are small if the condition (4.6) is satisfied
with

g =
n+ 8

6

S4

(2π)4
T

b2
λ . (4.21)

The quantity (4.21) plays the role of the dimensionless coupling constant, it is called usually the invariant charge.
We have considered a single step of the multistep procedure. If to produce the noted multistep procedure then

Landau functional (4.1) will keep its form (as follows from the analysis done) but the coefficients a and λ varies
gradually at subsequent excluding fast variables. Since the variations (4.19,4.18) are small at each step of the procedure
we can describe the variation in terms of the differential equations

dλ

dξ
= −n+ 8

6

S4

(2π)4
T

b2
λ2 , (4.22)

da

dξ
= −n+ 2

6

S4

(2π)4
T

b2
λa , (4.23)

dF

dξ
= −na

2

4

S4

(2π)4
T

b2
, (4.24)

following from Eqs. (4.19,4.18,4.20). Here, ξ = ln(Λ/Λ′) where Λ′ is the current ultraviolet cutoff (that is the
maximal wave vector of φ′). Let us stress that the equations (4.22,4.23) does not imply the condition (4.6) and works
at arbitrary ξ if only g ≪ 1. It is instructive to rewrite the equations (4.22,4.23) in terms of the invariant charge:

dg

dξ
= −g2 , (4.25)

dλ

dξ
= −gλ , (4.26)

da

dξ
= −n+ 2

n+ 8
ga . (4.27)

Just the equations of (4.25-4.27) type containing the invariant charge are usually called RG-equations.
In the approximation used above the coefficient b does not vary. To find its renormalization one should take into

account high-order terms of Fint. Namely we should take the third-order term

F (3)
int =

λ

6

∫
dr (φ′φ̃)φ̃2 . (4.28)

It is clear that ⟨F (3)
int ⟩ = 0 and therefore only the contribution into F ′ − F determined by the second term in the

right-hand side of (4.11) should be taken into account. This term gives

F ′ −F ← − (n+ 2)λ2

36T

∫
dr1 dr2 φ

′(r1)φ
′(r2)G̃

3(r) ,

where r = r2 − r1. Again, the characteristic value of r is Λ′−1 whereas we are interested in slow φ′. Therefore in the
main approximation we should substitute φ′(r2) by φ′(r1). Then we get a contribution determined by the integral
sitting on the upper limit (in q-representation), the term should be incorporated into the redefinition of the transition
temperarute Tc. To obtain a logarithmic integral giving a contribution to the renormalization of b we should expand
φ′(r2) over r:

φ′(r2) = φ′(r1) + rα∇αφ
′(r1) +

1

2
rαrβ∇α∇βφ

′(r1) + . . .

The first term of the expansion does not produce a contribution into F ′ − F (the corresponding integral is equal to
zero because of integration of an odd function over angles). Thus the second term of the expansion is relevant. It
produces the contribution

F ′ −F ← (n+ 2)λ2

9 · 32T

∫
dr1 dr [∇φ′(r1)]

2G̃3(r)r2 ,
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where we have performed averaging over angles and taken the integral once in part. Substituting here (4.13) we find

∆b =
(n+ 2)λ2T 2

9 · 29π4b3
∆ξ . (4.29)

The corresponding renorm-group equation is

db

dξ
=

n+ 2

2(n+ 8)2
g2b . (4.30)

We see that the right-hand side of (4.30) is proportional to the second power of g what is the manifestation of the
fact that the renormalization of b appears only in the second (two-loop) order of the renorm-group procedure.
Let us now consider the dimensionality d = 4− ϵ where ϵ≪ 1. Then all the scheme will be the same if to substitute

(4.21) by

g =
n+ 8

6

S4

(2π)4
T

b2
λΛ′−ϵ . (4.31)

Then the renorm-group equations (4.26,4.27,4.30) keep their shape whereas (4.25) is rewritten as

dg

dξ
= ϵg − g2 , (4.32)

The equation has the stable fix point g = ϵ and therefore g → ϵ at ξ →∞. Substituting the value into (4.26,4.27,4.30)
we get a power behavior of a, λ, b. Particularly,

a ∝ (T − Tc)(Λ′)(n+2)/(n+8)ϵ . (4.33)

Let us find the exponents α and ν in the first ϵ approximation. Their definition is

CV ∝ |T − Tc|−α , Rc ∝ |T − Tc|−ν , (4.34)

where CV is the heat capacity and Rc is the critical length. The definition of Rc can be extracted if to compare bR−2
c

and a which can be taken at Λ′ ∼ R−1
c . In the first ϵ approximation b can be regarded to be a constant and we get

(in the same approximation) from (4.33)

ν =
1

2
+
ϵ

4

n+ 2

n+ 8
. (4.35)

To find the exponent α we should use the modification of (4.24):

dF

dξ
∝ a2(Λ′)−ϵ . (4.36)

Substituting here (4.33), integrating up to Λ′ ∼ R−1
c we get the singular contribution to the free energy

Fsing ∝ (T − Tc)2R(4−n)/(n+8)ϵ
c .

Taking now the second derivative over T and using (4.35) we get

α =
4− n

2(n+ 8)
ϵ . (4.37)

Problems

Problem 4.1
Find the large-scale behavior of the vertices λ and λ1 (d = 4) figuring in Landau functional

F =

∫
dr

{
b

2
(∇φ1)

2 +
b

2
(∇φ2)

2 +
λ

24
(φ2

1 + φ2
2)

2 +
λ1
24

(φ2
1 − φ2

2)
2

}
. (4.38)
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Problem 4.2
Find the renorm-group equations in the space of dimensionality d = 4 for the coefficients of Landau expansion

Fhigh =

∫
dr
∑
n>2

1

(2n)!
λnφ

2n . (4.39)

Solution of the Problem 4.2

dλn
dξ

= −1

3
n(2n− 1)gλn .

5. WEAK CRYSTALLIZATION THEORY

The theory of weak crystallization is constructed in terms of the Landau phase transition theory. Therefore, in
the first place, one should introduce the order parameter, associated with the transition. For this purpose, define the
following quantity:

φ = ρshort/ρ. (5.1)

Here ρ is a long-wavelength component of the density and ρshort is a short-wavelength component of the density. In
virtue of the definition, the field φ contains Fourier components with the wave vectors of the order of the inverse
molecular size. In the liquid phase the average ⟨φ⟩ = 0, in the crystalline phase there emerges a non-zero average ⟨φ⟩.
Thus, the field φ can be regarded as the crystallization order parameter.
As follows from the definition (5.1), the average ⟨φ⟩ characterizes the amplitude of the short-wavelength density

modulation of the crystalline phase. At the weak crystallization there should appear a non-zero average, satisfying
the condition:

⟨φ⟩ ≪ 1 . (5.2)

Practically in all known crystals ⟨φ⟩ ∼ 1, but in some liquid crystilline phases ⟨φ⟩ satisfying the inequality (5.2)
is observed. Generally speaking, the average ⟨φ⟩ is a sum of an infinite number of spatial Fourier harmonics. Yet,
under the condition (5.1), out of these harmonics one can single out principal harmonics, whose number is finite. The
remaining harmonics will have amplitudes much smaller than the amplitudes of the principal harmonics.
In the theoretical investigation of weak crystallization we should start from the Landau functional FL(φ). We will,

as previously, confine ourselves to a few first terms of the expansion of the Landau functional in the order parameter,
this expansion is justified by the inequality (5.2). The first terms of the expansion of FL in φ can be written as

FL/V =
∑
q

τ(q)

2
φ(q)φ(−q)−

∑
q1+q2+q3=0

µ(q1, q2, q3)

6
φ(q1)φ(q2)φ(q3)

+
∑

q1+q2+q3+q4=0

λ(q1, q2, q3, q4)

24
φ(q1)φ(q2)φ(q3)φ(q4) , (5.3)

where V is the volume of the system. There is no linear term in (5.3) since φ is a short-wavelength field and,
consequently, does not involve a zero Fourier harmonic.
The phase transition, associated with the emergence of the average ⟨φ⟩, occurs when the parameter τ in (5.3)

diminishes. Due to the presence of the cubic term in the expansion (5.3) this transition is a first-order transition
[Landau, 1937]. Thus, for this theory to hold, it is necessary that the additional condition of the small value of the
coefficient µ in the expansion (5.3) should be fulfilled. This condition could be expressed via the inequality:

µ/λ≪ 1 . (5.4)

Since the field φ is short-wavelength, the dependence of the coefficients of the expansion of the Landau functional FL

in φ on the wave vectors of the field φ is fairly important. So, the coefficient τ in (5.3) is a function of module of the
wave vector q. We will have in mind the situation when τ(q) reaches the minimum on a certain sphere of the radius
q0 in the reciprocal space. We will be interested in fluctuations of the Fourier harmonics of the field φ with the wave
vectors in the vicinity of this sphere. Expanding τ near the |q| = q0, we find with the necessary accuracy

τ(q) = a+ b(|q| − q0)2. (5.5)
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Here the coefficients a and b do not any longer contain the dependence on q. Note that a = τ(q0). The vertex µ in
(5.3) can be regarded as constant. Also assume that the condition λ = const is fulfilled.
The parameter a in (5.5) changes its sign in the vicinity of the transition point. Therefore in the case when the phase

transition takes place at a variation of the temperature, for the parameter a one can use the standard expression:

a = α(T − T ∗). (5.6)

Here α is the constant, T ∗ is the temperature at which a becomes zero. Since the phase transition under consideration
is a first-order transition, the temperature T ∗ does not coincide with the crystallization temperature, although it is
close to it as long as the average ⟨φ⟩, emerging at the crystallization, is small. The applicability condition of Expr.
(5.5) is an inequality:

|q − q0| ≪ q0 . (5.7)

In the same approximation the second order term of the expansion of the Landau functional in φ can be represented
as

F (2)
L =

∫
dr .

(
aφ2/2 + b

[
(∇2 + q20)φ

]2
/8q20

)
. (5.8)

This expression is handy since it is written in a local form.
Consider first the weak crystallization theory in the mean field approximation. Starting from (5.3) we can find the

energies of different crystalline phases taking as ⟨φ⟩ sums of principal harmonics of the corresponding symmetry. The
comparison of energy values of different phases shows that only the smectic phase SA, the columnar phase Dh and
the body-centered cubic phase BCC can be absolutely stable at the condition λ = const. At increasing temperature
the following cascade of phases is realized in the model:

SA−Dh −BCC − I , (5.9)

where I designates the isotropic liquid.
The Landau functional FL determines the energy, related to fluctuations of the order parameter φ(r). Therefore

in conformity with the Gibbs distribution, the probability of emergence of such fluctuations is

exp(F −FL/T ) . (5.10)

As previously, we will designate correlation functions calculated with the weight (5.10) by angular brackets. Introduce
the special notation for the pair correlation function

G(r1, r2) = ⟨φ(r1)φ(r2)⟩ − ⟨φ(r1)⟩⟨φ(r2)⟩. (5.11)

For the correlation function (5.11) there is a standard relation

τ̂G(r, r1)−
∫
dr2Σ(r, r2)G(r2, r1) = Tδ(r − r1). (5.12)

Here the operator

τ̂ = a+ b(∇2 + q20)
2/4q20 (5.13)

acts upon the argument r. The bare value G0 of the correlation function (5.11) is deduced if to put in (5.12) Σ = 0.
It is clear that G0 depends only on the difference r − r1. In the Fourier representation the expression for the bare
value G0 will read

G0(q) =

∫
dr exp(−iqr)G0(r, 0) =

T

a+ b(q − q0)2
. (5.14)

Here we have used the inequality (5.7).
To calculate correlation functions of the field φ with fluctuations taken into account, one can make use of the diagram

technique where the bare Green’s function is determined by Expr. (5.14) and the bare vertices are determined by the
interaction terms in (5.3). The perturbation series for such quantities as G, Σ can be constructed starting from the
representation (5.10). It proves that in the weak crystallization theory the one-loop approximation is the main one
[Brazovskii, 1975]. In this approximation Σ is determined by the diagram given in figure
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In this figure the circle denotes the triple vertex µ, and the disk denotes the quartic vertex λ. The solid line in the
loop is the Green’s function (5.11) and the line with a free edge is the average ⟨φ⟩. This diagram representation can
be easily written out analytically if to assume that λ = const. Bearing in mind that also µ = const, we find

Σ(r, r1) =

(
µ⟨φ(r)⟩ − λ⟨φ(r)⟩2/2− λG(r, r)/2

)
δ(r − r1) (5.15)

Let us introduce the designation:

∆ = a+ λ⟨φ(r)⟩2/2 + λG(r, r)/2. (5.16)

where the line above the function denotes the spatial averaging. In other words, the line above the function implies
that one should retain only the zero Fourier harmonics in it. Now the equation (5.12) can be written as(

∆+ b(∇2 + q20)
2/4q20 −Θ(r)

)
G(r, r1) = Tδ(r − r1). (5.17)

where Θ(r) = 0. The term with Θ in (5.17) produces small corrections and consequently can be omitted. Then
the function G will be dependent only on the difference of the coordinates r − r1. In the Fourier representation,
introduced similarly to (5.14), we get

G(q) = T/(∆ + b(q − q0)2) . (5.18)

This expression differs from the bare expression (5.14) by the replacement a→ ∆. We will refer to the quantity ∆ as
the gap, which is justified by the form of the function (5.18).
Now calculate the single-point correlation function G(r, r) figuring in the equation (5.15):

G(r, r) =

∫
dqG(q)/(2π)3 = Tq20/2π(b∆)1/2. (5.19)

Here we have used the inequality (5.7) and confined ourselves to the vicinity of the sphere |q| = q0 in the reciprocal
space. For characteristic vectors, determining the integral (5.19), in virtue of (5.18) we have an estimate:

|q − q0| ∼ (∆/b)1/2 . (5.20)

Therefore for the constraint (5.7) to hold, it is necessary that the inequality

∆≪ bq20 (5.21)

should be fulfilled. Employing the expression (5.19), from (5.16) we get an equation for the gap ∆

∆ = a+ λ⟨φ(r)⟩2/2 + β∆−1/2, (5.22)

where

β = λTq20/4πb
1/2 . (5.23)

The first two terms in the r.h.s. of (5.22) are the mean field terms and the last term emerges due to fluctuations.
Note that for the liquid phase (i.e., at ⟨φ⟩ = 0) the equation (5.22) has a solution for ∆ at an arbitrary value of a.
In other words, fluctuation effects in the model under study prove to be so strong that they stabilise the liquid phase
(i.e., render this phase metastable) even at a < 0.
An amazing property of the equation (5.22) is that at a→ 0 the gap ∆ does not tend to zero but remains a constant

of the order of

∆ ∼ (λ2T 2q40/b)
1/3, (5.24)
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which becomes particularly evident for the liquid phase, where ⟨φ⟩ = 0. This property testifies to a large strength of
fluctuations of φ in the weak crystallization theory, which is accounted for by a large phase volume of fluctuations,
distributed near the sphere in the reciprocal space. For comparison note that at an conventional second-order transition
fluctuations are concentrated in the vicinity of one or several points in the reciprocal space.
Let us explain how the transition points between different phases can be found. We will regard λ = const, then

Landau functional can be written as

FL =

∫
dr

{
a

2
φ2 +

b

8q20

[
(∇2 + q20)φ

]2 − µ

6
φ3 +

λ

24
φ4

}
. (5.25)

The field φ can be devided into the average part (condensate) ⟨φ⟩ and φ̃ which describes fluctuations near the
condensate. The structure of the condensate ⟨φ⟩ is determined by the symmetry of the phase under consideration.
In the main approximation it can be written as

⟨φ⟩ =
√
A
∑
a

exp (iϕa + ikar) , |ka| = q0 . (5.26)

Here, A is the amplitude of the condensate and the set of the wave vectors ka is related to the symmetry of the
phase. Say, for the simple cubic phase ka are directed along the edges of a cube. Of course ka is a set of pairs with
opposite values to ensure the real meaning of (5.26), so their number is 2N . For the simple qubic case N = 3 and
therefore there are six ka. For the body-centered cubic crystal or for the face-centered cubic crystal ka are directed
along diagonals of a cube and N = 6; the difference between the phases is in different relations between values of ϕa in
(5.26). It is clear that various sets ka cover different crystalline phases and also quasicrystalline, columnar and smectic
ones. Say, a well known quasicrystalline phase corresponds to the set ka directed along edges of an icosahedron. For
a smectic phase there are only two opposite wave vectors in the set ka (that is N = 1) and we can write

⟨φ⟩ = 2
√
A cos (ϕ+ q0z) , (5.27)

where ka are supposed to be directed along Z-axis. Note that generally

⟨φ⟩2 = 2NA , (5.28)

as follows from (5.26).
To compare energies of different phases we should start from the definition

exp

(
−F
T

)
=

∫
Dφ̃ exp

(
−FL

T

)
, (5.29)

determining the free energy F for a phase characterized by the condensate (5.26). Substituting the decomposition
φ = ⟨φ⟩+ φ̃ into (5.25) and keeping only relevant terms we get

FL = FL(⟨φ⟩) +
∫

dr

{
a

2
φ̃2 +

b

8q20

[
(∇2 + q20)φ̃

]2
+
λ

2
NAφ̃2 +

λ

24
φ̃4

}
, (5.30)

where we used the relation (5.28). The quantity FL(⟨φ⟩) in (5.30) is a function of A only. Say, for the smectic

FL(⟨φ⟩) = aA+
λ

4
A2 . (5.31)

Then, examining in the one-loop approximation (the validity of which was established above) correlation functions of
φ̃ at a given ⟨φ⟩ we get from (5.30) the expression (5.18) for Fourier transform of the pair correlation function where
the gap ∆ obeys the equation (5.22). The equation can be rewritten using the relation (5.28) as

∆ = a+ λNA+ β∆−1/2 . (5.32)

Next, it is possible to find an explicit expression for dF/dA taking a derivative of (5.29):

dF

dA
=

d

dA
FL(⟨φ⟩) +

Nβ√
∆
, (5.33)

where we substituted the expression for ⟨(φ̃)2⟩ following from (5.18).
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Of course for a stable (or, more precisely, metastable) phase dF/dA should be equal to zero and we find from (5.33)
the condition

d

dA
FL(⟨φ⟩) +

βN√
∆

= 0 , (5.34)

relating A to the value of gap ∆. The equation (5.34) together with (5.32) determines the values of A and ∆ for a
given phase. Say, for the smectic phase they read

∆ = a+ λA+
β√
∆
,

a+
λA

2
+

β√
∆

= 0 .

