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Passive scalar turbulence forced steadily is characterized by the velocity correlation scale L,
injection scale l, and diffusive scale rd. The scales are well separated if the diffusivity is small,
rd� l ,L, and one normally says that effects of diffusion are confined to smaller scales, r�rd.
However, if the velocity is single scale, one finds that a weak dependence of the scalar correlations
on the molecular diffusivity persists to even larger scales, e.g., l�r�rd (E. Balkovsky et al., Pis’ma
Zh. Eksp. Teor. Fiz. 61, 1012 �1995� �JETP Lett. 61, 1049 �1995��). We consider the case of L
� l and report a counterintuitive result, namely the emergence of a new range of large scales, L
�r� l2 /rd, where the diffusivity shows a strong effect on scalar correlations. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2793145�

Studies of passive scalar advection in a random smooth
flow were pioneered by Batchelor1 and Kraichnan,2 who
considered the opposite extremes of almost frozen and short-
correlated in time random velocity gradients. The two ap-
proaches were later extended into a unified theory describing
the statistics of scalar correlations in a general smooth
flow.3–7 These theoretical studies were originally motivated
by interest in explaining the so-called viscous-inertial inter-
val of advection at scales smaller than the viscous, Kolmog-
orov scale. However, the theory, which is nowadays often
called Batchelor flow theory, also applies to many cases of
nonturbulent but chaotic smooth flows, e.g., of the type dis-
covered recently in polymer solutions.8

The main theoretical efforts in the field were focused on
the analysis of scalar correlations within the convective
range, rd�r� l, i.e., at the scales smaller than the injection
scale l but larger than the diffusive scale rd.4,9,10 The range of
scales above the pumping scale, even though very nontrivial
with highly intermittent correlations,11 attracted much less
attention. In this Letter, we continue to discuss the domain of
large scales. Complementary to our general interest in under-
standing multipoint correlations in turbulence, this study was
additionally motivated by our recent interest in the conden-
sate regime of two-dimensional �2D� turbulence,12 where
small-scale vorticity is advected passively by the large-scale
coherent part of the flow.

On a superficial level, studying correlations of a fluctu-
ating quantity upscale from the injection scale may seem
akin to many problems in equilibrium statistical mechanics,
e.g., of the type considered in the field of critical phenomena
where one studies fluctuations of an order parameter driven
by thermal noise at small scales. However, the essential dif-
ference here is that our problem is off-equilibrium due to the
fact that the scalar is advected by the prescribed velocity
field. A particularly important consequence of this fact is an
intermittent, strongly non-Gaussian statistics observed for

the problem at the scales smaller6,9 and larger11 than the
pumping length l.

In this Letter, we extend the analysis of Ref. 11 account-
ing for the effects of molecular diffusivity, which were ig-
nored in Ref. 11. A surprising result of our study is that
diffusion, although small, dominates correlation functions of
the scalar at large scales, r� l2 /rd. This result is Batchelor
flow specific and it can be explained in dynamical, Lagrang-
ian terms. The collinear anomaly, established in Ref. 9 and
later discussed in Refs. 6, 10, 14, and 15, states that Lagrang-
ian particles released along a line in a Batchelor flow stay
aligned, unless weak diffusive effects are accounted for. The
anomaly reveals itself in an angular singularity of the passive
scalar multipoint correlation functions observed near the par-
allel alignment of the points.9,10 Translation of the collinear
anomaly from the dynamical to statistical language goes as
follows. If diffusivity is neglected, a blob of freshly injected
passive scalar is deformed by a smooth flow into a strip of
the same density. The strip contributes to a correlation func-
tion of the passive scalar provided it covers all the points
where the correlations are measured. Thus the strip should
have the length r of the order of the separation between the
points, and it should also be oriented in a way that all the
points are covered. Since the flow is chaotic and orientation
of the stripe is random, the probability to cover the points is
determined by the angular size of the stripe. In incompress-
ible flow, the blob volume is conserved. The volume can be
estimated as ld, where d is the space dimensionality, thus the
cross section of the stripe can be estimated as ld /r and the
angular size of the stripe is �ld /rd. This results in the �r−d

scaling for the nth-order correlation function of the scalar,
K�n�= ��1¯�n�, in the collinear geometry, i.e., when the
points r1 , . . . ,rn lie on a straight line, and r is the size of the
most separated pair of points.11 Volume-preserving stretching
of the scalar blob, injected at the pumping scale l, should be
modified when the blob size in the contracting direction
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reaches �rd, since the diffusion blocks further contraction of
the blob beyond rd.

