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Profile of coherent vortices in two-dimensional turbulence
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The inverse cascade of two-dimensional turbulence in a restricted domain leads to creating a coherent

flow containing a number of system-size vortices. We examine the case of forcing turbulence with zero bottom

friction where the final statistically steady state is determined by viscosity. We analytically establish structure

of the coherent vortices in the state.
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In the theory of turbulence, one of the central prob-

lem is to understand and to describe phenomena related

to interaction of the mean (coherent) flow and of the

flow fluctuations. There are different situations depend-

ing on concrete conditions. Say, in the three-dimensional

developed turbulence fluctuations take energy from the

mean velocity exited at the integral scale of turbulence

whereas in convection coherent structures are created

from fluctuations [1–3]. Here, we consider the forced

two-dimensional (2D) turbulence excited by pumping

acting at a scale smaller that the box size [4]. Then at

some conditions large-scale coherent structures, includ-

ing big vortices, are generated from small-scale fluctua-

tions. This process occurs because the 2D Navier–Stokes

equation favors energy transfer to larger scales, the phe-

nomenon is known as the inverse energy cascade [5–7].

We analyze the 2D case where turbulence is excited

by pumping force correlated at a scale lp much smaller

than the box size L. The inverse energy cascade carries

the energy produced by pumping to larger and larger

scales. In an infinite system the inverse cascade is spread

up to a scale lα where the bottom friction terminates the

inverse cascade [5–7]. If the box size L is smaller than lα
then the energy carried by the inverse cascade is accu-

mulated at the box size, that gives rise to creating the

coherent structure. Already the first experiments on 2D

turbulence [8] have shown that in a vessel with relatively

small bottom friction, the energy accumulation leads to

formation of coherent flow containing vortices with sizes

of the order of the vessel size. The vortices are separated

by regions with a hyperbolic flow.

Subsequent direct numerical simulations [9] and ex-

periments [10] demonstrated that these coherent vor-

tices have the well-defined mean flow profiles with a

power-law radial dependence of the mean vorticity Ω

in the inner region of the vortex. The flow profile in

the region depends neither on the boundary conditions

nor on the type of forcing. In Refs. [11] results of ex-

tensive simulations of 2D turbulence in a periodic box

were presented together with theoretical explanation of

the results. They show that the internal vortex structure

is universal: the vortex flow is isotropic and outside a

small core the mean vortex (polar) velocity U is inde-

pendent of the separation from the vortex center. The

value of the mean velocity is U = (3ǫ/α)1/2 where ǫ

is the energy pumping rate per unit mass and α is the

bottom friction coefficient. Therefore the mean vortic-

ity behaves as Ω ∝ r−1 where r is separation from the

vortex center. Fluctuations of the flow in the regime are

smaller than the mean flow profile.

Here we analytically examine the case where the bot-

tom friction is negligible that is the limit α → 0. Then

the only dissipative mechanism is viscosity that cannot

immediately stop the energy accumulation at the box

size, since the viscosity effectiveness diminishes as the

scale grows. That leads initially to formation of the same

universal structure as in the presence of the bottom fric-

tion, but with gradually increasing velocity profile [9].

Then in the inner region of the coherent vortex the mean

velocity is U = (6ǫt)1/2 where t is the pumping dura-

tion. Due to the increase of the mean flow viscosity ul-

timately comes into game stabilizing the coherent flow.

We will be interested just in this final statistically ho-

mogeneous state caused by viscosity. We assume that

the state inherits such properties of the previous stage

such as isotropy of the coherent vortices and relative

smallness of fluctuations.

The starting point for our theoretical analysis is the

forced 2D Navier–Stokes equation for the 2D velocity

field v,

∂tv + (v · ∇)v = −∇p+ ν∇2
v + f . (1)
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Here p is pressure (per unit mass), ν is the kinematic

viscosity coefficient, and f is an external force (per unit

mass) exciting the turbulence. The Navier–Stokes equa-

tion (1) has to be supplemented by the incompressibility

condition ∇·v = 0. The pumping force f is also assumed

to be divergentless, ∇· f = 0. Then the pressure p is de-

termined by the equation

∇2p = −∂αvβ∂βvα, (2)

relating the pressure to the velocity gradients.

The pumping force f is assumed to be a random

function of time and space with homogeneous statis-

tics, with a correlation length lp much less than the

system size L. The energy production rate per unit

mass ǫ is then expressed as ǫ = 〈f · v〉. Here and be-

low angular brackets mean temporal averaging. For a

short-correlated in time forcing the average 〈f ·v〉 is in-

dependent of the velocity profile. The inverse cascade

and, further, the coherent flow are formed provided the

Reynolds number is large. Estimating the flow velocity

at the pumping length as vp ∼ (ǫlp)
1/3 we find that the

Reynolds number vplp/ν is large provided lp ≫ lν where

lν is the viscous length

lν = ν3/4/ǫ1/4. (3)

The inequality lp ≫ lν is assumed to be satisfied below.