Besides, the expression (5.33) formally defines dF/dA for any A and therefore we can find the difference between the
free energies of a given phase and of the liquid phase (corresponding to A = 0) as the following integral

F − Fliq = FL(⟨φ⟩) +
A∫
0

dA
βN√
∆
. (5.35)

Expressing dA via d∆ from (5.32) and substituting into (5.35) we obtain

F − Fliq = FL(⟨φ⟩) +
2β

λ
(
√
∆−

√
∆0)−

β2

2λ

(
∆−1 −∆−1

0

)
, (5.36)

where the subscript 0 designates the value of the gap in the liquid phase. Since the liquid phase is metastable at
any a (5.36) defines the energy difference for any possible phase. Then using (5.36) we can find the energy difference
between two arbitrary phases at a given a. The stable phase corresponds to the minimum free energy and phase
transitions (of the first order) occur when free energies of two phases coincide.
The last condition can be used to establish the phase diagram of the system. Fluctuations change the phase cascade

found in the mean field approximation. At small µ (µ ≪ (λ5T 2q40/b)
1/6) only the direct I → SA transition occurs.

Note that although in the mean field theory (if to neglect µ) this transition should be continuous, fluctuations render
this transition a first-order transition.

Problems

Problem 5.1
Regarding µ = 0 find the terminating point amax for existing the (metastable) smectic phase.
Problem 5.2
Regarding µ = 0 find the value a at which the phase transition liquid–smectic occurs. Fluctuations of φ should be

taken into account.

Solution of the Problem 5.2
Landau functional and the condensate for this case are

FL =

∫
dr

{
a

2
φ2 +

b

8q20

[
(∇2 + q20)φ

]2
+

λ

24
φ4

}
. (5.37)

⟨φ⟩ = 2
√
A cos(q0z) . (5.38)

The equations for the gap in the liquid phase ∆0 and in the smectic phase ∆ are

∆0 = a+
β√
∆0

, (5.39)

∆ = a+ λA+
β√
∆
. (5.40)
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The condition dF/dA = 0 gives

a+
λA

2
+

β√
∆

= 0 , (5.41)

∆ = −a− β√
∆
, (5.42)

the last relation being a consequence of (5.40). The condition following from

Fsm − Fliq = FL(⟨φ⟩) +
2β

λ
(
√
∆−

√
∆0)−

β2

2λ

(
∆−1 −∆−1

0

)
= 0 , (5.43)

is written as

√
∆+

√
∆0 = −3β

a
. (5.44)

Note that since FL(⟨φ⟩) < 0 then it follows from (5.43) that ∆ > ∆0. Let us introduce designations

x =

√
∆0

β1/3
, y =

√
∆

β1/3
. (5.45)

Then it follows from (5.44)

a = −3β2/3

x+ y
. (5.46)

Substituting (5.46) into (5.39,5.42) we get

x2 = − 3

x+ y
+

1

x
, (5.47)

y2 =
3

x+ y
− 1

y
. (5.48)

One can obtain from the system (5.47,5.48) the relation

x4 − 2x3y − 2xy3 + y4 = 0 .

It is reduced to the square equation for ξ + ξ−1 where ξ = y/x. Taking the positive root of the equation we find

ξ2 − (
√
3 + 1)ξ + 1 = 0 .

Recalling that ξ > 1 (since ∆ > ∆0) we find

ξ = ξ =
1 +
√
3

2
+

√√
3

2
. (5.49)

Next, we obtain from (5.47)

(x+ y)3 = (1 + ξ)2(ξ − 2) = 21/233/4 .

And finally we get from (5.46)

a = −33/42−1/6β2/3 . (5.50)

6. SMECTICS, RG-EQUATIONS

As we have noted a smectic is a matter with an one-dimensional short-wavelength modulation of the density ⟨φ⟩
(see Lecture 4). To investigate the role of fluctuations in a smectic we should consider the density modulation φ as a
fluctuating variable, which can be taken in the form

φ(r) = ψ cos(ϕ) , (6.1)
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where ψ and ϕ are slow functions of coordinates. If we are interested in large-scale fluctuations, then ψ can be consid-
ered as a “frozen” variable and consequently only fluctuations of ϕ are relevant. Strictly speaking the representation
(6.1) is correct only in the case of weak crystallization. In the general case we would take the function

φ(r) =
∞∑

n=0

ψn cos(ϕn) .

But at considering large-scale fluctuations ψn can be assumed to be “frozen” and we can believe ϕn = nϕ. Therefore
we return to the conclusion that in a smectic there exists only one soft (on large scales) variable ϕ related to the
short-scale density modulation, ϕ has the meaning of the phase of the density modulation.
Let us now determine the principal terms of the expansion of the Landau functional in ϕ. First of all we should

recall that the average ⟨φ⟩ in a smectic is proportional to cos(q0z) and therefore the equilibrium value of ∇ϕ is not
equal to zero, it should be

| ∇ϕ |= q0 . (6.2)

Next, the Landau functional should be invariant under the transformation

ϕ→ ϕ+ const , (6.3)

since it corresponds to the translation of the system of the smectic layers as a whole which cannot change the energy
of the system. Therefore the main terms of the expansion of the Landau functional FL in ϕ are

Fϕ =

∫
d3r

B

8

(
q−2
0 (∇ϕ)2 − 1

)2

, (6.4)

where B is an elasticity module. The minimum of (6.4) is achieved on ϕ = q0z, this function corresponds to the
unperturbed system of smectic layers perpendicular to the Z-axis.
To describe fluctuations of the smectic layers we introduce the function u(r) determining deviations of ϕ from its

equilibrium value

ϕ = q0(z − u(r)) . (6.5)

The quantity u can be considered as the local displacement of the smectic layers along the Z-axis. Now the term
(6.4) can be rewritten as

Fϕ =

∫
d3r

B

2

(
∇zu−

1

2
(∇u)2

)2

. (6.6)

This expression enables us to examine the correlation function

G(r) = ⟨u(r)u(0)⟩ . (6.7)

The second order term of the expansion of (6.6) in u is

F(2) =

∫
d3r

B

2
(∇zu)

2 . (6.8)

It gives the following bare value of (6.7) ∫
d3q

(2π)3
exp(iqr)T/(Bq2z) ,

what is an indefinite expression. It causes us to take into account the additional term

FK =

∫
d3r

K

2
q20(∇2ϕ)2 =

∫
d3r

K

2
(∇2u)2 . (6.9)

Then the bare value of the correlation function (6.7) determined by (6.8,6.9) is

G0(q) =
T

Bq2z +Kq4
. (6.10)
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It is not very difficult to check that the integral

G0(r = 0) =

∫
d3q

(2π)3
T

Bq2z +Kq4
(6.11)

diverges at small q and is consequently determined by the size of the smectic. Therefore it is more reasonable to
consider the quantity

G0(r = 0)−G0(r) =

∫
d3q

(2π)3
T

Bq2z +Kq4
×

(1− exp(iqr)) ≃ 1

4π

T√
BK

ξ , (6.12)

where

ξ = lnmax

(
Λr⊥,Λ

(
K

B

)1/4√
| z |

)
, r⊥ =

√
x2 + y2 , (6.13)

and Λ is the cutoff wave vector.
Let us consider the influence of fluctuations of u on the density modulation φ. If to neglect selfinteraction of u (i.e.

to take into account only the terms (6.8,6.9) in the Landau expansion) then averaging over fluctuations of u is reduced
to Gaussian integrals which can be calculated explicitly. So the density modulation (6.1) averaged over fluctuations
is determined by

⟨cosϕ⟩0 = cos(q0z) exp

(
−1

2
q20⟨u2⟩0

)
. (6.14)

Since the value ⟨u2⟩0 = G0(r = 0) diverges if the size of the system tends to infinity the average φ in accordance with
(6.1) is zero for an infinite system. We may say that fluctuations of u destroy the density modulation in the smectic.
Consider now the pair correlation function of φ determined by

⟨cosϕ(r) cosϕ(0)⟩0 = 1/2 · cos(q0z) exp
(
−q20(G0(0)−G0(r)

)
∝ r−ζ

⊥ , (6.15)

where

ζ =
Tq20

4π
√
BK

. (6.16)

The last relation in (6.15) is a consequence of (6.12), it is correct if r2⊥ ≫| z |
√
K/B.

Consider now fluctuational corrections to (6.10) caused by the interaction terms which are the third and the fourth
order terms of the expression (6.6)

F(3) = −
∫

d3r
B

2
∇zu(∇u)2 , (6.17)

F(4) =

∫
d3r

B

8
(∇u)4 . (6.18)

Starting from these expressions it is possible to develop the perturbation series. Corrections to the bare expressions
of correlation functions will be determined by diagrams where both triple and quartic vertices defined by (6.17,6.18)
figure. An analysis shows that fluctuational corrections to these vertices are logarithmic and therefore we encounter
the problem of summation of the main series of logarithmic diagrams similar to ones examined for the phase transition
theory in four dimensions (see Lecture 3). For smectics it is a more bulky procedure because of the presence of two
types of vertices. Therefore we consider an alternative method known as renorm-group (RG) method which proves
to be useful in different contexts. This method works effectively if the main fluctuational corrections to the objects
defined on a scale R are determined by fluctuations of the scales r ≪ R. This is just the property characteristic of
the logarithmic situation.
Let us devide the field u on the slow u′ and the fast ũ parts: u = u′ + ũ. The quantity ũ is

ũ(r) =
∑
q

uqexp(iqr) ,
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where Λ′ < q⊥ < Λ, the constant Λ′ being the new cutoff wave vector. Then it is possible to introduce Landau
functional F ′

L(u
′) corresponding to this cutoff

exp(−F ′
L/T ) =

∫
Dũ exp(−FL/T ) . (6.19)

Then all correlation functions of u determined on scales larger than (Λ′)−1 can be calculated starting from F ′, the
expressions are the same as for F (see Lecture 2). To find F ′ the perturbation theory can be used since the number of
degrees of freedom of ũ is restricted (nevertheless we should believe Λ′ ≪ Λ to have the possibility to calculate with
the logarithmic accuracy). To develop this perturbation series we should expand (6.6) in ũ. The first term of this
expansion is equal to zero since ũ is the fast field. Therefore the main term of this expansion will be of the second
order in ũ:

FL(u) ≃ FL(u
′) + F̃(2) + Fint , (6.20)

where

F̃(2) =

∫
d3r

(
B

2
(∇zũ)

2 +
K

2
(∇2ũ)2

)
, (6.21)

Fint = −
∫

d3r

(
B

2
(∇zu− (∇u)2/2)(∇ũ)2 +B∇u∇ũ∇zũ

)
. (6.22)

Expanding now (6.19) in Fint we find

F ′
L(u

′)−FL(u
′) ≃ ⟨Fint⟩0 −

1

2T
⟨⟨FintFint⟩⟩0 , (6.23)

where the subscript zero denotes averaging determined by F̃(2).
The first term in (6.23) is

⟨Fint⟩0 =

∫
d3r B(∇u)2⟨(∇ũ)2⟩0 . (6.24)

The same term originates from (6.4) at shifting q0. Therefore (6.24) should be included into redefinition of q0. The
average ⟨⟨FintFint⟩⟩0 produces two terms. The first term is

−B
2

8T

∫
d3r1 d

3r2 (∇zu1 − (∇u1)2/2)(∇zu2 − (∇u2)2/2)×

⟨(∇ũ1)2(∇ũ2)2⟩0 . (6.25)

The average here has a characteristic scale 1/Λ′ and therefore we can substitute u2 → u1 since u is the slow field.
Then we conclude that (6.25) gives the renormalization of the module B. It is not very difficult to calculate the
integral explicitly, the result is

B′ −B = − TB3/2

32πK3/2
ln(Λ/Λ′) . (6.26)

The second term produced by ⟨⟨FintFint⟩⟩0 is

−B
2

8T

∫
d3r1 d

3r2∇iu1∇ku2⟨∇zũ1∇iũ1∇zũ2∇kũ2⟩0 . (6.27)

If to substitute u2 → u1 we arrive at the term of the (6.24) type which should be included into redefinition of q0. It
means that we must expand u2 − u1 in r2 − r1. The first term gives a contribution vanishing after averaging over
angles and the second term gives the integral over r1 with the integrand proportional to (∇2u)2. Therefore this term
gives the renormalization of the module K, K ′ −K being proportional to∫

d3r2 (r2 − r1)
2⟨∇zũ1∇iũ1∇zũ2∇iũ2⟩0 .
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After calculating this integral we find

K ′ −K =
TB1/2

64πK1/2
ln(Λ/Λ′) . (6.28)

All said above is correct if B −B′ ≪ B and K ′ −K ≪ K. That means that

TB1/2 ≪ K3/2 , (6.29)

then the conditions B −B′ ≪ B and K ′ −K ≪ K are compatible with Λ≫ Λ′.
Let us now produce a multi-step procedure of excluding fast variables shifting the cutoff Λ at each step on a value

which guaranties small values of the corrections to B, K (at one step). Then instead of the relations (6.26,6.28) we
can formulate the differential equations

dB/dξ = − TB3/2

32πK3/2
, dK/dξ =

TB1/2

64πK1/2
, (6.30)

where ξ = ln(Λ/Λ′). The equations of (6.30) type are called RG-equations. To solve the equations let us introduce

g =
5TB1/2

128πK3/2
, (6.31)

which satisfies the equation

dg/dξ = −g2 (6.32)

with the solution

g =
g0

1 + g0ξ
. (6.33)

Here g0 is the bare value of the constant g that is the value of g on scales 1/Λ. We see that if ξ ≫ g−1
0 then

g ≃ ξ−1 → 0. This property which is referred as “zero-charge” justifyes the above consideration for large ξ. After
substitution of (6.33) into (6.30) we find that at large ξ [Nelson and Pelkovits, 1982]

B ∝ ξ−4/5 , K ∝ ξ2/5 . (6.34)

Now we can determine the form of correlation functions of u. If we are interested in the correlation function on a
scale r we should exclude from the integration over u harmonics with the wave vectors larger then r−1 using (6.19).
It is reduced to the renormalization B → B′, K → K ′ where B′,K ′ are solutions of (6.30) taken at ξ ≃ ln(rΛ). After
this exclusion we can neglect selfinteraction of u on scales less or of the order of r. Then for the pair correlation
function we return to the expression (6.11) but with renormalized values of the modules B,K. Since ln(rΛ) grows

with increasing scale this procedure is justified on large scales. Above we have implied that r2⊥ ≫| z |
√
K/B. In the

general case the renormalization of B,K is determined by the same relations (6.30,6.34) where ξ is defined by (6.13).