Let us concentrate on the 2D case. For a seriously
stretched stripe, with the spatial extent r� l2 /rd, the stripe is
�rd wide in cross section and therefore �d�rd /r gives an
estimate for the angular size of the stripe. The temporal dy-
namics of the stripe is as follows. The stripe grows in size
�along the stretching direction� while the scalar density in-
side the stripe, estimated as �rd /r fraction of the initial den-
sity, decreases. Besides, different stripes stretched simulta-
neously start to overlap along the contracting direction. Due
to the random character of the passive scalar injection, the
sign of the density in the overlapping stripes alternates, thus
leading to destructive interference. This additional effect
leads to further suppression of the scalar correlations by the
factor 1 /�N, where N�rrd / l2 is an estimate for the number
of stripes �that were initially of size l and separated by the
distance �l� which contribute to the overlapped conglomer-
ate. Combining the pieces, one derives the following scaling
for the 2nth-order correlation function of the passive scalar
measured at r� l2 /rd within the collinear geometry:

K�2n� � �dN−n � r−n−1rd
1−n. �1�

Equation �1� is the main result of the paper, which will be
confirmed below with proper rigor. The result shows a strong
dependence of the high-order correlations of the scalar at the
scales beyond the injection scales on the diffusivity, and it
should thus be contrasted with a much weaker dependence
on diffusion observed in the passive scalar correlations at
scales smaller than the injection scale.9

Even thought Eq. �1� is derived in 2D, the qualitative
result, stating a strong sensitivity to diffusivity of the scalar
fluctuations at large scales, also extends to 3D �and higher
dimensions�. In general, the simultaneous correlations are

expressed in terms of the Lagrangian evolution of a fluid
blob, while diffusivity stops contraction of the blobs at the
diffusion scale, rd, thus making the blob globally sensitive to
the small-scale, diffusion-related physics. Obviously, the 3D
picture of the phenomenon is more evolved due to existence
of an additional, third dimension in the blob dynamics that
can be either contracting or expanding. As a result, the 3D
generalization of Eq. �1� becomes sensitive to the sign of the
second Lyapunov exponent of the flow.13 This sensitivity is
similar to effects discussed in Refs. 14 and 15 in the contexts
of kinematic dynamo and decaying scalar turbulence, respec-
tively.

The dynamic equation for a passively advected scalar
field, �, is

�t� + u � � = � + �	� , �2�

where u�t ,r� is the flow velocity field, � is the diffusion
coefficient, and ��t ,r� is the pumping term. The velocity u
and the forcing � are assumed to be independent and random
functions in space/time with prescribed statistics, spatiotem-
porally homogeneous, and spatially isotropic. The forcing is
correlated at the scale l. We consider Batchelor �i.e., spatially
smooth� flow where the velocity field is correlated at the
scale L, the largest scale in the problem. We also assume that
the velocity fluctuations are sufficiently intense to guarantee
that the diffusive range, r�rd, where the effects of advection
are strongly suppressed by diffusion, is realized at scales
smaller than the pumping length, i.e., rd
 l. In Batchelor
flow, the velocity difference between points separated by a
distance much smaller than L is given by the first term of the
Taylor expansion in the interpoint separation, u��r1�
−u��r2�	����r1;�−r2;��. Therefore, the velocity derivatives
matrix, �̂, is the only velocity-related characteristic entering
the problem at scales smaller than L. In an incompressible
flow, discussed here, the velocity gradient matrix is traceless,
tr �̂=0. We also assume that �̂, followed in the reference
frame of a fluid parcel, is finitely correlated in time.

