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Abstract We address theoretically the longstanding problem of particle dispersion in the
lower atmosphere. The evolution of particle concentration under an absorbing boundary
condition at the ground is described.Wederive a close-formsolution for the downwind surface
density of deposited particles and find how the number of airborne particles decreases with
time. The problem of the plume formation above the extended surface source is also solved
analytically. At the end, we show how turbophoresis modifies the mean settling velocity of
particles.

Keywords Analytical solution · Dispersion theory · Heavy particles · Settling velocity

1 Introduction

The description of the spreading of a particle cloud in the lower atmosphere is of great
importance for a variety of disciplines, from meteorology and urban planning to botany.
Depending on the physical context, the term “particles” may refer to dust, sand, droplets,
snow, aerosols, seeds, spores, pollen, etc. The particle motion in the air is determined by an
interplay of turbulent diffusion, gravitational sedimentation and advection by a mean flow.
Even apart fromgravity, the situation is highly anisotropic and inhomogeneous, since both the
mean wind velocity and the turbulent diffusivity vary with height. Majority of the previous
theoretical studies were devoted to the equilibrium concentration profiles in the presence
of permanent sources of particles. The goal of the present work is to develop an analytic
framework that provides the description of the time evolution of the concentration field. To
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describe statistically the particle transport in a turbulent environment we adopt a standard
model of turbulent diffusion, which is based on the concept of eddy diffusivity (Monin and
Yaglom 1971). While this approximation is not universally applicable (Corrsin 1974), it
allows us to make the complex problem of atmospheric dispersion analytically tractable.

We consider particles, whose density is much larger than the density of air, and each
particle is assumed to be so small that the flow around it is viscous. The interaction between
particles and their influence on the flow can be neglected as long as the volume fraction of
the particle phase is low. Under these assumptions, the equation of particle motion becomes
(Maxey and Riley 1983)

dv
dt

= −v − u(r, t)
τ

+ g (1)

where r and v are the particle coordinate and velocity, u(r, t) is the fluid velocity field and
g is gravitational acceleration. We start from the case where the particle response time τ is
much less than the Kolmogorov time scale of turbulence, so that the role of particle inertia
in the process of advection is insignificant. Then, particles follow the turbulent flow of the
air, except for the gravitational settling and we pass to the equation

v = u(r, t) + gτ, (2)

which describes the dynamics on time scales t � τ . The effects of inertia are discussed later
in Sect. 5.

Let us introduce a reference system with the z-axis perpendicular to the ground (that
is, parallel to the field of gravity g). The x-axis is along the horizontal direction of the
mean wind. The particle motion in the crosswind direction is beyond the scope of this work,
thus our consideration is effectively two-dimensional. Treating the fluctuating part of the
incompressible velocity field u(r, t) as short-correlated in time, it is straightforward to derive
from (2) the Fokker–Plank equation for the particle probability density. The same equation
describes the particle concentration field θ(x, z, t) if we consider distribution of a large
number of particles in space,

∂tθ = ∂z[D(z)∂zθ ] + gτ∂zθ − u(z)∂xθ, (3)

see e.g. Okubo and Levin (1989), Falkovich et al. (2001). Here D(z) is the vertical turbulent
diffusivity and u(z) is the mean horizontal velocity component of the wind. Our model
implies that turbulence is homogeneous in the horizontal direction. The molecular diffusion
is assumed to be unimportant in comparison with that due to turbulent motion of air, and we
also neglect the horizontal turbulent diffusion in comparison with the mean advection.

In a fully developed turbulent boundary layer, the kinetic energy of fluctuations is approx-
imately independent of the distance from the surface z, while the typical scale of turbulent
eddies grows as z. This gives the vertical turbulent diffusivity in the atmospheric surface
layer linearly growing with the height z,

D(z) = μz, (4)

where μ = κu∗ with the friction velocity u∗ and the von Karman constant κ .
Following the usual practice, we approximate the mean horizontal velocity profile by the

power law
u(z) = βzm, (5)

in which β = u∗Cp/zm∗ and z∗ is the aerodynamic roughness length. For neutral atmospheric
conditions, the valuesm = 1/7 andCp = 6 are usually adopted Brutsaert (1982). In the limit
m → 0 one passes to the logarithmic profile

123

Author's personal copy



Particle Dispersion in the Neutral Atmospheric Surface Layer

u(z) = u∗
κ

ln
z + z∗
z∗

. (6)