Problems

Problem 6.1
Find the behavior of the pair correlation function of the density fluctuations

S(r⊥) = ⟨δρ(r⊥, z = 0)δρ(0, 0)⟩ ,

in a smectic in the region of scales where the moduli B and K are strongly renormalized by fluctuations of u.

Solution of the Problem 6.1
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S(r⊥) ∝ ⟨cos(q0(u(r⊥, 0)− u(0, 0))⟩
S = Z(ξ)⟨cos(q0(u(r⊥, 0)− u(0, 0))⟩′ , ξ = ln(Λ/Λ′)

u→ u+ ũ , ξ → ξ +∆ξ ,

Z → Z(1− q20⟨(ũ(r⊥, 0)− ũ(0, 0))2⟩/2)
dZ = −Zq20(dG(0)− dG(r))

Z = Z0 exp(−q20(G(0)−G(r)))

S(r⊥) ∝ exp

(
−C(ln(Λr⊥))6/5

)
C =

5

6

Tq20
4π

(
5T

128πK4
0B

2
0

)1/5

Problem 6.2
Besides the leading term

F =

∫
d3r

{
B

2

[
∇zu− (∇u)2/2

]2
+
K

2
(∇2u)2

}
, (6.35)

in Landau expansion for a smectic one can consider also the subleading term

Fsub =

∫
d3r

{
K1

2
lilj∇i∇mu∇j∇mu+

K2

2
lilj lmln∇i∇mu∇j∇nu

}
. (6.36)

Here, l is the unit vector, perpendicular to smectic layers. In components

lα = − ∇αu√
1− 2∇zu+ (∇u)2

, lz =
1−∇zu√

1− 2∇zu+ (∇u)2
. (6.37)

Find RG-equations for the coefficients K1 and K2 figuring in (6.36).

Solution of the Problem 6.2
Fluctuations of the unit vector l are irrelevant. Therefore Fsub is reduced simply to

Fsub =

∫
d3r

{
K1

2
∇z∇mu∇z∇mu+

K2

2
∇z∇zu∇z∇zu

}
.

Therefore the pair correlation function of u is now

G(q) =
T

Bq2z +Kq4 +K1q2q2z +K2q4z
.

Next, renormalization of the coefficients K,K1,K2 is determined by the same diagram with the same vertex B and
therefore we can write

∆Kq4 +∆K1q
2q2z +∆K2q

4
z ⇐ −

B2

2T
qiqj

∫
d3k

(2π)3
G(k + q/2)G(k − q/2){

(kz + qz/2)
2(ki − qi/2)(kj − qj/2) + (k2z − q2z/4)(kikj − qiqj/4)

}
⇒ −B

2

T

∫
d3k

(2π)3
k2z(kq)

2G(k + q/2)G(k − q/2) +
B2

2T
q2q2z

∫
d3k

(2π)3
k2zG

2(k) .

Here, the first term produces a logarithm only for q⊥ and is consequently equal to ∆Kq4⊥ and the second term is
equal to

TB1/2

16πK1/2
q2q2z∆ξ .
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Recalling the expression

∆K =
TB1/2

64πK1/2
∆ξ ,

we obtain

∆K1 =
TB1/2

32πK1/2
∆ξ , ∆K2 =

TB1/2

64πK1/2
∆ξ .

And finally

dK1

dξ
=

4

5
gK ,

dK2

dξ
=

2

5
gK .

Note, that asymptotically at ξ →∞: K1 = 2K, K2 = K.

7. NONLINEAR SIGMA-MODEL

The problem originates from the physics of 2d ferromagnetics, where magnetization is a 3d vector whereas it
depends on 2d radius-vector r. If we are outside the critical region the absolute value of the magnetization is “frozen”
but fluctuations of its direction which we will characterize by the unit vector n should be taken into account. The
energy associated with fluctuations of n in the exchange approximation is not equal to zero only for nonhomogeneous
fluctuations and can be written in the following form

Fn =

∫
d2r b/2∇nµ∇nµ . (7.1)

If we want to calculate something associated with fluctuations of n, then we should accept a parameterization of n.
The simplest parameterization is

nµ = (φ1, φ2,
√
1− φ2

1 − φ2
2)

≃ (φ1, φ2, 1− (φ2
1 + φ2

2)/2) , (7.2)

where we have expanded
√

1− φ2
1 − φ2

2 in φ. It is useful if to believe that the problem is solved in terms of small
fluctuations of n near its equilibrium value (along Z-axis). Let us examine this possibility.
First we should find the expansion of Fn in φ, the lowest order terms are

F(2) =

∫
d2r b/2

(
(∇φ1)

2 + (∇φ2)
2

)
, (7.3)

F(4) =

∫
d2r b/2 (φ1∇φ1 + φ2∇φ2)

2 . (7.4)

Now we can develop the perturbation series where the bare values of the correlation functions are determined by (7.3)
and the vertices are determined by higher order terms of the expansion of Fn in φ starting from (7.4). The bare value
of the pair correlation function is

G0(r) = ⟨φ1(r)φ1(0)⟩0 = ⟨φ2(r)φ2(0)⟩0 =∫
d2q

(2π)2
exp(iqr)

T

bq2
. (7.5)

We see that this expression diverges logarithmically at small q, this divergence being cut by the size of the system.
The first fluctuation correction to (7.5) is determined by the following diagram

��
��

r
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where the lines correspond to (7.5) and the vertex is determined by (7.4). The loop in Figure represents the first
contribution to the self-energy function which is determined by the averages

⟨φ2
1⟩0 , ⟨φ1∇φ1⟩0 , ⟨(∇φ1)

2⟩0 .

The term ⟨φ1∇φ1⟩0 is equal to zero due to the symmetry, the term ⟨(∇φ1)
2⟩0 is determined by the integral over the

wave vectors q diverging at large q. Therefore the value of this integral cannot be actually calculated in the framework
of the large-scale theory. Nevertheless the constant ⟨(∇φ1)

2⟩0 should be regarded as zero because of the symmetry
reasons. The problem is that this constant should be included into redefinition of the bare pair correlation function,
namely it will be G0(q) = T/(bq2 +m), what contradicts to the structure of (7.1). Therefore we conclude that only
the term ⟨φ2

1⟩0 will determine the first contribution to the self-energy function. This term implies the redefinition
G0 → G where G differs from G0 in the value of b, the new value of b being b+∆b where

∆b = b

∫
d2q

(2π)2
T

bq2
=

T

2π
ln(LΛ) . (7.6)

Here L is the size of the specimen and Λ is the ultraviolet cutoff.
Since the bare pair correlation function is determined by the second order term (7.3) we may say that due to the

presence of F(4) a logarithmic renormalization of F(2) occurs. Analogously due to the presence of F(6) a logarithmic
renormalization of F(4) occurs and so further. Moreover there exist nonlinear in vortices terms producing logarithmic
renormalization of the vertices. An example is presented by the diagram

r r�
�

�
�

where both vertices are determined by (7.4). This diagram describes the fluctuational contribution F(4) · F(4) → F(4).
So we encounter the problem of investigating the behavior of an infinite number of vertices which cannot be solved in
the closed form. Nevertheless we understand that the presence of an infinite number of vertices with different laws of
renormalization is an artifact. The problem is that there exist only one relevant term (7.1) in the Landau expansion
(which is a consequence of the symmetry) and therefore the problem should be reduced to the renormalization of
a single coefficient b. The appearance of an infinite number of independent parameters is the consequence of our
choice of parameterization (7.2) which breaks the explicit rotational symmetry of (7.1). Therefore we should seek an
alternative way.
First of all due to the logarithmic character of the renormalization it is worthwhile to use from the beginning the

RG scheme (see Lecture 5). Next the fast and slow degrees of freedom should be divided in a way conserving the
explicit rotational symmetry. It is possible to do if to suggest [Polyakov, 1975]

nµ = Rµν ñν , (7.7)

where ñ is the unit vector and R is the orthogonal matrix

RµνRλν = δµλ , (7.8)

what ensures the property n2 = 1. We believe that ñ is the “fast” unit vector and that R is the “slow” matrix. The
relation (7.7) guaranties that all relations will be invariant under the transformation Rµν → R0µρRρν , where R0 is
any orthogonal matrix not depending on coordinates x, y. It implies that all expressions derived at exclusion of fast
degrees of freedom will be rotationally invariant. This property does not depend on the fashion of the parameterization
of ñ. Therefore we can accept an arbitrary parameterization, actually we will use for ñ the parameterization (7.2).
We suggest that the field φ is the sum of Fourier harmonics with the wave vectors Λ′ < q < Λ where Λ is the cutoff
and Λ′ is the new cutoff.
After substitution of (7.7) into (7.1) we find

Fn =
b

2

∫
d2r

(
∇ñµ∇ñµ +

2∇RµλRµν ñλ∇ñν +∇Rµλ∇Rµν ñλñν

)
. (7.9)

Substituting here instead of ñ the expression (7.2) and expanding (7.9) up to the second order in φ we find

Fn → F(2) + F(R) + F1int + F2int ,



32

where F(2) is determined by (7.3) and

FR =
b

2

∫
d2r(∇Rµ3)

2 , (7.10)

F1int = 2b

∫
d2r∇Rµ1Rµ2φ1∇φ2 + . . . , (7.11)

F2int =
b

2

∫
d2r

(
(∇Rµ1)

2φ2
1 +

(∇Rµ2)
2φ2

2 − (∇Rµ3)
2(φ2

1 + φ2
2)

)
, (7.12)

where . . . designates some irrelevant terms. Comparing (7.10) with (7.1) we conclude that the role of the “slow”
vector n is played by the quantity

n′µ = Rµ3 , (7.13)

which is a unit vector as a consequence of (7.8).
As previously (see Lecture 5) we have to introduce the “slow” part of the Landau functional in accordance with

the relation

exp(−F ′
L/T ) =

∫
Dφ exp(−FL/T ) .

In the approximation we have accepted it is

F ′
n′ = F(R) + ⟨F2int⟩0 − ⟨F1intF1int⟩0/2T , (7.14)

where ⟨. . . ⟩0 denotes averaging determined by F(2) defined by (7.3). The averages in (7.14) can be represented
by the two diagrams drawn above. The corresponding analytical expressions are proportional to G(r = 0) and to∫
d2r (∇G(r))2. Both these values up to factors are reduced to ξ = ln(Λ/Λ′). Calculating all factors in (7.14) and

transforming the result using (7.8) we find

F ′
n′ =

∫
d2r b′/2∇n′µ∇n′µ . (7.15)

Here b′ = b − bgξ where g = T/(2πb), the expression for b′ is correct at gξ ≪ 1. Otherwise we should produce the
multi-step procedure of excluding fast degrees of freedom so that at each step g∆ξ ≪ 1. Then the behavior of g at
decreasing Λ′ will be described by the differential equation

dg/dξ = g2 , (7.16)

which is no other than RG-equation. It has the solution

g =
g0

1− g0ξ
, (7.17)

where g0 is the bare value of the constant g that is the value which g has on scales of the order of Λ−1.
It is not very difficult to understand that the quantity g plays the role of the dimensionless coupling constant,

only the small value of g justifies the expansion in φ made above. Therefore we conclude that the condition g0 ≪ 1
should be satisfied for the presented theory to be correct. Let us compare the expressions (7.16,7.17) with ones for
the coupling constant g given in Lecture 5. We see that the sign in the right-hand of (7.16) is opposite what leads to
growing the coupling constant g with increasing scale. In the quantum field theory this situation is called “asymptotic
freedom”. Because of growing the coupling constant the applicability condition of the presented theory is violated on
large scales. As it follows from (7.17) it happens at scales

Rc ∼ Λ−1 exp(1/g0) , (7.18)



33

exponentially large in 1/g0. As the exact solution of the problem shows [Wiegmann, 1985] the correlation function
G(q) at q < R−1

c remains a finite value of the order of R2
c what can be interpreted as a consequence of generating the

spontaneous gap in the spectrum of excitations related to n, this gap having a purely fluctuational nature.
To recognize the behavior of the correlation functions of n one can consider the case of large number N of the

components of the vector n. First, instead of the explicit account the condition n2 = 1 one can integrate over all
N -components vectors n enforcing the condition n2 = 1 by introducing the corresponding δ-function. The δ-function
can be written as the integral over an auxiliary field µ of the corresponding exponent. Then e.g. the generating
functional of the correlation functions of n can be written as

Z(y) =
∫
DnDµ exp

(
−H+

∫
d2r yn

)
, (7.19)

H =
1

4πg0

∫
d2r

[
(∇n)2 + µn2 − µ

]
. (7.20)

Strictly speaking the integration in (7.19) is performed over imaginary fields µ.
Let us first integrate in (7.19) over n and then over µ. The first integration is Gaussian and therefore the answer

is expressed via the pair correlation function of n the equation for which (at a given µ) is

[µ(r1)−∇2
1]⟨na(r1)nb(r2)⟩ = 2πg0δ(r1 − r2)δab . (7.21)

As we will see the field µ fluctuates weakly over its average value µ0. Therefore in the main approximation we can
substitute µ in (7.21) by µ0. Then we find

⟨na(r)nb(0)⟩ =
∫
d2q

2π

g0
q2 + µ0

δab exp(iqr) = g0δabK0(
√
µ0r) . (7.22)

Now we should enforce the condition n2 = 1. Using (7.22) we get the relation

g0N ln
Λ
√
µ0

= 1 , (7.23)

determining µ0. Since the answer (7.22) is obtained “in the mean field approximation” (with fluctuations of µ
neglected) it really represents the expression for the true pair correlation function of n. We see the exponential
attenuation of the correlation function at r > 1/

√
µ0 and therefore 1/

√
µ0 plays the role of the correlation length.

Sometimes one says about spontaneous mass having in mind the exponential decay.
Now we should justify the weakness of the field µ fluctuations. For this one should introduce the functional S:

exp(−S) =
∫
Dn exp(−H) , (7.24)

determining the statistics of the field µ. The functional S is expressed via the pair correlation function of n taken at
a given µ. Say, the second order term is

S(2) = − 1

16π2g20

∫
dr1 dr2 µ(r1)µ(r2)⟨na(r1)nb(r2)⟩2 . (7.25)

As follows from Eq. (7.22) the characteristic |r1 − r2| in (7.25) is µ−1
0 . Therefore the contribution can be estimated

as N
∫
d2r µ2/µ0. We see the factor N in front of the integral. The same is correct also for high-order terms in S.

Therefore at N ≫ 1 fluctuations of µ are really suppressed.