We decompose the flow velocity into the mean (co-

herent) part V and the fluctuation one that we desig-

nate as v. In the final statistically steady state caused

by viscosity fluctuations v are small in comparison with

the mean velocity V and the main energy dissipation is

related to the mean velocity V. Estimating the veloc-

ity gradient as V/L we find the energy dissipation rate

per unit mass νV 2/L2. Balancing the dissipation rate

by the energy pumping rate ǫ one obtains

V ∼ L(ǫ/ν)1/2. (4)

The estimation is correct outside the coherent vortices,

in the hyperbolic region.

The mean (coherent) flow produces stretching the

flow fluctuations making their life time of the order of

|∇V |−1 where |∇V | is the characteristic velocity gradi-

ent of coherent flow. That leads to the estimation

v2 ∼ ǫ

|∇V | , (5)

for typical velocity fluctuations. The estimation (5) im-

plies that the fluctuation correlation length is less than

the characteristic scale of the coherent motion. Note

that due to the assumed inequality lp ≫ lν viscosity

does play no role in forming the fluctuation life time

and the estimation (5) can be obtained simply by di-

mension reasoning. It follows from Eqs. (4), (5) that in

the hyperbolic region

v2 ∼
√
ǫν ∼ V 2l2ν/L

2. (6)

Thus, the inequality lν ≪ L guarantees smallness of

the velocity fluctuations in comparison with the mean

velocity there.

We now pass to analyzing the flow characteristics

inside the vortex. The main goal of the analysis is to es-

tablish the profile of the mean flow there. As in the case

of finite bottom friction [10, 11], the vortex interior can

be separated into the vortex core and the region out-

side the core where the average velocity profile reveals

universal scaling properties. To describe the vortex, we

introduce polar coordinates in the reference system with

the origin at the vortex center: r is the distance from

the vortex center and ϕ is the corresponding polar an-

gle. An isotropic vortex can be described in terms of the

mean polar velocity U , which is a function solely of r.

Then the mean vorticity Ω = U/r + ∂rU is a function

solely of r as well. We designate the radial component

of the fluctuating velocity as v and its polar component

as u.

One argued in Ref. [11], that correlation functions of

u, v odd in v are much smaller than ones even in v. It is

explained by negligible role of viscosity in forming rele-

vant fluctuations and by smallness of the friction coeffi-

cient α in comparison with characteristic mean velocity

gradients. Then the time reversibility is weakly broken

and that is why the correlation functions of u, v odd in v

are small: if the system is invariant under t → −t then

the correlation functions have to be zero. In our case

where the system state is determined by viscosity, the

time reversibility is strongly broken. Therefore we ex-

pect that all correlation functions of u, v, odd and even

in v, are equally estimated.

We now start deriving equations for the mean veloc-

ity. Averaging the Navier–Stokes equation (1) and tak-

ing its radial component, one obtains

∂r〈rv2〉+ r∂r〈p〉 = U2 + 〈u2〉. (7)

In deriving the equation (7) we exploited the time ho-

mogeneity, the vortex isotropy and the incompressibility

condition ∂ϕu + ∂r(rv) = 0. Note that the viscosity is

dropped from Eq. (7). Taking the polar component of

the averaged equation (1), one finds

1

r2
∂r

(

r2〈uv〉
)

− ν

[

1

r
∂r(r∂rU)− U

r2

]

= 0, (8)

where, again, we exploited the vortex isotropy and the

flow incompressibility.
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We now turn to the energy balance. By taking a

scalar product of v with the Navier–Stokes equation (1)

and averaging the result, one gets the energy budget

1

r
∂r

[

rU〈uv〉+ r

〈

v

(

u2 + v2

2
+ p

)〉]

−

− νU

[

1

r
∂r(r∂rU)− U

r2

]

= ǫ. (9)

The equation reads that inside the vortex the energy

produced by the pumping source (right-hand side of the

equation) is carried in space (from the vortex, as we will

see below) due to fluctuations (the first term in the left-

hand side) and is partly dissipated (the second term in

the left-hand side).

We consider the case where fluctuations are much

smaller than the average flow. Then it is possible to ne-

glect in Eq. (9) the third order term over fluctuations.