The steady-state solutions of Eq. 3 with the height-dependent coefficients given by (4)
and (5) have been previously found for the particle dispersion from line (Okubo and Levin
1989; Rounds 1955; Godson 1958) or area sources (Chamecki and Meneveau 2011; Pan
et al. 2013). The non-stationary dispersion processes described by these equations are less
understood, and we here focus on non-stationary concentration profiles. We consider particle
spread from a surface source, which starts acting at some moment, as well as a source-free
evolution of an initial cloud. At the first step, we exclude the effects of horizontal advection
by passing to the reduced description in terms of the density integrated over the horizontal
plane θ̃ (z, t) = ∫ +∞

−∞ θ(x, z, t)dx . This vertical profile of the particle concentration obeys
the following closed equation,

∂t θ̃ = ∂z[D(z)∂z θ̃ ] + gτ∂z θ̃ . (7)

Thus, the description of the vertical distribution is decoupled from the problem of the hor-
izontal transport. While the complete distribution θ(x, z, t) cannot be recovered from the
integrated one θ̃ (z, t), the knowledge of θ̃ allows us to calculate the x-coordinate of the
centre-of-mass of the particle cloud as a function of time.

Equations 3 and 7 have to be supplemented by boundary conditions at the ground level.
Since the coefficient near the second-order derivative in these equations vanishes at z = 0,
then we should impose a boundary condition at some reference height r where the diffusivity
is still finite. Technically, it is sometimes convenient to pose the condition at z = 0 shifting
z → z + r in the diffusion coefficient (4): D(z) → μ(z + r) ≡ μz + D0, where D0 = μr .
Note that in the general case of a rough surface, the effective diffusivity could be modelled
as having some non-zero value D0 at the boundary (Smith 2008). The type of boundary
condition depends on the particular physical situation; details are given below for different
cases.

2 Passive Scalar

The ratio of the settling velocity in still air to the turbulent velocity, γ = gτ/μ, is a dimen-
sionless measure of the relative importance of gravitational settling and turbulent dispersion.
If γ � 1, then gravity in Eq. 7 can be neglected and we pass to

∂t θ̃ = ∂z[D(z)∂z θ̃ ], (8)

which is applicable to vertical transport of vapour (Sutton 1943; Frost 1946) and fine particles
(Chamberlain 1967); an airborne impurity with negligible inertia is called passive scalar.

Our goal is to describe the time evolution of a dispersing cloud, obtained from the sudden
release of passive scalar into the atmosphere at height z0 above the ground. Then, the initial
condition is θ̃ (z, 0) = N0δ(z−z0)where N0 is the number of particles. Firstly, let us consider
the situation where the surface acts as perfect reflector so that the vertical particle flux is zero
at ground level: [D(z)∂z θ̃ ]z=r = 0. The corresponding boundary-value problem for Eq. 8
has been considered by many authors, see Monin and Yaglom (1971) and references therein.
At r → 0 it is possible to construct the following solution

θ̃ (z, t) = N0

μt
exp

(

− z + z0
μt

)

I0

(
2
√
zz0

μt

)

, (9)
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in which I0 denotes the modified Bessel functions of the first kind. This concentration
profile is shown in the top left panel of Fig. 2. Note that the total amount of airborne particles∫ ∞
0 θ̃ (z, t)dz = N0 is time independent. The property is related to zero particle flux at z = 0.
From Eq. 8 we readily find that the mean vertical coordinate 〈z(t)〉 = N−1

0

∫ ∞
0 z θ̃ (z, t)dz

growths linearly with time
〈z(t)〉 = z0 + μt. (10)

This result can also be derived directly from Eq. 8, see e.g. Batchelor (1964), Chatwin
(1968). On the time scales t � z0/μ the system loses information about details of the initial
distribution and one can substitute z0 = 0 to obtain from Eq. 9 the following universal
long-term asymptotics,

θ̃ (z, t � z0/μ) ≈ N0

μt
exp

(

− z

μt

)

. (11)

The complete distribution θ(x, z, t) cannot be recovered from the integrated one θ̃ (z, t).
Nevertheless, it is possible to extract some information concerning the particle motion along
the ground. Let us assume that the particles are released initially at x = 0, z = z0. The
typical distance travelled in the downwind direction up to time t is given by the statistical
average 〈x(t)〉 = N−1

0

∫ +∞
−∞

∫ ∞
0 xθ(x, z, t)dxdz, where θ is the solution of Eq. 3 with the

initial condition θ(x, z, 0) = δ(x)δ(z − z0). One derives from Eq. 3 the evolution equation

d

dt
〈x(t)〉 = 〈u(z(t))〉, (12)

in which 〈u(z(t))〉 = N−1
0

∫ +∞
0 dz u(z)θ̃(z, t). Using Eqs. 5 and 11 we find the solution

〈x(t)〉 = Γ (m + 1)

m + 1
βμmtm+1. (13)

It is noteworthy that approximately the same result follows from the naive relation 〈x(t)〉 ≈∫ t
0 u(〈z(t ′)〉)dt ′ = βμmtm+1/(m+1)which is justified by the weakness of the z-dependence
of the mean wind velocity. Indeed, in neutral atmospheric conditions (small m) the missing
factor Γ (m + 1) is close to unity: Γ (8/7) ≈ 0.94. Note also that for the logarithmic profile
(6), the horizontal displacement grows as follows: 〈x(t)〉 ≈ (u∗t/κ) ln(μt/z∗) (Chatwin
1968).