Problems

Problem 7.1
In the external magnetic field H there is the contribution to the energy of a magnetic

FH = −
∫

drMHn , (7.26)

where M is the absolute value of the magnetization. Find RG-equations for the coefficient M figuring in (7.26) for
a (two-dimensional) ferromagnetic layer (n is a three-dimensional vector). The answer should be expressed via the
invariant charge.
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8. MEMBRANES

In this Section we will study properties of membranes arising in lyotropic liquid crystals and apparently in many
microemulsion phases. A membrane is a film of a molecular thickness which is, as a rule, made from lipid molecules
and is a double layer of such molecules. Membranes are also characteristic of various biological systems.
To avoid confusion let us stress that we will study a membrane taken separately. This is justified by the fact that in

real systems (e.g., lyotropic liquid crystals) membranes are positioned far one from another, and therefore the theory
of macroscopic systems can be constructed in two stages: first, consider characteristics of a membrane and then take
into account the interaction of membranes. The study of the interaction between membranes is a problem beyond
the scope of this book.
Membranes of a small (molecular) thickness can be of substantial longitudinal sizes. This makes it possible, while

studying long-scale properties of a membrane, to regard it (like a free-suspended film or a Langmuir film) as a two-
dimensional object, i.e., neglecting the thickness of the membrane. This, in particular, means that characteristics of
the film such as its energy can be set as an integral over a surface, determining the position of the membrane. All
integrals presented below are believed to be taken over this surface.
A characteristic peculiarity of the membrane is the fact that its surface tension is zero, which, actually, is one of

the conditions of the thermodynamic equilibrium of the membrane with the solution of molecules it is made from. By
virtue of this condition the surface energy of the membrane is determined by its curvature. In the main approximation
this energy can be written as the following surface integral (Canham, 1970; Helfrich, 1975)

Hs =

∫
dS
(κ
2
(R−1

1 +R−1
2 )2 + κ̄R−1

1 R−1
2

)
. (8.1)

Here R1 and R2 are local radii of the membrane curvature and the coefficients κ and κ̄ are called bending modules.
The quantity R−1

1 R−1
2 is the Gaussian curvature of the surface, and the combination R−1

1 +R−1
2 is usually called its

mean curvature.
In addition to the energy (8.1) related to the curvature of the surface, we should also introduce the energy, related

to variations of the surface density of molecules ns, constituting the film. In the approximation we need, the energy
can be written as

Hn =
1

2

∫
dS B(n′s/ns)

2 . (8.2)

Here n′s is the deviation of the surface density from its equilibrium value, and the coefficient B has the meaning of
the inverse compressibility of the film.
In the conditions where the surface tension coefficient of the film is zero (or sufficiently small), thermal fluctuations of

the shape of the membrane are relevant (De Gennes and Taupin, 1982). These fluctuations give rise to the destruction
of the correlation between orientations of sufficiently distant pieces of the membrane. The scale, starting from when
this is happening, is called persistent length. A membrane of sizes, exceeding the persistent length cannot in any
approximation be treated as flat.
Fluctuations of the shape of the membrane lead to logarithmic renormalization of the modules κ and κ̄. First an

attempt to calculate the renormalization of the module κ was taken by Helfrich (1985) and later by Förster (1986).
The correct renormalization group equation for the module κ in an one-loop approximation was derived in papers
by Peliti and Leibler (1985), Kleinert (1986a) and Polyakov (1986), and the equation for κ̄ and for the spontaneous
curvature in the same approximation were found by Kleinert (1986b). Besides, the modulus B introduced in (8.2) is
logarithmically renormalized.
To describe a shape of a membrane it is necessary to introduce a certain parametrization of the surface setting its

position in space. As in the description of other films, we will assume that this surface is set by an equation

Φ(r) = 0 ,

where Φ is a function of three coordinates. For a unit vector, normal to the surface, there is an expression

li =
∇iΦ

| ∇Φ |
. (8.3)

The variable l, formally defined in the whole space, is meaningful of course only on the surface Φ = 0. With the use
of the introduced quantities, the energy (8.1) can be rewritten as

Ωs =

∫
dS
(κ
2
(∇ili)

2 +
κ̄

2

(
(∇ili)

2 −∇ilk∇kli)
))

. (8.4)
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Let us give the one-loop renormalization group equations for the modules, we are interested in

dκ

dξ
= −3T

4π
, (8.5)

dκ̄

dξ
=

5T

6π
, (8.6)

dB

dξ
=
TB

4πκ
. (8.7)

Here T is the temperature, ξ = ln(Λ/q), where q is a characteristic wave vector and Λ is the cutoff parameter (wave
vector of the order of the inverse molecular size). These equations describe the behavior of the modules κ, κ̄, B at a
variation of a characteristic scale q−1.
The right-hand sides of renormalization group equations, found in the framework of perturbation theory, always

contain the module κ but not κ̄. The thing is that the term in the energy (8.1) or (8.4), proportional to the module
κ̄ (i.e., the surface integral of its Gaussian curvature), is a topological invariant, therefore it does not change at small
perturbations of the shape of the membrane.
As follows from (8.5) the role of the “invariant charge” (dimensionless coupling constant) is played by the quantity

g =
3T

4πκ
. (8.8)

For the perturbation theory to be applicable and, consequently, for (8.5-8.7) to hold, the coupling constant g must be
small. Henceforth we will treat g as a small quantity, which enables us to employ the perturbation theory.
A consequence of (8.5,8.8) is an expression

g =
g0

(1− g0ξ)
. (8.9)

Here g0 is the short-wavelength coupling constant. We see that with increasing scale (i.e., with increasing ξ) the
coupling constant grows. Thus we come to a situation which in the quantum field theory is called “asymptotic
freedom”. The expression (8.9) determines a behavior of the coupling constant g up to scales where g0L ∼ 1 (but
of course g ≪ 1). The scale on which g reaches a value of the order of unity, and the perturbation theory becomes
unapplicable, is, in fact, the persistent length.
The behavior of the modules κ, κ̄, and B at increasing scale is determined by (8.5-8.7) from which it follows that at

increasing scale the module κ becomes smaller whereas the modules κ̄, B increase together with the coupling constant.
Using the relations (8.8,8.9), we find the following proportionality laws

κ ∝ g−1 , B ∝ g1/3 . (8.10)

As above these laws are correct up to scales where g0ξ ∼ 1 but g ≪ 1. We can say that due to thermal fluctuations
the membrane becomes less compressible and softer with respect to fluctuations of the shape.

Renorm-Group Equation for the Helfrich Modules

Here we will derive the RG-equations (8.5,8.6) for κ and κ̄. We know that the contribution to the Landau functional
proportional to κ̄ is the topological invariant. To establish the RG-equation it is impossible to consider an infinite
membrane since the contribution proportional to κ̄ is equal to zero in the case. Therefore we must take a closed
membrane. Below we will use a membrane with the topology of a sphere. In this case the contribution the contribution
proportional to κ̄ to the Landau functional is equal to 4πκ̄.
Below we will believe that the membrane fluctuates near a sphere of the radius R. Then it is natural to parametrize

the shape of the membrane by the dependence r = R + u(θ, φ), where r is the distance between the origin and a
point of the membrane and θ and φ are angles characterizing the corresponding direction. By another words, u is the
displacement of the membrane in the radial direction. We develop the perturbation series over u. The unit vector
orthogonal to the membrane is expressed in terms of u as

l = |∇Φ|−1

(
r

r
− ∂u

r

)
, |∇Φ| =

√
1 +

(∂u)2

r2
, (8.11)
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where we introduced the designation ∂ for the derivative ‘along the angles’:

(∂u)2 ≡
(
∂u

∂θ

)2

+
1

sin2 θ

(
∂u

∂φ

)2

,

∂2u ≡ 1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2
.

Then we can express the bending energy

Fκ =
κ

2

∫
do r2|∇Φ| (∇l)2 , (8.12)

where we should substitute r = R+ u. Calculating the integrand up to the fourth order over u (at a given r) we get

Fκ ≈ 8πκ+
κ

2

∫
do

{
− 2

r2
(∂u)2 +

1

r2
(∂2u)2 − 2

r3
(∂u)2∂2u

+
5

2r4
(∂u)4 +

1

2r4
(∂u)2(∂2u)2 +

1

r4
∂∂2u∂u(∂u)2

}
,

where we integrated in part once in some terms. Then we find the terms of the second, of the third and of the fourth
order over u

F (2)
κ =

κ

2R2

∫
do
[
(∂2u)2 − 2(∂u)2

]
, (8.13)

F (3)
κ =

κ

R3

∫
do
[
−u(∂2u)2 − (∂u)2∂2u

]
, (8.14)

F (4)
κ =

κ

2R4

∫
do

{
3u2(∂2u)2 + 6u(∂u)2∂2u

+
5

2
(∂u)4 +

1

2
(∂u)2(∂2u)2 + ∂∂2u∂u(∂u)2

}
, (8.15)

where we kept only the main terms over the derivative ∂.
Now we will start the renorm-group procedure deviding u = u′+ ũ and integrating over the fast field ũ. Expanding

up to the second order over ũ we get

F (3)
int =

κ

R3

∫
do
{
∂2u′(∂ũ)2 − u′(∂2ũ)2 − 2∂u′∂ũ∂2ũ

}
, (8.16)

and an analogous expression for F (4)
int . Next we calculate the correction to the slow part of the Landau functional

∆F (2)
κ =

⟨
F (4)

int

⟩
− 1

2T

⟨⟨
F (3)

intF
(3)
int

⟩⟩
,

where the average is calculated in accordance with (8.13). Calculating the integrals we obtain

∆F (2)
κ =

κ

2R4

∫
do

{
−3

2
⟨(∂ũ)2⟩(∂2u′)2 − 3

2
⟨(∂2ũ)2⟩(∂u′)2 + (10− 8)(∂u′)2⟨(∂ũ)2⟩

}
. (8.17)

The first two terms and the term with the coefficient 10 in the right-hand side of (8.17) originate from
⟨
F (4)

int

⟩
and the

term with the coefficient −8 in the right-hand side of (8.17) originates from −
⟨⟨
F (3)

intF
(3)
int

⟩⟩
/(2T ). The expression

(8.17) must reproduce (8.13).
One can easily calculate

⟨(∂ũ)2⟩ = R2T

2πκ
ln

Λ

Λ′ . (8.18)

Substituting the expression (8.18) into (8.17) and comparing the result with (8.13) we find that the first term of the
integrand of (8.17) gives ∆κ = −3T/(4π) ln(Λ/Λ′) in accordance with (8.5). To reproduce the same result for the
second term of the integrand of (8.13) one should demand

⟨(∂2ũ)2⟩ = −R
2T

3πκ
ln

Λ

Λ′ . (8.19)
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This unusual rule is related to the fact that the decomposition u = u′ + ũ is made really in angular harmonics l,m
and the restriction condition RΛ′ < l < RΛ knows about R.
Now we find the correction to the free energy which in accordance with (8.13) is equal to

∆F =
2πκ

R2

[
⟨(∂2ũ)2⟩ − 2⟨(∂ũ)2⟩

]
.

Substituting here (8.18) and (8.19) we get ∆F = −(8/3)T ln(Λ/Λ′). From the other hand, the correction can be
written as ∆F = 4π(2∆κ + ∆κ̄). Substituting here ∆κ = −3T/(4π) ln(Λ/Λ′) we find ∆κ̄ = 5T/(6π) ln(Λ/Λ′) in
accordance with (8.6). Thus the answer (8.6) is related to the rule (8.19).

Problems

Problem 8.1
In the external magnetic field H there is the contribution to the energy of a membrane

FH = −
∫

dS
α

2
(Hl)

2
, (8.20)

where α > 0 and l is the unit vector perpendicular to the membrane. If u(x, y) is the displacement of the membrane
along the Z-axis then

lα = − ∇αu√
1 + (∇u)2

, lz =
1√

1 + (∇u)2
. (8.21)

Find RG-equation for the coefficient α (the answer should be expressed via the invariant charge g).
Problem 8.2
Find RG-equation for the coefficient α (the answer should be expressed via the invariant charge g) for the opposite

sign of the magnetic energy

FH =

∫
dS

α

2
(Hl)

2
, (8.22)

where α > 0.
Problem 8.3
If the membrane has a finite surface tension σ then one should take into account the energy

Fσ =

∫
dS σ . (8.23)

Find RG-equation for the surface tension σ.
Problem 8.4
The elastic energy of the membrane can be written as

Fel =

∫
dS

B

2

(ns − n0)2

n20
(8.24)

where B is the elastic module, ns is the surface density of molecules of the membrane and n0 is the equilibrium
density. Find RG-eqution for the elastic module B.

Solution of the Problem 8.4
The quantity n0 = N/S where N is the number of molecules of the membrane and S is its area. The area is changed

at the renormalization according to RG-equation

dS

dξ
= −1

3
gS .

Therefore

dn0
dξ

=
1

3
gn0 .
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This value determines the equilibriun meaning of the quantity

ns =
∆N

∆S
=

∆N√
1 + (∇u)2 ∆x∆y

.

So, the factor (ns − n0)2/n20 is not renormalized and we get for B the same RG-equation as for σ:

dB

dξ
=

1

3
gB .

9. BEREZINSKII-KOSTERLITZ-THOULESS PHASE TRANSITION

Defects like quantum vortices, dislocations, disclinations in thin films (which are two-dimensional systems) are
point objects and can therefore be excited at finite temperatures. The energy of a single defect is proportional to
the logarithm of the size of the specimen. Therefore at low temperatures only bounded defect-antidefect pairs are
excited since the energy of the pair is finite (does not depend on the size of the specimen). One can think that at low
temperatures besides the phonon gas there is also the gas of the defect-antidefect pairs in the films. At increasing
temperature the entropy associated with the random distribution of the defects grows. For a single defect the entropy
is also proportional to the logarithm of the size of the specimen. Therefore at a temperature Tc the product TS
(where S is the entropy of the defect) becomes larger than the energy of the defect. Starting from the temperature
unbounded defects appear in the film, the defects kill long-scale correlations. Therefore at a temperature the phase
transition like superfluid-normal liquid occurs. The transition was first examined by Berezinskii (1971) and then
treated by Kosterlitz and Thouless (1973). Below we will consider the superfluid-normal phase transition. Note, that
phase transitions of the same type are observed in two-dimensional crystals. Namely, at increasing temperature a
crystal melts into the so-called hexatic phase, then the transition of the hexatic into the liquid phase occurs (?? and
Nelson, 1980).
It is well known that a vortex (which is labelled by the subscript j) in a superfluid film is characterized by the

superfluid velocity

nih̄
ϵβα(rβ − rj,β)
m|r − rj |2

. (9.1)

Here, ri is the position of the vortex, m is the mass of the atom, and ni is the quantum number of the vortex (usually
only the vortices with n = ±1 are excited). The superfluid velocity in the film is the sum of the expressions (9.1) for
all vortices and of the irrotational part:

vs,α(r) =
∑
j

nj h̄

m

ϵβα(rβ − rj,β)
|r − rj |2

+
h̄

m
∇αφ . (9.2)

The vorticity of the superfluid velocity ω is

ω = ϵγα∇γvs,α =
∑
j

2πnj
h̄

m
δ(r − rj) . (9.3)

The energy associated with the superfluid velocity, can be written as

Fs =

∫
d2r

ρs
2
v2s , (9.4)

where ρs is the so-called superfluid density. The quantity is a function of temperature: at T = 0 the value of ρs is
the complete two-dimensional density of the film and at increasing temperature ρs decreases due to excitations like
phonons. Neglecting fluctuations of ρs we get from (9.4)

Fs =

∫
d2r

ρsh̄
2

2m2
(∇φ)2 + Fvort , (9.5)

Fvort = −π
∑
i ̸=j

ρsh̄
2

m2
ninj ln(Λrij) +

∑
i

µ(ni) , (9.6)
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that is the energy Fvort associated with vortices is separated. In (9.6) µ(nj) is the energy of the core of the j-th
vortex, the size of the core is of the order of Λ−1, and

α =
( m

2πh̄

)2 T
ρs
. (9.7)

Below we treat only the solenoidal contribution to the superfluid velocity vs determined by the first term in (9.2).
The contribution can be written as ϵαβ∇βΦ and then the condition (9.3) gives

∇2Φ = −
∑
j

2πnj
h̄

m
δ(r − rj) . (9.8)

Introducing the auxiliary field ϑ ensuring the condition (9.8) we can rewrite the vortex part of the free energy (9.6)
as

exp (−Fvort/T ) =

∫
DϑDΦ

exp

− 1

T

∫
d2r

ρs
2
(∇Φ)2 + i

∫
d2r

m

2πh̄
ϑ∇2Φ+ i

∑
j

njϑ(rj)− T−1
∑
j

µ(nj)

 .

Taking here the integral over Φ we get

exp (−Fvort/T ) =

∫
Dϑ exp

−
∫

d2r
α

2
(∇ϑ)2 + i

∑
j

njϑ(rj)− T−1
∑
j

µ(nj)

 . (9.9)

Let us now write the generating functional for the vorticity (9.3):

Z(σ) =
⟨
exp

{
i
m

2πh̄

∫
d2r σω

}⟩
=

∫
Dϑ exp(−Hσ) , (9.10)

where

exp(−Hσ) = exp

{
−
∫

d2r
α

2
(∇ϑ)2

}
×
∑ 1

N !