Representing solution of Eq. �2� in the Lagrangian frame
�see Ref. 5 for derivation details�, one arrives at the follow-
ing formal expression for the scalar field:

��t,r� = 

−

t

dt� exp��

t�

t

d���Ŵ�t,���2���t�,R� . �3�

Here R=Ŵ�t� , t�r and Ŵ�t� , t�=Texp�t
t�d��̂���� is the or-

dered exponential. Note that in an incompressible flow,

det Ŵ�t�=1. The argument R�t�� of the function � in Eq. �3�
traces back in time the Lagrangian trajectory arriving at the
position r at the moment of time t. The �-dependent expo-
nential on the right-hand side of Eq. �3� represents effects of
diffusion. Therefore, Eq. �3� is merely a formal way to ex-
press the aforementioned qualitative arguments concerning
the Lagrangian evolution of a passive scalar blob. Since � is
spatially correlated at the scale l, the temporal integral on the

right-hand side of Eq. �3� is formed at t− t�� �̄−1 ln�r / l�,
where �̄ is the principal Lyapunov exponent of the flow,
defined as the average logarithmic rate of Lagrangian trajec-
tories divergence. This stretching time diverges as r→,

FIG. 1. Schematic plot illustrating Lagrangian �temporal� evolution of two
blobs of scalar. �a� Initial injection. The blobs are of size �l separated by the
distance �l. �b� Result of diffusionless deformation. The blobs grow in size
along the expanding direction of the flow and decrease in size along the
contracting direction. Volumes and initial concentrations of the scalar inside
the blobs are preserved. This phase terminates when the width of the blobs
reaches rd. �c� Further deformation keeps the width of the blobs �rd, while
the lengths of the blobs continue to increase. Volumes of the blobs grow and
the density of the scalar inside the blobs decreases. Blobs will eventually
overlap. Dashed lines show the projected shape of the blobs realized if the
diffusivity is ignored �naive extension of stage �b��.
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which allows us to consider the forcing as short-correlated in
time. Then the forcing field is effectively Gaussian and thus
fully described by the pair correlation function

��r − r�� =
 dt���t,r���t�,r��� , �4�

decaying sufficiently fast with an increase in r at r� l. We
assume that ��r� is a function of �r� only.

For the short-correlated forcing, any correlation function
of the scalar field can be calculated in two steps. First, one
averages over times larger than the pumping correlation time

but smaller than �̄−1 ln�r / l�. This is formally equivalent to
averaging over the statistics of forcing for a given realization
of the velocity field. Averaging over velocity, corresponding
to longer times and larger spatial scales, follows. This
scheme gives the following expression for the simultaneous
pair correlation function of the scalar: K�r�= ���t ,r���t ,0��,

K�r� = 

0



dt
 dk�exp�J��k� , �5�

J = ikŴ�− t,0�r − 2�kÎ�t�k , �6�

Î�t� = 

0

t

d�Ŵ�− t,− ��ŴT�− t,− �� , �7�

where �k is the Fourier transform of ��r� and T indicates
matrix transposition. The only averaging left to be done in
Eq. �5� is over statistics of �̂.

Consider the d=2 case and introduce an Iwasawa-like
decomposition for the ordered exponential

Ŵ�− t,0� = � cos � sin �

− sin � cos �
��e� 0

0 e−� ��1 �

0 1
� . �8�

This representation is useful as the three governing fields,
� ,� ,�, decouple in the asymptotic limit of large time,

t��̄−1. Moreover, at the large times, the orientation angle �
becomes random uniformly distributed over the range
�0;2��, the distribution function of � freezes to a nonuniver-
sal stationary shape, and the typical � becomes a fluctuating
O�1� value, while the probability distribution of the finite
time Lyapunov exponent, �=� / t, attains the following self-
similar form:16

P�t,�� � �t exp�− tS���� . �9�

Here S��� is the so-called Crámer function, which is concave

and achieves its minimum at �= �̄, and the condition

S��̄�=0 together with the �t factor account for accurate nor-
malization of the total probability to unity.