Now let us turn to the case of an absorbing underlying surface.We neglect particle rebound
and re-suspension, then the appropriate boundary condition for Eq. 8 is θ̃ |z=r = 0. Equiva-
lently, one can add a constant correction D0 = μr to diffusivity (4) and pass to the equation

∂t θ̃ = μ∂z[(z + r)∂z θ̃ ], (14)

which is supplemented by zero boundary condition at z = 0. A non-zero surface diffusivity
provides finite particle flux to the ground, which decreases the total number of particles
in the atmosphere, provided there are no sources. We wish to find the probability that a
particle released initially at z0 has not been absorbed up to time t . Passing to the variable
ρ = 2

√
(z + r)/μ, one obtains from Eq. 14

∂t θ̃ = 1

ρ
∂ρ[ρ∂ρθ̃ ]. (15)

Thus we map our problem to the 2d isotropic diffusion process. In terms of Eq. 15, the
zero boundary condition implies that we deal with an absolutely absorbing cylinder with
the radius ρ� = 2

√
r/μ. The problem of two-dimensional random walk near an absorbing

123

Author's personal copy



Particle Dispersion in the Neutral Atmospheric Surface Layer

cylinder is well known in the theory of trapping reaction and reaction-diffusion systems [see
e.g. Havlin et al. (1990)]. For z0 � r , the late-time survival probability is estimated as
ln(z0/r)/ln(μt/r). Therefore, the passive scalar concentration in the atmosphere decreases
with time logarithmically, which is very slow. Note that there is no decay in the limit r → 0.

3 Heavy Particles

For sufficiently heavy particles the gravitational sedimentation cannot be ignored andwe have
to return to the Eqs. 3 and 7. To describe the time evolution of an initial cloud, one should
specify the boundary condition at the ground. In general, the surface plays the role of a sink for
the airborne concentration field, and it is physically plausible that irrespective of the details
of particle-ground interaction, the deposition rate of airborne particles is proportional to the
surface concentration (Monin 1959; Calder 1961). Then, equating the particle deposition flux
to that obtained from the (3), one defines the so-called radiative boundary condition

[D(z)∂zθ + gτθ ]z=r = [vdθ ]z=r , (16)

where vd is the deposition velocity and r is the height of the reference surface where the
flux is measured. The choices vd = 0 and vd → ∞ correspond to the perfectly reflecting
and perfectly absorbent boundary conditions, respectively, and in the intermediate case 0 <

vd < ∞, one deals with a partially absorbing surface. Here we consider the general situation
when deposition velocity is a parameter. For the sake of convenience, we introduce a finite
surface diffusivity D0 = μr and impose the boundary condition (16) at z = 0, taking the
limit r → 0 at the end of calculations (see Appendices 1 and 2).

Let us consider the dispersion of N0 particles released initially at height z0 above the
ground. A crucial question is how far the particles can be transported by the wind and how
the amount of airborne material decrease with time. The number of particles in atmosphere is
given by N (t) = ∫ ∞

0 θ̃ (z, t)dz, where θ̃ (z, t) is the solution of Eq. 14 with initial condition
θ̃ (z, 0) = N0δ(z − z0) and boundary condition (16). Apparently, the ratio N (t)/N0 can be
interpreted as the probability p(t) that the particle, starting at z0, has not been deposited on
the ground up to time t . Using the Laplace transform technique, one obtains the following
closed result (see Appendix 1),

p(t) = 1

Γ (γ )

z0/μt∫

0

ξγ−1e−ξdξ, (17)

which is illustrated in Fig. 1a. To our knowledge, this simple relation has not been noted
previously. From (17), we see that at large time the survival probability decays according to
a power law: p(t) ∝ t−γ . The mean deposition time T is given by

T = −
∫ ∞

0
t
dp

dt
dt = Γ (γ − 1)

Γ (γ )

z0
μ

, (18)

provided that γ > 1, and is infinite for γ ≤ 1.
It should be stressed that the survival probability does not depend on vd at r → 0. The

formal explanation of this result is that for the transport equation (8) with diffusivity (4)
the boundary at z = 0 is adhesive, see e.g. Kampen (1992). For this reason, the effect
of any boundary condition is cannot be distinguished from the perfectly absorbing wall:
the particles come to rest at z = 0 at the rate that is independent on the specific type of
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Fig. 1 a The time dependence of
the survival probability p (see
Eq. 17) for a heavy particle
released initially at the height z0
above the ground. b The time
dependence of the total
deposition flux, see Eq. 20