∏
j

∫
d2rj exp

{
inj [ϑ(rj) + σ(rj)]−

µ(nj)

T

}
. (9.11)

The sum here is performed over all sequences n1, n2 . . .nN and over N from zero to ∞. In the long-scale limit Hσ is
a local functional which can be written as

Hσ =

∫
d2r

{α
2
(∇ϑ)2 + F (ϑ+ σ)

}
, (9.12)

where F (ϑ) is an even function. It follows from (9.11) that H is invariant under the transformation ϑ → ϑ + 2π
since nj are integer numbers. Therefore F (ϑ) in (9.12) is a periodical function of ϑ with the period 2π and can be
consequently expanded into Fourier series. As we will see only the first term of the expansion is relevant near the
transition point and therefore we get

H =

∫
d2r

{α
2
(∇ϑ)2 − β cos(ϑ)

}
, (9.13)

where H is equal to Hσ at σ = 0.
The expression (9.13) can be deduced from (9.11) if to keep there only terms with nj = ±1. Then

exp(−H) = exp

{
−
∫

d2r
α

2
(∇ϑ)2

}
×

∞∑
N=0

1

N !

{∫
d2r 2 exp(−µ/T ) cos [ϑ(r)]

}N

,
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what leads to (9.13) with β = 2 exp(−µ/T ). The procedure is justified if µ/T ≫ 1, then the vortices with nj = ±1
are excited only. The above scheme is based on the “canonical” distribution of vortices. It is instructive to obtain
the same result using the “microcanonical” distribution taking into account that in the closed system the number of
positive vortices is equal to the number of negative ones. Then we get instead of (9.11)

exp(−Hmc) = exp

{
−
∫

d2r
α

2
(∇ϑ)2

}
×

∞∑
N=0

1

(N !)2

{∫
d2r exp [iϑ(r)− µ/T ]

}N {∫
d2r exp [−iϑ(r)− µ/T ]

}N

,

where we keep again the vortices with nj = ±1 only. Let us rewrite the expression as

exp(−Hmc) =

2π∫
0

ds

2π
exp

{
−
∫

d2r
α

2
(∇ϑ)2

} ∞∑
N1,N2=0

1

(N1!)(N2!)
exp(isN1 − isN2)

×
{∫

d2r (β/2) exp [iϑ(r)]

}N1
{∫

d2r (β/2) exp [−iϑ(r)]
}N2

,

where we used

2π∫
0

ds

2π
exp(isN1 − isN2) = δN1,N2 .

Performing the summation over N1 and N2 we get

exp(−Hmc) =

2π∫
0

ds

2π
exp

{∫
d2r

[
−α
2
(∇ϑ)2 + β cos(s+ ϑ)

]}
.

All answers can be written as functional integrals over the field ϑ including homogeneous shifts. Therefore all the
integrals do not depend on the parameter s and∫

Dϑ exp(−Hmc) · · · =
∫
Dϑ exp(−H) . . . .

Fluctuations play an essential role at forming correlation functions of ϑ. To take the role into account we will use
the renorm-group method. As usual we divide the field ϑ into the slow ϑ′ and the fast ϑ̃ parts:

ϑ = ϑ′ + ϑ̃ , ϑ′ =
∑
q<Λ′

ϑq exp(iqr) , ϑ̃ =
∑

Λ′<q<Λ

ϑq exp(iqr) . (9.14)

Then we introduce the ‘slow’ functional H′:

exp [−H′(ϑ′)] =

∫
Dϑ̃ exp

[
−H(ϑ′ + ϑ̃)

]
. (9.15)

Substituting here (9.12) and expanding the exponent over β we get

exp

[
−H′(ϑ′) +

∫
d2r

α

2
(∇ϑ′)2

]
= Z (9.16)

Z =
∞∑

n=0

βn

n!

⟨
n∏

i=1

∫
d2ri cos

[
ϑ′(ri) + ϑ̃(ri)

]⟩
0

, (9.17)

⟨Y (ϑ̃)⟩0 ≡
∫
Dϑ̃ exp

[
−
∫

d2r
α

2

(
∇ϑ̃
)2]

Y (ϑ̃) . (9.18)

Thus the angular brackets denote averaging with Gaussian weight which is characterized by the pair correlation
function

G(r) = ⟨ϑ̃(r)ϑ̃(0)⟩0 =

Λ∫
Λ′

d2q

(2π)2
exp(iqr)

1

αq2
=

1

2πα

Λ∫
Λ′

dq

q
J0(qr) . (9.19)
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Note that it follows from (9.19)

G(0) = ⟨ϑ̃2⟩0 =
1

2πα
ln

(
Λ

Λ′

)
. (9.20)

Principally, each average in the sum figuring in the right-hand side of the expression (9.17) can be explicitly
expressed in terms of the correlation function (9.19), for example

⟨
cos
[
ϑ′(ri) + ϑ̃(ri)

]⟩
0
= exp

[
−1

2
⟨ϑ̃2⟩0

]
cos [ϑ′(ri)] =

(
Λ′

Λ

)1/(4πα)

cos [ϑ′(ri)] . (9.21)

Really we are interested in scales larger than (Λ′)−1. Since the function G(r) (9.19) decreases at rΛ′ > 1 the main
contribution into Z (9.17) can be found if to substitute the average of the product by the following product

n∏
i=1

∫
d2ri

⟨
cos
[
ϑ′(ri) + ϑ̃(ri)

]⟩
0
,

what gives the result

Z(0) = exp

(∫
d2r β′ cosϑ′

)
, β′ =

(
Λ′

Λ

)1/(4πα)

β . (9.22)

Besides the contribution Z(0) the term Z(1) where the correlation between pairs of cosϑi is taken into account
will also be needed for us. The term Z(1) is a small correction to Z(0) and can be consequently found in the linear
approximation over the correlation:

Z(1) =

∞∑
n=2

1

2(n− 2)!

[∫
d2r β′ cosϑ′

]n−2

β2

∫
d2r1 d

2r2

[⟨
cos(ϑ′1 + ϑ̃1) cos(ϑ

′
2 + ϑ̃2)

⟩
0

−
⟨
cos(ϑ′1 + ϑ̃1)

⟩
0

⟨
cos(ϑ′2 + ϑ̃2)

⟩
0

]
= −Z(0)H(1) , (9.23)

H(1) = −
β′2

2

∫
d2r1 d

2r2

{
1

2
cos(ϑ′1 + ϑ′2) [exp (−G)− 1] +

1

2
cos(ϑ′1 − ϑ′2) [exp (G)− 1]

}
, (9.24)

where G = G(r12). Regarding ln(Λ/Λ′) small enough we obtain G≪ 1 and can consequently expand exp(±G)− 1 in
(9.24). Then

H(1) = −
β′2

2

∫
d2r1 d

2r2

[
G(r12) sinϑ

′
1 sinϑ

′
2 +

1

2
G2(r12) cosϑ

′
1 cosϑ

′
2

]
. (9.25)

The characteristic scale of G(r) is Λ−1 whereas the field ϑ′ is smooth. Therefore passing to the variables R =
r1/2 + r2/2, r = r1 − r2 one can expand ϑ′(R ± r/2) (and then cosϑ′1,2, sinϑ

′
1,2) into the series over r. Using the

expression (9.19) we get ∫
d2r r2nG(r) = 0 ,

and therefore the first term in the expression (9.25) doesn’t produce anything. In the main approximation (9.25) can
be rewritten as

H(1) = −
β′2

8

∫
d2r d2RG2(r)

{
cos(2ϑ′) +

1

4
r2(∇ϑ′)2 cos(2ϑ′)− 1

4
r2(∇ϑ′)2

}
, (9.26)

where ϑ ≡ ϑ(R). The coefficients in the expression (9.26) are determined by the integrals

∫
d2r G2(r) =

1

2πα2

Λ∫
Λ′

dq

q3
≈ Λ− Λ′

2πα2Λ3
,
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∫
d2r r2G2(r) =

2

πα2

Λ∫
Λ′

dq

q5
≈ 2(Λ− Λ′)

πα2Λ5
,

where we believed that Λ′ is close to Λ. Therefore

H(1) = −
β′2(Λ− Λ′)

16πα2Λ5

∫
d2R

{
Λ2 cos(2ϑ′) + cos(2ϑ′)(∇ϑ′)2 − (∇ϑ′)2

}
. (9.27)

Actually only the last term in the integrand in (9.27) is relevant.
Substituting into the right-hand side of (9.16)

Z ≈ Z(0) −H(1)Z(0) ≈ Z(0) exp[−H(1)] ,

we conclude that H′ has the form (9.13) with α→ α′ and β → β′ where

α′ = α+
β′2(Λ− Λ′)

8πα2Λ5
, (9.28)

and β′ is determined by (9.22). We see that it is worth to introduce the quantity γ′ = β′/(Λ′)2. Then (9.22,9.28) lead
to the following renorm-group equations for the parameters

dγ

dξ
=

(
2− 1

4πα

)
γ ,

dα

dξ
=

γ2

8πα2
, (9.29)

where ξ = ln(Λ/Λ′). We see that there exist the fix point of the system α = αc, γ = 0 where the critical value
αc = 1/(8π).
Let us analyze the behavior of a solution of (9.29) near the fixed point. There the equations (9.29) can be rewritten

as

dγ

dξ
= 16π(α− αc)γ ,

d(α− αc)

dξ
= 8πγ2 . (9.30)

There exists the first integral

C = γ2/2− (α− αc)
2 , (9.31)

of the system (9.30). In terms of the quantity we can rewrite the equation for α as

d(α− αc)

dξ
= 16π

[
C + (α− αc)

2
]
. (9.32)

We conclude from (9.32) that if αshort < αc and C < 0 then at ξ → ∞ the parameter α tends to a finite value

α = αc −
√
|C|, as to the parameter γ it tends to zero at ξ → ∞. If C = 0 then at ξ → ∞ α tends to its critical

value αc and γ tends to zero. If C > 0 or if the short-scale value α > αc then in accordance with (9.32) α tends to ∞
where ξ → ∞, γ also tends to ∞ where ξ → ∞. Strictly speaking, the last possibility is not proved since the region
of large α, γ is without the scope of our consideration since it corresponds to the strong coupling region where one
cannot use the expression (9.13) (corrections to the expression are relevant).
Nevertheless physically it seems reasonable that α tends to infinity at the conditions and at ξ → ∞. The point

is that the constant α is related to the superfluid density as (9.7) (and the renormalization of α at increasing scale
can be interpreted as the renormalization of the large-scale superfluid density due to the presence of vortices on short
scales). Then the tendency of α to a finite value means that the superfluid density is also finite at large scales. That
corresponds to the superfluid phase. If α tends to infinity then ρs tends to zero, that corresponds to the normal phase.
We see that the transition temperature between the superfluid and the normal states is determined by the condition
C = 0 (and αshort < αc). Remind that at the transition point where C = 0 α tends at the critical value αc = 1/(8π).
Substituting the value in (9.7) we get

ρs =
2m2T

πh̄2
, (9.33)

at the transition temperature Tc. Since ρs = 0 at T > Tc we conclude that at T = Tc the superfluid density ρs
experiences the jump determined by (9.33) [Nelson and Kosterlitz, 1977].
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Let us return to correlation functions of the vorticity which are determined by the generating functional (9.10).
Substituting there (9.13) we get

Z(σ) =
∫
Dϑ exp

{
−
∫

d2r
[α
2
(∇ϑ)2 − β cos(ϑ+ σ)

]}
. (9.34)

Expanding the right-hand side of (9.34) up to the second order over σ we get the pair correlation function( m

2πh̄

)2
⟨ω1ω2⟩ = β⟨cosϑ⟩δ(r1 − r2)− β2⟨sinϑ1 sinϑ2⟩ , (9.35)

where averaging in the right-hand side of (9.35) is performed with the weight exp(−H). We are interested in the
second term in the right-hand side of (9.35) which can be rewritten as

−1

2
β2⟨cos(ϑ1 − ϑ2)⟩+

1

2
β2⟨cos(ϑ1 + ϑ2)⟩ . (9.36)

Let us now start the renorm-group procedure. Then averages in the right-hand side of (9.36) conserve their form
except for the factors β which are renormalized in accordance with (9.22)

dβ2

dξ
= − 1

2πα
β2 . (9.37)

There is an essential difference: the factor β2 at cos(ϑ1 − ϑ2) in the right-hand side of (9.36) is renormalized up to
the scale |r1− r2| whereas the factor β2 at cos(ϑ1 +ϑ2) in the right-hand side of (9.36) is renormalized up to the size
of the specimen. Thus the second contribution can be neglected. We conclude that

⟨ω1ω2⟩ ∝ (β′)2 , (9.38)

where (β′)2 is the solution of the equation (9.37) taken at ξ = ln(Λ|r1 − r2|). We know that below the transition
temperature α tends to a constant in the long-scale limit. In the region we conclude from (9.37,9.38)

⟨ω1ω2⟩ ∝ |r1 − r2|−1/(2πα) . (9.39)

Problems

Problem 9.1
Besides the leading term (9.13) in the effective Landau expansion there are also subleading terms

Hsub = −
∫

d2r

∞∑
n=2

βn cos(nϕ) . (9.40)

Find RG-equations for the coefficients βn.
Problem 9.2
Besides the leading term (9.13) in the effective Landau expansion there are also subleading terms

Hsub = −
∫

d2r
∞∑

n=1

λn cos(nϕ)(∇ϕ)2 . (9.41)

Find RG-equations for the coefficients λn.

10. CRITICAL DYNAMICS

In this Section we will study the dynamics of the order parameter near a second order phase transition. The critical
dynamics is less universal than the static properties of the system: For different physical systems the dynamics of the
order parameter with the same number of the components could be quite different. Below we will treat the simplest
case: purely relaxational dynamics of the order parameter; the situation is widely spread.
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The dynamical equation for the purely relaxational dynamics of the order parameter φ is

∂tφ = f , f = Γ−1

(
−δF
δφ

+ ξ

)
, (10.1)

where Γ is the kinetic coefficient, F is the Landau functional and ξ are Langeven forces (white noise) which represent
the influence of short-scale (microscopic) degrees of freedom on the dynamics of the order parameter φ (which is a
macroscopic degree of freedom). Correlation functions of ξ have characteristic atomic scales and times. Since we
are interested in the macroscopic scales and macroscopic times correlation function of ξ can be regarded δ-correlated
both in time and in space. That means also that the statistics of ξ can be treated as Gaussian and is consequently
determined only by the pair correlation function. For our case the correlation function is

⟨ξ(t1, r1)ξ(t2, r2)⟩ = 2TΓ δ(t1 − t2) δ(r1 − r2) , (10.2)

where T is the temperature. The correlation function (10.2) enforces the Gibbs distribution exp[(F − F)/T ] for the
order parameter fluctuations. The expression (10.2) can be considered also as a manifestation of the fluctuation-
dissipation theorem.
Recall that the Landau functional F for the order parameter φ is

F =

∫
dr

{
a

2
φ2 +

b

2
(∇φ)2 + λ

24
φ4 − hφ

}
, (10.3)

where h is an external “magnetic field” and we omitted the third-order term over φ assuming that it is identically
equal to zero (or small). Then the equation (10.1) is written as

Γ∂tφ = −aφ+ b∇2φ− λ

6
φ3 + h+ ξ . (10.4)

Note that the second-order terms in the Landau functional (10.3) produce the linear terms in the equation (10.4)
whereas the fourth-order term in the Landau functional (10.3) produces the non-linear term (of the third order) in
the equation (10.4).
We will be interested in non-simultaneous correlation functions of the order parameter φ. A possible way to find the

correlation functions is to solve the equation (10.1) that is to express φ via the noise ξ. Then, to calculate, say, the pair
correlation function ⟨φ(t1, r1)φ(t2, r2)⟩ one should take the product φ(t1, r1)φ(t2, r2) (expressed via ξ) and average
the product over the statistics of ξ. Unfortunately, this straightforward way is inconvenient since it is impossible to
express φ via ξ, say, from the equation (10.4) explicitly. One can do it only as a series over the non-linearity that is
one can find φ as a series over λ. Then the correlation functions of φ can also be calculated as a series over λ. First
such procedure (in the context of turbulence) was suggested by Wyld (1961).
Below we will use another way which permits to examine besides the perturbative series non-perturbative effects

also (Martin, Siggia, Rose, 1973; Dominicis, 1976; Janssen, 1976). Namely, let us write a product of the solutions of
the equation (10.1) as the following functional integral

N−1

∫
Dφ δ (∂tφ− f)φ(t1, r1) . . . φ(tn, rn) . (10.5)

The integration here is performed over all functions of t and r and the δ-function is functional. Its principal property
is that ∫

Dφ δ(φ− ψ)Φ(φ) = Φ(ψ) ,

where Φ(φ) is an arbitrary functional.
The factor N in (10.5) is the normalization constant

N =

∫
Dφ δ (∂tφ− f) . (10.6)

Let us calculate the constant assuming, say, a discretization over time and space. Then instead of the equation (10.1)
one should write

φn+1(rj)− φn(rj)

ϵ
− fn(rj) = 0 , (10.7)
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where rj are points of the space lattice, the subscript n labels time points and ϵ is the step over time. Note, that we
accepted in Eq. (10.7) the retarded regularization: The “force” f + ξ determining the difference φn+1 − φn is taken
at the time moment tn. This regularization will be implied below. The functional integral is now a multiple integral
taken over values of the field φ at the N1 ×N2 points where N1 is the number of points in the spce lattice and N2 is
the number of steps in time. And the functional δ-function is now a product of conventional δ-functions (taken in all
N1 ×N2 points) with arguments determining by Eq. (10.7). Then

N =
∏
n,j

∫
dφn(rj)δ

[
φn+1(rj)− φn(rj)

ϵ
− fn(rj)

]
= ϵN1N2 , (10.8)

since the integral in Eq. (10.8) can be calculated step-by-step.
Let us convert the functional δ-function in Eq. (10.5) into an exponent. For this we use the well-known relation

for the conventional δ-function:

δ(x) =

+∞∫
−∞

dp

2π
exp(ipx) .