In the limit �̄t�1, the main contribution to the integral
�7� originates from � close to t, thus leading to

Î�t� =
c

�̄
e2��t�Ô�t��1 0

0 0
�Ô−1�t� , �10�

where c is a fluctuating factor of order unity and Ô is the
�-dependent part of the decomposition �8�. �See Ref. 5 for a

detailed discussion of the c-field statistics.� Averaging over
homogeneous random orientations � �reflecting the assumed
isotropy of the velocity fluctuations�, one derives the follow-
ing expression for J from Eq. �6�:

J = ir�k1�e� + k2e−�� − 2crd
2k1

2e2�, �11�

where rd
2=� / �̄ and k1 ,k2 are components of the wave vector

k in the reference frame fixed by the decomposition �8�.
A comparison of the two terms in Eq. �11� suggests that

the outer scale interval, r� l, splits in two distinct subinter-
vals: l�r� l2 /rd and r� l2 /rd. To describe the first interval
of relatively small scales, one may ignore the last term in Eq.
�11�. Then, direct integration of Eq. �5� results in the diffu-
sionless scaling

K�r� �
1

r2 
 d2x��x� , �12�

already derived in Ref. 11. However, evaluating the integrals
in Eq. �5� in the regime where the second term in Eq. �11�
dominates the first one does not actually change the final
answer for the pair correlation function �12�. Indeed, in this
limit, integration over k1 in Eq. �5� is determined by the
diffusive exponential, which allows simply to replace k1 by
zero in the integrand of Eq. �5�. Integrating the result over t,
one arrives at a factor ��k2� /r, while subsequent integrations
over k2 and over the domain of small �, ��1, leads to the
same expression for K�r�, independent of the diffusion coef-
ficient.

We will see now that the cancellation of the rd depen-
dence in the pair correlation function is incidental, and it
does not actually extend to the general case of higher-order
correlation functions. Consider, for example, the fourth-order
simultaneous correlation function, K�4��r1 ,r2 ,r3 ,r4�
= ���t ,r1���t ,r2���t ,r3���t ,r4��, which is decomposed into
the following sum: K�4�=C�r12,r34�+C�r23,r14�+C�r13,r24�,
in the case of a Gaussian pumping, where rab=ra−rb. Being
interested in establishing scaling law for the special case of
collinear geometry, one focuses on an analysis of C�r ,r�.
Generalizing evaluations that resulted in Eqs. �5� and �11�,
one arrives at the following expression valid at r� l:

C�r,r� � 

0



dt1

0



dt2
 d2k
 d2q�exp�ir�k1�e�1

+ k2e−�1 + q1�e�2 + q2e−�2�

− 2crd
2�k1

2e2�1 + q1
2e2�2���k�q� , �13�

where �1=��t1� and �2=��t2�. If l�r� l2 /rd, then the dif-
fusive exponent in Eq. �13� can be neglected and one arrives
at the diffusionless expression

C�r,r� � 

0



dt1dt2���r�e�1,re−�1���r�e�2,re−�2�� ,

leading to the scaling C�r ,r��1/r2 derived in Ref. 11. Note
that the main contribution to the above time integrals comes
from the region exp��1��exp��2��r / l�1. In the r� l2 /rd

limit, the diffusive exponential in Eq. �13� cannot be re-
placed by unity. On the contrary, it dominates integration
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over k1 and q1 resulting in emergence of the ��0,k2���0,q2� term
in the integrand. Then, integrations over t1 and t2 decouple
from each other and one arrives at C�r ,r�
� �rdr3�−1�d2x��x��2, in accordance with the general for-
mula �1�.

The strong dependence of the correlation function on the
diffusion, observed for the collinear geometry, does not ex-
tend to a general off-collinear case, where thus the diffusion-
less consideration of Ref. 11 applies. These distinct collinear
and off-collinear results are asymptotically matched in the
rd /r-small angular vicinity of the collinear geometry. Note
also that if the Corrsin integral d2r��r� is equal to zero, then
the leading terms in the correlation functions cancel. In this
case the behavior of the correlation functions is determined
by nonuniversal features of the flow statistics.17

Summarizing, we have shown in this Letter that weak
molecular diffusion does control the large-scale correlations
in scalar turbulence steered by the Batchelor incompressible
flow. The main logical points of this Letter are as follows. �a�
Correlation of the passive scalar within the collinear geom-
etry are much stronger than in an off collinear case. The
angular extent of the collinear anomaly domain is controlled
by the fact that a scalar stripe injected and stretched by the
flow cannot get thinner than rd. �b� The effect of diffusivity
leads to a faster decay of scalar correlations with the scale r
at the largest scales than in the domain of smaller scales,
where diffusion is irrelevant. �c� Scaling in the diffusion-
controlled regime becomes sensitive to the order of correla-
tion function and in higher dimensions on details of the flow
statistics.13
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