We obtain from Eq. (2) an equation for the only possibly

relevant contribution to the pressure

∇2p = −2
∂rU

r
∂ϕv +

2U

r
∂ru. (10)

Here ∇2 can be estimated as l−2

c where lc is the correla-

tion length of the velocity fluctuations. If lc is much

smaller than the radius r (that is the characteristic

length of the mean velocity variations) then the pres-

sure (10) is small and the term with pressure can be

dropped from Eq. (9). We postpone justifying the in-

equality lc ≪ r to the end of the paper. Assuming it,

we arrive at the equation

1

r
∂r (rU〈uv〉)− νU

[

1

r
∂r(r∂rU)− U

r2

]

= ǫ, (11)

reflecting the energy budget.

Inside the vortex, at r ≪ L, the viscous terms in

Eqs. (8), (11) appear to be negligible. Therefore we ob-

tain from the equation (8) that 〈uv〉 ∝ r−2, that is

〈uv〉 = C
√
ǫν

L2

r2
, (12)

where C ∼ 1 in accordance with Eq. (6). Next, we ob-

tain from Eq. (11)

U =
Ω0r

2
+

ǫ1/2

ν1/2
r3

2CL2
, (13)

where the first contribution, corresponding to the rigid

body rotation, is zero mode of the operator in the left-

hand side of Eq. (11). An estimate of the constant Ω0,

based on Eq. (4), is Ω0 ∼ (ǫ/ν)1/2. Thus, we end up

with the regular Taylor expansion for U , the radius of

the Taylor series is estimated as L. One can check that

the viscous terms in Eqs. (8), (11) produce contributions

to U and 〈uv〉 of higher order in r/L than those kept in

Eqs. (12), (13).

We conclude that the viscous energy dissipation in-

side the vortex is small. Therefore the energy produced

there by the pumping force is carried (due to the ve-

locity fluctuations) into the hyperbolic region where it

is dissipated. Note that the direction of the energy flux

inside the vortex in our (purely viscous) case is opposite

to one realized in the case of finite bottom friction [11],

where the energy is carried inside the vortex.

The expression (12) for the velocity fluctuations

demonstrates that the fluctuations grow as r diminishes.

It is explained by the fact that the main contribution

to the velocity (13) corresponds to the rigid body ro-

tation that does not influence fluctuations. Thus solely

the second term in the expression (13) is responsible

for the fluctuation suppression due to their stretching

by the mean flow. Therefore, to estimate fluctuations,

one should substitute ∇V ∼
√

ǫ/ν r2/L2 into (5). Then

one obtains the behavior (12), indeed. Since the main

contribution to the velocity inside the vortex is related

to the rigid body rotation then the main contribution

to the average pressure inside the vortex in accordance

with Eq. (7) is 〈p〉 = const+Ω2

0
r2/8. Corrections to the

expression are proportional to r4.

Now we should check our assumption that the cor-

relation length of the velocity fluctuations lc is much

smaller that the characteristic mean velocity scale, for

the vortex this scale is r. First of all, in the hyperbolic

region the stretching rate V/L is much larger than the

inverse non-linear time ǫ1/3/l
2/3
p as it follows from the

inequality lp ≫ lν . Therefore the velocity fluctuations

are in the passive regime and their correlation length

is equal to lp. This quantity is assumed to be much

smaller than the scale L of the mean flow, indeed. If

l4p ≪ L3lν then the passive regime is valid in the in-

terval of scales (lν/lp)
1/3L < r < L inside the vortex.

In this interval lp ≪ r that is the inequality, needed

for us, is satisfied. For scales r < (lν/lp)
1/3L the non-

linearity at the pumping scale becomes stronger than

stretching produced by the mean flow. Therefore the

traditional inverse cascade occurs in some interval of

scales. Besides, lc remains less than r in the interval

l
1/4
ν L3/4 < r < (lν/lp)

1/3L. At smaller radii our scheme

based on the equations (8), (11) doesn’t work. In the

region r < l
1/4
ν L3/4, that can be called the vortex core,

the fluctuations dominate. One can say, that in the vor-

tex core the traditional inverse cascade is realized (on

the background of the rigid body rotation). If l4p ≫ L3lν
then the passive regime is realized down to scales r ∼ lp.
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In this case the vortex core radius is equal to the pump-

ing length. An analysis of the flow behavior inside the

core needs a separate analysis that is outside the scope

of this work.

To conclude, we examined turbulence excited by

small-scale pumping in finite two-dimensional box with

vanishing bottom friction. At large Reynolds numbers

the coherent large-scale flow is formed dominating over

fluctuations. The coherent flow contains some vortices

where rigid body rotation is realized. The flow fluctu-

ations grow to the center of the vortex and dominate

in the narrow region near the vortex center that can be

called the vortex core. Outside the vortices a hyperbolic

flow is formed where the coherent flow dominates ev-

erywhere. Our analysis is applicable to two-dimensional

flows without bottom friction, say, to the soap film tur-

bulence [12].
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