Representing the δ-functions as such integrals in all sites of our N1 ×N2 space-time lattice we get

N−1δ (∂tφ− f) =
∏
n,j

∫
∆d

2π
dpn(rj) exp

{
i∆dpn(rj) [φn+1(rj)− φn(rj)− ϵfn(rj)]

}
,

where ∆ is the step of the space lattice and d is the dimensionality of space. In the continuous limit we deal with a
new field p(t, r), the product

∏∫
dpnj can be written as the functional integral

∫
Dp and we get

N−1δ (∂tφ− f) = N−1

∫
Dp exp

{
i

∫
dt dr [p∂tφ− pf ]

}
, (10.9)

where the normalization constant is N = (∆d/2π)N1N2 . We see that the normalization constant N is indepenent of
all parameters determining the dynamics of φ (including the fields h and ξ).
Returning now to the expression (10.5) we conclude that the correlation function of φ can be written as

⟨φ(t1, r1) . . . φ(tn, rn)⟩ = N−1

∫
DφDp

⟨
exp

{
i

∫
dt dr [p∂tφ− pf ]

}⟩
φ(t1, r1) . . . φ(tn, rn) ,

where averaging in the right-hand side of the relation is performed over the statistics of ξ. This averaging with the
function (10.1) can be performed explicitly and we get

⟨φ(t1, r1) . . . φ(tn, rn⟩ = N−1

∫
DφDp exp

{
i

∫
dt dr

[
p∂tφ+

1

Γ
p
δF
δφ

+ i
T

Γ
p2
]}

φ(t1, r1) . . . φ(tn, rn) .(10.10)

It will be convenient for us to pass to a new field p → Γp. Including the factor ΓN1N2 into a redinition of the
normalization constant N we get finally

⟨φ(t1, r1) . . . φ(tn, rn⟩ = N−1

∫
DφDp exp (iI)φ(t1, r1) . . . φ(tn, rn) , (10.11)

I =

∫
dt dr

[
Γp∂tφ+ p

δF
δφ

+ iTΓp2
]
. (10.12)

By analogy with the quantum field theory we will call the quantity I effective action or simply action. For our
particular problem

I =

∫
dt dr

[
Γp∂tφ+ apφ+ b∇p∇φ+

λ

6
pφ3 − ph+ iTΓp2

]
. (10.13)

It is worth to consider correlation functions including besides the order parameter φ the auxiliary field p. For
example we will treat the pair correlation function

G(t1, t2, r1, r2) = ⟨φ(t1, r1)p(t2, r2)⟩ = N−1

∫
DφDp exp (iI)φ(t1, r1)p(t2, r2) , (10.14)
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which we will call Green function. The function determines the linear response of the system to the external “magnetic
field” h. Namely, at a variation of the field δh the average ⟨φ⟩ varies also and the variations are related as

δ⟨φ(t1, r1)⟩ = −i
∫

dt2 dr2G(t1, t2, r1, r2) δh(t2, r2) , (10.15)

as is follows from Eqs. (10.13,10.14). Now causality dictates G = 0 if t1 < t2. Of course for h = 0 (or for h
homogeneous in space and time) the Green function G is a function of the differences t1 − t2 and r1 − r2 only. Note
that the correlation functions of the auxiliary field p are zero. To prove the property let us return to the representation
of the correlation functions before the explicit averaging over the thermal noise ξ:

⟨p(t1, r1) . . . p(tn, rn)⟩ = N−1

∫
DφDp

⟨
exp

{
i

∫
dt dr [Γp∂tφ− pf ]

}⟩
p(t1, r1) . . . p(tn, rn) .

The integration of the exponent over φ gives the functional δ(p) and consequently the integral in the right-hand side
is equal to zero. Particularly, the average ⟨p⟩ and the pair correlation function ⟨p(t1, r1)p(t2, r2)⟩ are zero.
Let us now prove the fluctuation-dissipation theorem (FDT) (assuming h = 0). For the purpose we introduce a

new field

p̃ = p− i

2T
∂tφ . (10.16)

Expressing the effective action (10.12) via the new field we get

I =

∫
dt dr

[
iΓ

4T
(∂tφ)

2 + p̃
δF
δφ

+ iTΓp̃2
]
, (10.17)

where we omitted the boundary term originating from
∫
dt dr δF/δφ ∂tφ. We see that in terms of the fields φ, p̃

the effective action (10.17) is invariant under time reversing t → −t. That means particurlarly that the correlation
function ⟨p̃(t, r)p̃(0,0)⟩ is invariant under t→ −t. Writing the condition via the initial fields φ and p we get

∂tF (t, r) = iT [G(t, r)−G(−t, r)] , (10.18)

where F is the pair correlation function

F (t1 − t2, r1 − r2) = ⟨φ(t1, r1)φ(t2, r2)⟩ . (10.19)

Passing to Fourier components we obtain

F (ω) = −T
ω
[G(ω)−G(−ω)] . (10.20)

This is just the classical variant of the FDT since F is the pair correlation function and the difference in the right-hand
side gives the imaginary part of the linear responce function in accordance with Eq. (10.15).
Since (due to causality) G(t) is zero for negative t the Fourier transform G(ω) is a function analytical in the upper

half-plane. The property enables one to obtain the explicit expression for the simultaneous pair correlation function
in terms of the Green function. Indeed, the simultaneous correlation function can be written as

F (t = 0) =

∫
dω

2π
F (ω) = −T

∫
dω

2πω
[G(ω)−G(−ω)] .

Let us shift the integration contour into the lower semiplane. Since G(−ω) is analytic there, the integral of the second
term in the right-hand side is equal to zero. So, G(−ω) can be omitted. Next, let us shift the contour into the upper
semiplane. Since G(ω) is analytic in the upper semiplane the contribution to the integral will be produced by the
residue in the pole ω = 0 only. Therefore

F (t = 0) = −iTG(ω = 0) . (10.21)

We see from Eq. (10.13) that the effective action I is a sum of the second-order term over the fields φ and p
and of the fourth-order term proportional to λ. Therefore one can formulate a perturbation series for calculating the
correlation functions if to expand exp(iI in the relations like Eq. (10.11) into the series over λ. Each term of the
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FIG. 1: First correction to the normalization constant N .
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FIG. 2: First corrections to the Green function

expansion is reduced to a Gaussian integral and can be consequently calculated explicitly. The answers are expressed
via the bare correlation functions (10.14,10.19). In the Fourier representation

G0(ω, q) = −
1

Γω + ia+ ibq2
, (10.22)

F0(ω, q) =
2TΓ

Γ2ω2 + (a+ bq2)2
. (10.23)

Of course the integral ∫
dω

2π
F0(ω, q) =

T

a+ bq2
= −iTG0(ω = 0, q) ,

reproduces the bare simultaneous correlation function.
Let us first consider the perturbation series for the normalization constant N . The series can be represented on the

diagrammatic language. The first digram contributing to N is drawn in Fig. 1. There the solid line represents the pair
correlation function (10.23), the mixed line represents the Green function (10.22) (the dashed side corresponding to the
p-field) and the black point (the vertex) represents the interaction constant λ. The analytic expression corresponding
to the diagram contains the factor G(t = 0, r = 0) which is badly defined since the Green function G(t) has a jump
at t = 0. To recognize what is the value of G(t = 0, r = 0) we should return to the discrete version of our theory.
Then due to the retarded regularization assumed the simultaneous meaning of the Green function is equal to zero.
Thus we must take G(t = 0) = 0. Therefore the considered contribution to N is equal to zero. Higher contributions
to N are zero also since all the contributions contain the factor G(t = 0) = 0. Thus only the zero contribution to N
is non-zero which is in accordance with the property established above that N is independent of the parameters of
the effective action.
Next, let us examine the perturbation series for the Green function G. Diagrams corresponding to first corrections

to G are drawn in Fig. 2. As usual disconnected diagrams do not contribute into G. Really the disconnected diagrams
are zero because of the property G(t = 0) = 0. The same property leads to the conclusion that diagrams containing
closed G-function loops are zero. That is the reason why we present in Fig. 2 the diagram containing the closed
F -loop only. One can perform a partial summation corresponding to extracting self-energy blocks. Then the Green
function is written as

G(ω, q) = − 1

Γω + ia+ ibq2 +Σ
, (10.24)

where Σ can be called the self-energy function. Two first contributions to Σ corresponding to diagrams drawn in Fig.
2 are

Σ(ω, q) =
iλ

2
F0(t = 0, r = 0) (10.25)

−λ
2

2

∫
dω1 dω2 dq1 dq2

(2π)2+2d
F0(ω1, q1)F0(ω2, q2)G0(ω + ω1 + ω2, q + q1 + q2) .
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FIG. 3: First corrections to the pair correlation function

One can check that for ω = 0 the expression (10.25) is reduced to the static self-energy function as it should be in
accordance with Eq. (10.21). The FDT (10.20) is useful at this checking.
One can investigate also the perturbation series for the pair correlation function (10.19). Note that due to the

FDT (10.20) the perturbation series for F is reduced to the one for G. Nevertheless, it is instructive to treat the
perturbation series for F separately. First corrections to F is drawn in Fig. 3. Extracting the “polarization” blocks
(like in the last diagram in Fig. 3) and producing the corresponding summation we get

F (ω, q) = −G(ω, q)[2TΓ + 2Π(ω, q)]G(−ω, q) . (10.26)

The first contribution to the “polarization function” Π corresponding to diagrams drawn in Fig. 3 is

Π(ω, q) =
λ2

12

∫
dω1 dω2 dq1 dq2

(2π)2+2d
F0(ω1, q1)F0(ω2, q2)F0(ω + ω1 + ω2, q + q1 + q2) . (10.27)

Comparing Eq. (10.24) and Eq. (10.26) we conclude that the FDT (10.20) leads to the relation

Σ(ω, q)− Σ(−ω, q) = 2ω

T
Π(ω, q) . (10.28)

The relation can be directly checked for the expressions (10.25) and (10.27).
One believes that near the second-order phase transitions the correlation functions like (10.24) or (10.26) exhibit

a scaling behavior that is t-dependence does not destroy power-like behavior of the functions. Say, at T = Tc one
expects

F (t, q) =
1

q2−η
ϕ1(tq

z) , G(ω, q) =
1

q2−η
ϕ2(ω/q

z) , (10.29)

where η is the anomalous exponent of the static pair correlation function, z is the new dynamic exponent and ϕ1, ϕ2
are some functions of the homogeneous arguments.
As in statics, for the relaxation dynamics the dimension d = 4 is marginal. All corrections in this case (excluding

ultraviolet terms) have logarithmic character. Therefore one can try to investigate the correlation functions like
(10.24) or (10.26) by extracting the main sequences of diagrams. As in statics, the main sequence in this case is
the parquett one which has the same topological structure. Besides, the effective action (10.13) is renormalizable.
Therefore it will be more convenient for us to use the renorm-group methods to investigate the situation in 4d.
As previously, to get renorm-group equations we should devide our field into slow and fast components and integrate

the probability disribution function over the fast component. In our case we have two fields: φ and p and both fields
should be devided: φ = φ′ + φ̃ and p = p′ + p̃ where φ̃ and p̃ are the fast components containing the wave vetors
Λ′ < q < Λ. The probability distribution function in our case is exp(iI). Therefore an elementary step of the
renorm-group procedure is a transformation I(φ, p)→ I ′(φ′, p′) where

exp [iI ′(φ′, p′)] =

∫
Dφ̃Dp̃ exp [iI(φ′ + φ̃, p′ + p̃)] . (10.30)
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FIG. 4: The F −G loop.

The effective action here by analogy with the Landau functional can be written as

I(φ′ + φ̃, p′ + p̃) = I(φ′, p′) + I(φ̃, p̃) + Iint ,

I(2)int =
λ

2

∫
dt dr

[
p′φ′φ̃2 + p̃φ̃(φ′)2

]
, (10.31)

I(3)int =
λ

6

∫
dt dr

[
p′φ̃3 + 3p̃φ̃2φ′] . (10.32)

In spirit of the conventional procedure for the statics we start from the correlation functions which are determined
by the second-order effective action

Ĩ0 =

∫
dt dr

[
Γp̃∂tφ̃++b∇p̃∇φ̃+ iTΓp̃2

]
,

G̃0(ω, q) = −
1

Γω + bq2
, F̃0(ω, q) =

2TΓ

Γ2 + b2q4
. (10.33)

Then contributions to ∆I = I ′(φ′, p′)− I(φ′, p′) can be calculated perturbatively.
The one-loop contributions to ∆I can be written as

∆1I =
i

2

⟨[
I(2)int

]2⟩
, ∆2I = i

⟨
I(2)intĨa

⟩
, (10.34)

Ĩa = a

∫
dt dr p̃φ̃ ,

where averaging is performed with the weight exp
(
iĨ0
)
. For both contributions this averaging is reduced to calculating

a F −G loop depicted in Fig. (4). Analytically, the loop corresponds to the expression∫
dω dq

(2π)1+d
G̃0(ω, q)F̃0(ω, q) .

Using the FDT (10.20) and taking the integral over ω we arrive at the same expression as in statics for a loop
constituted fro two pair correlation functions. Next, calculating the coefficients we get corrections to λ (from ∆1I)
and to a (from ∆2I) which coincide with ones calculated in statics. Therefore in dynamics we have the same renorm-
group equations for λ and a as in statics.
There are no corrections to the parameters b and Γ in the one-loop approximation. Again, the property is identical

to one occurring in statics. Thus to find principal contributions to b and Γ one should consider two-loop contributions.
Namely, the main correction to the effective action responsible for the renormalization of b and Γ is

∆3I =
i

2

⟨[
I(3)int

]2⟩
=
iλ2

12

∫
dt1 dr1

∫
dt2 dr2

⟨
φ̃3
1p̃2φ̃

2
2

⟩
p′1φ

′
2

+
iλ2

72

∫
dt1 dr1

∫
dt2 dr2

⟨
φ̃3
1φ̃

3
2

⟩
p′1p

′
2 . (10.35)
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The first contribution in Eq. (10.35) gives the renormalization both of the terms Γp∂tφ and b∇p∇φ in the effective
action whereas the second term gives the renormalization of the term TΓp2 in the effective action. Extracting the
correction to b from the first term we find that it is the same as in statics. Therefore the renorm-group equation
for b is identical to one occurring in statics. Next, one can extract from Eq. (10.35) corrections to the factors at
p∂tφ and p2 and check that they give the same renormalization of Γ. The simplest way to check the property is in
using the FDT (10.20) (without explicit finding the integrals). The property means that the effective action (10.13)
is renormalizable. It can be treated also as a manifestation of the fluctuation-dissipation theorem.
Below we will be interested in the renormalization of Γ and therefore we focus on the second term in Eq. (10.35).

We can substitute there p′2 by p′1 and a a result we find the following expression for the correction to Γ:

∆Γ =
λ2

12T

∫
dt dr F̃ 3

0 (t, r) , (10.36)

where the function F̃0 can be found as the Fourier transform of Eq. (10.33):

F̃0(t, r) =
T

4π2br2

[
1− exp

(
−Γr2

4bt

)]
. (10.37)

Of course the expression (10.37) is correct only if Λ′ ≪ r−1 ≪ Λ. Substituting Eq. (10.37) into Eq. (10.36) we get

∆Γ =
λ2T 2Γ

3 · 28π4b4

∫
dr

r

∞∫
0

dη

η2
[1− exp(−η)]3 .

The integral over η here is equal to 3 ln(4/3). Next, the integral
∫
dr/r produces ln(Λ/Λ′). Thus we get

∆Γ =
1

9
ln(4/3)g2Γ ln(Λ/Λ′) .

Therefore finally we get the following renorm-group equation for Γ

dΓ

dξ
=

1

9
ln(4/3)g2Γ , ξ = ln(Λ/Λ′) , (10.38)

since the invariant charge (for the one-component order parameter) is

g =
3Tλ

16π2b2

The equation (10.38) can easily be generalized for the n-component order parameter:

dΓ

dξ
=

3(n+ 2)

(n+ 8)2
ln(4/3)g2Γ . (10.39)

Now we can pass to dimensionality d = 4− ϵ. In the leading order over ϵ we can substitute g = ϵ into Eq. (10.39).

Then one gets Γ ∝ (Λ′)−3(n+2)/(n+8)2 ln(4/3)ϵ2 . Remind that in the same approximation b ∝ (Λ′)−(n+2)ϵ2/2(n+8)2 .
Substituting here Λ′ = q and equating the terms Γω and bq2 (figuring, say, in the Green function) we get ω ∝ qz

where the dynamic critical exponent is

z = 2 +
(n+ 2)ϵ2

2(n+ 8)2
[6 ln(4/3)− 1] .

The expression can be rewritten as (Halperin and Hohenberg, 1972)

z = 2 + [6 ln(4/3)− 1] η , (10.40)

where η is the anomalous exponent of the pair correlation function in statics.

Problems

Problem 10.1
Prove that the expressions (10.1,10.2) lead to the Gibbs simultaneous probability distribution function exp[(F −
F)/T ] for the order parameter fluctuations.
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11. KPZ PROBLEM

The KPZ (Kardar-Parisi-Zhang) problem is associated with processes like flame propagation or roughning. The KPZ
equation is formulated for the quantity h which describes fluctuations of the moving interface near its equilibrium
(flat) shape. On the other hand, the problem is related to the properties of the mixed state of high-temperature
superconductors. The same equation determines a distribution of the quantum vortices in a random potential (then
the role of time is played by the coordinate along the magnetic field). Thus the equation is quite universal. The
universality is accounted for by the fact that the KPZ equation describes the long-scale dynamics of any scalar degree
of freedom h provided its dynamics is invariant under a shift h→ h+ const and is not invariant under h→ −h.
The KPZ equation is written as

∂th = λ(∇h)2 +D∇2h+ ζ . (11.1)

The coefficient D in (11.1) could be interpreted as the diffusion coefficient, λ is the non-linearity coefficient, and ζ is
the random force which is the white noise in time:

⟨ζ(t1, r1)ζ(t2, r2)⟩ = 2Tδ(t1 − t2)δΛ(r1 − r2) . (11.2)

Here, T characterizes the strength of the force (T can be called the effective temperature) and δΛ(r) is a function
normalized as ∫

dr δΛ(r) = 1 , (11.3)

and with the support of the size Λ−1. The KPZ equation (11.1) describes processes occurring on scales much larger
than Λ−1 that is the wave number Λ plays the role of the ultraviolet cutoff. Thus the driving force ζ in the KPZ
equation (11.1) is short correlated both in space and time what resembles critical dynamics or inverse cascades in
turbulence.
It is possible to treat the equation (11.1) for any dimension d of space. The most interesting physical dimension

for the KPZ problem is d = 2, it corresponds both to roughning and to the vortices in the random potential. The
dimension d = 2 is very interesting also from the theoretical point of view since in this case one encounters the
“asymptotic freedom”. Namely, a logarithmic renormalization takes place up to a “confinement length” Rc starting
from which the strong coupling regime occurs.
We will examine correlation functions of h

⟨h(t1, r1) . . . h(tn, rn)⟩ , (11.4)

on scales much larger than Λ−1. The correlation functions are expected to be insensitive to the concrete shape of
the function δΛ(r). One is interested in stationary distribution when the correlation function (11.4) are homogeneous
in time and in space. Generally, the average ⟨∂th⟩ is nonzero. Physically it describes a regular drift of the surface
for flame propagation or roughning. The quantity is determined by the ultraviolet properties of the system and is
consequently non-universal (has no relation to long-scale behavior of the system). The drift can be excluded by a
transformation h → h + const · t. Thus we assume ⟨∂th⟩ = 0 (formally for the purpose we should accept a non-zero
average ⟨ζ⟩). We assume also ⟨h⟩ = 0. Note that there is no Gibbs distribution for simultaneous correlation functions
(except for 1d case). In that sense the problem is close to turbulence.
To calculate the correlation functions (11.4) one must solve the equation (11.1) at a given “driving force” ζ, take

the product written in Eq. (11.4) and average over the statistics of ζ (the last procedure is designated by the
angular brackets there). Unfortunately, it is impossible to realize the scheme explicitly. Therefore it is convenient to
reformulate the problem. Instead of averaging over the solutions of (11.1) let us integrate over all functions h(t, r)
taking the equation (11.1) into account by introducing the corresponding (functional) δ-function. Converting then
the δ-function into an exponent by introducing an auxiliary field p and averaging the result over the statistics of ζ we
get a formulation close to one used in the quantum field theory. For example, the pair correlation function is written
as the following functional integral

F (t1 − t2, r1 − r2) = ⟨h(t1, r1)h(t2, r2)⟩ =
∫
DhDp exp(iI)h(t1, r1)h(t2, r2) , (11.5)

where the effective action I is

I =

∫
dt dr

[
p∂th−Dp∇2h− λp(∇h)2 + iTp2

]
. (11.6)
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More precisely, the last term in (11.6) should be written as

iT

∫
dt dr1 dr2 δΛ(r1 − r2)p(t, r1)p(t, r2) ,

what reveals the character of the ultraviolet behavior.
Analogously to (11.5) high-order correlation functions of h can be presented. One can incorporate into consideration

also correlation functions containing the auxiliary field p. Say, the correlation function

G(t1 − t2, r1 − r2) = ⟨h(t1, r1)p(t2, r2)⟩ =
∫
DhDp exp(iI)h(t1, r1)p(t2, r2) , (11.7)

has the meaning of the response function of the system. Namely, if an “external force” f(t, r) is added to the
right-hand side of the equation (11.1) then a non-zero value of ⟨h⟩ appears. In the linear approximation

⟨h(t1, r1)⟩ = −i
∫

dt2 dr2G(t1 − t2, r1 − r2)f(t2, r2) . (11.8)

Thus due to causality G(t, r) = 0 if t < 0. Note also that the correlation function ⟨p1p2⟩ is equal to zero.
Some words about the perturbation theory.
Bare values of the correlation functions can be found if to omit in Eq. (11.6) the third order term (proportional to

λ). That corresponds to the linearization of the equation (11.1). Then functional integrals (11.5,11.7) and so further
(determining the correlation functions) are Gaussian and can be calculated explicitly. All answers are expressed via
the bare pair correlation functions. Explicit expressions for the functions are

F0(t, r) =

∫
dω dq

(2π)d+1
exp(−iωt+ iqr)

2T

ω2 +D2q4
=

∫
dq

(2π)d
exp(iqr)

T

Dq2
exp(−Dq2|t|) , (11.9)

where ω is frequency and q is wave vector. The analogous expression for the responce function is

G0(t, r) = −
∫

dω dq

(2π)d+1
exp(−iωt+ iqr)

1

ω + iDq2
= iθ(t)

1

(4πDt)d/2
exp

(
− r2

4Dt

)
, (11.10)

where θ(t) is the step function. The expressions (11.9,11.10) are correct provided r ≫ Λ−1 or Dt ≫ Λ−2. If d > 2
then the simultaneous pair correlation function is

F0(t = 0, r) ∼ T

D
r2−d . (11.11)

If d ≤ 2 then at t = 0 the integral (11.9) over q diverges at small q. That means that the integral is determined by
scales of the order of the size of the system. In this case it is more reasonable to introduce the quantity

F0(t = 0, 0)− F0(t = 0, r) ∼ T

D
r2−d . (11.12)

Then one should analyze corrections to the expressions (11.9,11.10) related to the third order term in (11.6). The
corrections can be examined in terms of the perturbation series generated by (11.5). Actually the expansion is
performed over h. It can be seen directly from Eq. (11.1) since the non-linear term there contains an additional
power of h. Thus the expressions (11.11,11.12) multiplied by λ2/D2 can serve as a measure of the non-linearity level
for typical fluctuations. If d > 2 then the strength of the fluctuations diminishes with increasing scale. Therefore
one should estimate the level of the non-linearity at r ∼ Λ−1. We conclude that we are in the weak coupling regime
for Tλ2Λd−2 ≪ D3 and in the strong coupling regime otherwise. If d ≤ 2 then we are always in the strong coupling
regime since the expression (11.12) increases as the scale grows. More precisely, if Tλ2 ≪ D3Λ2−d then there exists
the region of scales

[D3/(Tλ2)]1/(2−d) ≫ r ≫ Λ−1 ,

where corrections to the expression (11.9) are negligible. For larger scales fluctuations make the correlation function
(11.5) strongly different from Eq. (11.9). We see that the case d = 2 is marginal. Then the expression (11.12) is
proportional to ln(Λr). In the case fluctuation corrections to the pair correlation function (11.9) are small provided
Λ−1 ≪ r ≪ Rc where

Rc ∼ Λ−1 exp

(
2πD3

Tλ2

)
, (11.13)
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which is just the “confinement length” noted above. This region of scales (where the perturbation theory works)
exists if Tλ2 ≪ D3. If r >∼ Rc then the expressions (11.9,11.10) for the correlation functions (11.5,11.7) are essentially
modified. Calculation of the correlation functions in the region of scales r >∼ Rc is one of the main challenges to the
theory.
We see that for d = 2 the logarithmic situation is realized where the renorm-group approach could be useful. Let

us formulate the conventional renorm-group procedure for the case. First of all, we should devide the fields h and p
on the fast and the slow parts:

h = h′ + h̃ , p = p′ + p̃ , (11.14)

where the fast parts h̃, p̃ contain Fourier harmonics with wave vectors from Λ′ up to Λ. Then one should integrate
over h̃, p̃ the partition function exp(iI) obtaining the new partition functions for the slow fields:

exp(iI ′) =
∫
Dh̃Dp̃ exp(iI) . (11.15)

Substituting the representation (11.14) into (11.6) we get

I = I(h′, p′) + I(h̃, p̃) + Iint ,

where

Iint = −λ
∫

dt dr
{
p′(∇h̃)2 + 2p̃∇h′∇h̃

}
. (11.16)

Next, expanding the right-hand side of the relation (11.15) over Iint we get

I ′(h′, p′)− I(h′, p′) = ⟨Iint⟩+
i

2
⟨⟨I2int⟩⟩ −

1

6
⟨⟨I3int⟩⟩+ . . . , (11.17)

where angular brackets mean averaging over the statistics of fast variables and double angular brackets mean irre-
ducible correlation functions.
Really only terms of the second and of the third order in the right-hand side of the relation (11.17) could contain

logarithms in one-loop terms and therefore only these terms should be kept in the approximation. Substituting the
expression (11.16) into Eq. (11.17) we get in the approximation∫

dt dr∆λp′(∇h′)2 = −2λ3
∫

dt1 dr1

∫
dt2 dr2

∫
dt3 dr3 ⟨⟨p′1(∇h̃1)2p̃2∇h′2∇h̃2p̃3∇h′3∇h̃3⟩⟩ ,∫

dt dr∆Tp′2 =
λ2

2

∫
dt1 dr1

∫
dt2 dr2 ⟨⟨p′1(∇h̃1)2p′2(∇h̃2)2⟩⟩ ,∫

dt dr∆D∇p′∇h′ = 2iλ2
∫

dt1 dr1

∫
dt2 dr2 ⟨⟨p′1(∇h̃1)2p̃2∇h′2∇h̃2⟩⟩ .

Note that there are no corrections to the term p∂th in the effective action (11.6) since Iint (11.16) contains only
gradients of h. Calculating the above averages in accordance with the Wick theorem and the expressions (11.9,11.10)
we find

∆λ = 0 , ∆D = 0 , ∆T =
λ2T 2

2πD3
ln(Λ/Λ′) ,

what corresponds to the following renorm-group equations

dT

d ln(Λ/Λ′)
=
λ2T 2

2πD3
,

dλ

d ln(Λ/Λ′)
= 0 ,

dD

d ln(Λ/Λ′)
= 0 . (11.18)

Of course zeros in the right-hand side of the RG equation for λ and D are not casual. They are consequences of some
symmetries of the KPZ problem which are discussed below.
We conclude from Eqs. (11.18) that the dimensionless coupling constant g for the KPZ problem is

g =
λ2T

2πD3
.
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The equation (11.18) is rewritten as

dg

d ln(Λ/Λ′)
= g2 ,

with the well-known solution

g =
g0

1− g0 ln(Λ/Λ′)
,

where g0 is the value of the coupling constant on scales ∼ Λ−1. If g0 ≪ 1 (what is equivalent to Tλ2 ≪ D3) then the
renormalized coupling constant g is small up to the scale where ln(Λ/Λ′) ≈ g−1

0 what gives for Λ′−1 just the estimate
(11.13). On scales larger than Rc we cannot apply the renorm-group method, it is the region of strong coupling. Thus
the situation resembles asymptotic freedom known from the theory of strong interactions. It is very hard to establish
analytically the behavior of the correlation functions of h on scales larger than Rc. Numerics exhibits power-like
behavior of the average ⟨(h1 − h2)2⟩. The theoretical problem is to confirm (or to reject) the scaling behavior and
to find the corresponding exponent. There is also a question concerning anomalous scaling that is exponents of the
averages ⟨(h1 − h2)2n⟩.
Below we establish some properties which would help in examining the non-perturbative region.
By rescaling the field h and the time t we can change the coefficients λ and D. It will be convenient for us to choose

λ = 1/2 and D = 1. Then the equation (11.1) is rewritten as

∂th =
1

2
(∇h)2 +∇2h+ ζ . (11.19)

If d ̸= 2 then the constant T can also be redefined if to include into rescaling coordinates. Then the only (dimensionless)
parameter in the problem will be the ultraviolet cutoff Λ. Below we keep the parameter T .
Note that the equation (11.19) is invariant under the transformation

h(t, r)→ h(t, r − vt)− vr , ζ(t, r)→ ζ(t, r − vt) , (11.20)

where v is an arbitrary infinitesemal parameter. The relation (11.2) is also invariant under the transformation (11.20).
Therefore our problem has symmetry which can be called Galilean invariance since (11.20) resembles the Galilean
transformation. The symmetry under (11.20) shows that the terms with ∂th and with (∇h)2 in the KPZ equation
must have the same transformation law at a renormalization. That explains zero in the right-hand side of the RG
equation (11.18) for λ since there are no (logarithmic) corrections to the term with ∂th in the effective action.
In the dimension one the KPZ problem is in some sence exactly solvable. The peculiarity of the 1d case is that the

non-linear term in the equation (11.19) conserves the energy

H =
1

2

∫
dx (∂xh)

2 , (11.21)

what can be checked directly. Therefore the stationary distribution in the case is the Gibbs distribution

P(h) ∝ exp (−H/T ) , (11.22)

where P is the probability distribution function for simultaneous fluctuations of the field h. It can be checked, say, if
to solve the Focker-Plank equation

∂tP = −
∫

dx
∂

∂h(x)

{[
1

2
(∂xh)

2 + ∂2xh

]
P
}
+ T

∫
dx1 dx2 δΛ(x1 − x2)

∂2P
∂h(x1)∂h(x2)

. (11.23)

Strictly speaking, the Gibbs distribution (11.22) is a solution of the equation (11.23) if to substitute δΛ(x1 − x2) →
δ(x1 − x2) into Eq. (11.23). That means that the equipartition (11.22) is correct only for scales r ≫ Λ−1.
The distribution (11.22) is Gaussian one and therefore the simultaneous statistics of h is determined solely by the

pair correlation function

F (x1 − x2) = ⟨h(t, x1)h(t, x2)⟩ . (11.24)

The correlation function (11.24) is determined by the integral

F (x) =

∫ +∞

−∞

dq

2π
exp(iqx)

T

q2
,
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sitting on the size of the system. Therefore a more reasonable quantity is

⟨(h1 − h2)2⟩ = T |x1 − x2| , (11.25)

where h1 = h(t, x1), h2 = h(t, x2). The quantity (11.25) is analogous to the so-called second-order structure function
in hydrodynamic turbulence.
There is no information about non-simultaneous correlation functions of h in 1d. It is possible to say something

definite only for wave vectors T ≪ q ≪ Λ (if the region exists) where the expression (11.9) is correct. For q <∼ T the
non-simultaneous statistics of h is strongly non-Gaussian since we deal with strong interaction there. One cannot say
anything definite about correlation functions of h in the region. Moreover, a character of scaling for the correlation
functions is unknown.
Let us introduce the quantity

Ψ = exp(h/2) . (11.26)

Then the equation (11.19) is rewritten as

∂tΨ = ∇2Ψ+ (ζ/2)Ψ . (11.27)

Thus instead of the nonlinear equation (11.19) with the additive noise we obtain the linear equation with the mul-
tiplicative noise. Unfortunately, it does not lead to solving the problem. Moreover, correlation function of Ψ does
not possess a simple scaling behavior (as expected for the correlation functions of h). Next, to restore the correlation
function of h we should know an infinite series of the correlation functions of Ψ.
We see that if omit the term with the pumping ζ in Eq. (11.27) then the equation will be invariant under the

transformation

Ψ→ Ψ+ ur ,

where u is an arbitrary parameter. In terms of the field h that is a nonlinear transformation which is satisfied due
to an interplay of the terms in (11.1) proportional to λ and D. Therefore renormalization laws of the terms are
identical. That is the reason why besides zero in the right-hand side of the RG equation (11.18) for λ we see zero in
the right-hand side of the RG equation (11.18) for D.
The correlation functions of the quantity Ψ can be written like in Eq. (11.5) as functional integrals:

⟨Ψ1Ψ2 . . . ⟩ =
∫
DΨDP exp (iICH)Ψ1Ψ2 . . . , (11.28)

where P is a new auxiliary field. The effective action corresponding to Eq. (11.27) is

ICH =

∫
dt dr (P∂tΨ+∇P∇Ψ)

+
iT

4

∫
dt dr1 dr2 P (t, r1)Ψ(t, r1)δΛ(r1 − r2)P (t, r2)Ψ(t, r2) . (11.29)

Note that the correlation functions (11.28) are time-dependent. That is accounted for by the fact that at the accepted
initial condition (h = 0 at t = 0) in an unbound specimen there is a contribution to ⟨h2⟩ linearly growing with
increasing t. Besides, the distribution of h(t, r1)− h(t, r2) is stationary.
Let us introduce the following simultaneous correlation functions

SN (t, r1, . . . , rN ) = ⟨Ψ(t, r1) . . .Ψ(t, rN )⟩ exp
[
−T

4
NδΛ(0)

]
. (11.30)

Then we obtain from (11.27) closed equations

∂tSN =
N∑

k=1

∇2
kSN +

T

2

∑
k>j

δΛ (rk − rj)SN . (11.31)

Particularly for N = 2 we get

∂tS2(t, r) = 2∇2S2 +
T

2
δΛ (r)S2 , (11.32)
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where r = r1 − r2.
One can get from (11.31,11.32) an integral equation for SN . Assuming that h = 0 at t = 0 we obtain for dimen-

sionality d = 2

SN (t, r1, . . . , rN ) = 1 +
T

2

∑
k>j

∫ t

0

dτ

(4πτ)N

∫ ∏
i

d2r′i

exp

[
− 1

4τ

∑
n

(rn − r′n)
2

]
δΛ
(
r′k − r′j

)
SN (t− τ, r′1, . . . , r′N ) , (11.33)

S2(t, r) = 1 +
T

4

∫ t

0

dτ

4πτ

∫
d2r′ exp

[
− (r − r′)2

8τ

]
δΛ (r′)S2(t− τ, r′) . (11.34)

If T ≪ 1 then one can construct a perturbation series over T for SN . For example, the pair correlation function is
written as

S2(t, r) = 1 +
T

16π
ln

t

r2
+ . . . , (11.35)

the expression implies t≫ r2. We see that for large enough t the perturbation theory fails.
The equations (11.31,11.32) can be written as

∂tSN = −ĤNSN ,

where “Hamiltonians” ĤN contain kinetic and potential parts, the latter correspond to potential wells. Then at least
for N = 2 there exists a bound state (remember that d = 2). We believe that bound states exist also for any N .

In this case the large t asymptotics of SN will be determined by the ground state of the Hamiltonian ĤN with the
energy EN = −|EN |, that is

SN (t, r1, . . . , rN ) ≈ exp(|EN |t)ΦN (r1, . . . , rN ) , (11.36)

where ΦN are wave functions corresponding to the ground states. An equation for ΦN can be found from (11.31) and
has the form: (

EN +
N∑
i=1

∇2
i

)
ΦN = −T

2

∑
i<j

δΛ(ri − rj)ΦN . (11.37)

Actually, we should find a solution of Eq. (11.37) independent of the center mass coordinate.
One can easily find the solution of the equation (11.37) if N = 2:

Φ2(r1, r2) = K0

(√
|E2|
2
|r1 − r2|

)
, (11.38)

8π

T
= ln

Λ√
|E2|

. (11.39)

The expression (11.38) is correct if Λ|r1 − r2| ≫ 1 and the relation (11.39) is correct if T ≪ 1. We see that the
function is logarithmic for Rc > r > Λ−1 and exponentially decays for r > Rc. The same behavior is expected for the
high-order functions ΦN .

12. TWO-DIMENSIIONAL HYDRODYNAMICS

Here, we are going to consider the role of thermal fluctuations in two-dimensional hydrodynamics. We start from
the incompressible case where fluctuations were examined by Forster, Nelson, and Stephen (1978).
The incompressible hydrodynamics is described by the Navier-Stokes equation

∂tv + (v∇)v = ν∇2v −∇P/ρ+ ξ , (12.1)

supplemented by the incompressibility condition

∇v = 0 . (12.2)
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Here v is the velocity, ν is the kinematic viscosity coefficient, P is the pressure, ρ is the 2d mass density (which is
treated as homogeneous one), and ξ is the thermal noise. It is characterized by the correlation function

⟨ξα(t1, r1)ξβ(t2, r2)⟩ =
Tν

ρ
δ(t1 − t2)

∫
d2q

(2π)2
(
q2δαβ − qαqβ

)
exp(iqr) , (12.3)

where r = r1 − r2 and T is the temperature. Note, that for the incompressible case the pressure P is excluded from
the set of dynamical variables. It is determined from the equation (12.1) and the incompressibility condition (12.2)
which lead to the relation

ρ∇ [(v∇)v] = −∇2P . (12.4)

The same procedure as described in Section 10 enables one to reduce the problem of calculating fluctuational effects
to the functional integral with the weight exp(iI) where I is the effective action constructed from the equation (12.1):

I =

∫
dtdr

{
pα∂tvα + pαvβ∂βvα + ν∂αpβ∂αvβ + i(Tν/ρ)(∂αpβ)

2
}
. (12.5)

Here p is an auxiliary field satisfying the condition ∇p = 0, analogous to the incompressibility condition ∇v = 0.
Just due to the condition ∇p = 0 the term with the pressure in the Navier-Stokes equation (12.1) does not contribute
to the effective action (12.5). The last term in the effective action (12.5) appears after averaging over the statistics of
the thermal noise in accordance with Eq. (12.3).
Now, say, the pair correlation function of the velocity is written as the following functional integral

Fαβ(t1 − t2, r1 − r2) = ⟨vα(t1, r1)vβ(t2, r2)⟩ =
∫
DvDp exp(iI)vα(t1, r1)vβ(t2, r2) . (12.6)

It is worth to treat “cross” correlation functions, say, the pair correlation function

Gαβ(t1 − t2, r1 − r2) = ⟨vα(t1, r1)pβ(t2, r2)⟩ =
∫
DvDp exp(iI)vα(t1, r1)pβ(t2, r2) . (12.7)

The pair correlation function (12.7) determines the susceptibility of the system. Suppose that the external force
density fα is applied to the system which has to be added to the right-hand side of the equation (12.1):

∂tv + (v∇)v = ν∇2v −∇P/ρ+ ξ + f/ρ . (12.8)

Then an average velocity ⟨vα⟩ is generated which in the linear approximation is expressed as

⟨vα(t1, r1)⟩ = −i
∫

dt2 dr2Gαβ(t1 − t2, r1 − r2)fβ(t2, r2)/ρ . (12.9)

To prove the relation (12.9) one has to incorporate the external force f into the effective action (12.5), use the
expression like Eqs. (12.6,12.7) for the average ⟨vα⟩, and expend exp(iI) up to the first order over f . The pair
correlation function ⟨pα(t1, r1)pβ(t2, r2)⟩ is zero (for proving see Section 10).
Now we are going to examine fluctuational effects in the system. As we will see, fluctuations lead to a logarithmic

renormalization of the viscosity coefficient. Thus, the adequate way to examine fluctuations is the renorm-group
technique.
As usual, we divide the fields v and p into “slow” and “fast” parts, designating the parts by prime and tilde

correspondingly:

v = v′ + ṽ , p = p′ + p̃ . (12.10)

Here ṽ and p̃ contain Fourier harmonics with wave vectors q lying in the interval Λ′ < q < Λ where Λ is the ultraviolet
cutoff. Substituting the decomposition (12.10) into the effective action (12.5) we get

I = I(v′,p′) + I(ṽ, p̃) + Iint , (12.11)

Iint =
∫

dt dr
{
−∂βp′αṽβ ṽα + p̃αv

′
β∂β ṽα + p̃αṽβ∂βv

′
α

}
. (12.12)

Then from the definition

exp(iI ′) =
∫
DṽDp̃ exp(iI) , (12.13)
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we get the correction

∆I(v′,p′) ≡ I ′(v′,p′)− I(v′,p′) = ⟨Iint⟩+
i

2
⟨⟨I2int⟩⟩ −

1

6
⟨⟨I3int⟩⟩+ . . . , (12.14)

where averaging is performed over “fast” fluctuations which is integration over ṽ and p̃ with the weight exp[iI(ṽ, p̃)],
and double brackets designate irreducible averages (cumulants).
We examine the renorm-group equations in the one-loop approximation. Then one should keep the second-order

terms in I(ṽ, p̃) and averaging in Eq. (12.14) is reduced to the Gaussian integrals. The integrals are expressed via
the averages

G̃αβ = −
∫

dω dq

(2π)3
exp(−iωt+ iqr)

(
δαβ −

qαqβ
q2

)
1

ω + iνq2
, (12.15)

F̃αβ =

∫
dω dq

(2π)3
exp(−iωt+ iqr)

(
δαβ −

qαqβ
q2

)
2Tνq2

ρ(ω2 + ν2q4)
. (12.16)

The first term in the right-hand side of Eq. (12.14) is zero, the second and the third terms contain logarithmic terms
(just the terms are of interest for us) and high-order terms can be neglected.
Let us first consider the contribution

∆1I(v′,p′) =
i

2
⟨⟨
∫

dt1 dr1 dt2 dr2 p
′
1αṽ1β∂β ṽ1αp

′
2µṽ2ν∂ν ṽ2µ⟩⟩ , (12.17)

originating from the second term in the right-hand side of Eq. (12.14). It can be rewritten as

∆1I =
i

2

∫
dt1 dr1 dt2 dr2 ∂βp

′
1α∂νp

′
2µ

[
F̃αµ(t, r)F̃βν(t, r) + F̃αν(t, r)F̃βµ(t, r)

]
, (12.18)

where t = t1 − t2 and r = r1 − r2. Since F̃ decreases fast for r > Λ′−1 and p′ is the “slow” field (slightly varying on
the scale Λ′−1), one can substitute in Eq. (12.18) in the main approximation p′2 by p′1. Then we get as an factor∫

dtdr
[
F̃αµ(t, r)F̃βν(t, r) + F̃αν(t, r)F̃βµ(t, r)

]
=

∫
dω dq

(2π)3
4T 2ν2q4

ρ2(ω2 + ν2q4)2

{(
δαµ −

qαqµ
q2

)(
δβν −

qβqν
q2

)
+

(
δαν −

qαqν
q2

)(
δβµ −

qβqµ
q2

)}
,

where we substituted the expression(12.16). The last integral is equal to

T 2

8πρ2ν
ln

Λ

Λ′ (δαβδµν + δαµδβν + δανδβµ)

Substituting this expression into Eq. (12.18) we get

∆1I =
iT 2

16πρ2ν
ln

Λ

Λ′

∫
dt1 dr1 ∂βp

′
1α∂βp

′
2α , (12.19)

where we have taken into account the conditions ∇v = ∇p = 0.
Let us now discuss other corrections produced by the term ⟨⟨I2int⟩⟩ in Eq. (12.14). First of all, it does not generate

terms quadratic over v′. The formal reason for this property is that such corrections are proportional to the product
G̃(t1 − t2)G̃(t2 − t1) which is zero since G(t) is zero for negative t due to causality. One could anticipate that terms
quadratic over v′ do not appear in the effective action since such terms violate the basic property ⟨pp⟩ = 0. Therefore
only the correction

∆2I = −i
⟨⟨∫

dt1 dr1 dt2 dr2 ∂βp
′
1αṽ1β ṽ1α

(
p̃2µv

′
2ν∂ν ṽ2µ + p̃2µṽ2ν∂νv

′
2µ

)⟩⟩
, (12.20)

has to be taken into account. Direct calculations including an expansion of v′2ν upto the first order over r1 − r2 give

∆2I =
T

16πρν
ln

Λ

Λ′

∫
dt1 dr1 ∂βp

′
1α∂βv

′
1α . (12.21)
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Note that the term proportional to p′∂tv
′ cannot appear in ∆2I since the expression in the right hand side of Eq.

(12.20) contains the derivative ∂βp
′
α.

Next, one should discuss the correction produced by the term ⟨⟨I3int⟩⟩ in Eq. (12.14). This correction could

renormalize the third-order contribution to the effective action (12.5). Nevertheless, direct calculations show, that
the average ⟨⟨I3int⟩⟩ does not generate any logarithmic term. The reason is in the Galilean invariance which reads

that the “full derivative” ∂t + vα∂α must enter the effective action. Since the term with p∂tv in the effective is not
renormalized, the third order term in the effective action (12.5) is not renormalized also.
Comparing the corrections (12.19,12.21) with the initial expression (12.5) we conclude that they are reduced to the

unified correction to the viscosity coefficient

∆ν =
T

16πρν
ln

Λ

Λ′ . (12.22)

This coincidence of the corrections to the viscosity coefficients in two different terms in Eq. (12.5) is a manifestation
of the fluctuation-dissipation theorem, which has to be reproduced at the renorm-group procedure. The renorm-group
equation corresponding to Eq. (12.22) is

dg

dξ
= −g2 , g =

T

8πρν2
, (12.23)

where ξ = ln(Λ/Λ′) and g has the meaning of the invariant charge. We conclude from Eq. (12.23) that we encounter
the “zero-charge” situation. Asymptotically at growing scale ξ increases, then g → ξ−1 and, consequently,

ν →

√
Tξ

8πρ
. (12.24)

Thus, the viscosity coefficient increases with increasing scale. Note that its large-scale value is independent of its bare
(small-scale) value.