(a)

(b)

Fig. 2 The vertical
concentration profile (see Eq. 19)
of the particles released initially
at the height z0 above the ground
for different moments of time:
μt/z0 =
2−4, 2−3, 2−2, 2−1, 20, 21, 22

and 23

particle-wall interaction. One can conclude from this that there is a universal solution of the
initial-boundary value problem that is valid for any vd as long as r → 0. Indeed, it is easy to
verify that the following time-dependent distribution

θ̃ (z, t) = N0

μt

(
z0
z

)γ /2

exp

(

− z + z0
μt

)

Iγ

(
2
√
zz0

μt

)

, (19)

is the exact solution of Eq. 8, which reduces to N0δ(z − z0) for t → 0. In Kampen (1992)
this relation is derived in the particular case γ = 1. At γ = 0 one obtains the well-known
solution (9) for passive scalar Monin and Yaglom (1971). The ratio θ̃ (z, t)/N0 describes the
probability density that the particle, released initially at z = z0, is at height z after time t ,
see Fig. 2. Note that integration of distribution (19) over z gives exactly (17).
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Using Eq. 19, we express the total ground deposition flux j̃z = [D(z)∂z θ̃ + gτ θ̃ ]z=0 as

j̃z = − N0

Γ (γ )

zγ0
μγ tγ+1 exp

(

− z0
μt

)

, (20)

see Fig. 1b. The same expression follows from the relation j̃z = N0dp/dt . The intensity of
deposition reaches its maximum at time

tm = z0
(γ + 1)μ

. (21)

Next we describe the motion of the centre-of-mass of the particle cloud whose
downwind and vertical coordinates are given by the statistical moments 〈x(t)〉 =
N−1(t)

∫ ∞
0 x θ(x, z, t)dxdz and 〈z(t)〉 = N−1(t)

∫ ∞
0 z θ̃ (z, t)dz, respectively. From (3)

and (7) one obtains the following evolution equations

∂t 〈z(t)〉 = μ(1 − γ ) − 〈z(t)〉∂t ln p(t), (22)

∂t 〈x(t)〉 = 〈u(z(t))〉 − 〈x(t)〉∂t ln p(t), (23)

in which 〈u(z(t))〉 = N−1(t)
∫ ∞
0 u(z) θ̃(z, t)dz. Equation 22 yields exactly

〈z(t)〉 = z0
p(t)

+ (1 − γ )μ

p(t)

t∫

0

p(t ′)dt ′, (24)

while Eq. 22 gives

〈x(t)〉 = 1

p(t)

t∫

0

p(t ′)〈u(z(t ′))〉dt ′. (25)

(a) (b)

Fig. 3 a The vertical coordinate of the centre-of-mass of the particle cloud as a function of time, see Eq. 24.
b The horizontal coordinate of the centre-of-mass of the particle cloud as a function of time for the power-law
profile (5) of wind velocity with m = 1/7. The solid curves are the exact solutions of Eq. 25 for different
values of γ , while the dotted curves are the approximate solutions obtained by replacing 〈u(z(t))〉 by u(〈z(t)〉)
in Eq. 25
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The vertical coordinate 〈z(t)〉 of the centre-of-mass grows linearly at large time for any γ ,
see Fig. 3a. In particular case of passive scalar above the perfectly reflecting ground we have
γ = 0 and p(t) = 1 so that Eq. 24 reduces to Eq. 10. The time evolution of the mean
〈x(t)〉 for different values of γ is shown in Fig. 3b. From Eqs. 5, 17 and 25 one finds that the
horizontal coordinate behaves like 〈x(t)〉 ∝ tm+1 for γ ≤ m + 1, whereas 〈x(t)〉 ∝ tγ for
γ > m + 1.

Finally, let us consider the range of horizontal travel of the particles. The quantity of
interest is the resulting surface density σ(x) of particles deposited at the downwind distance
x from the place where they were released,

σ(x) = −
+∞∫

0

jz(x, z = 0, t)dt, (26)

where jz = −D(z)∂zθ − gτθ is the vertical particle flux. Solving the corresponding initial-
boundary problem for Eq. 3 one obtains (see Appendix 2)

σ(x) = N0

[
(m + 1)2μ

βzm+1
0

]− γ
m+1 x− γ

m+1−1

Γ
(

γ
m+1

) exp

(

− βzm+1
0

(m + 1)2μx

)

. (27)

It is straightforward to show that the condition of mass conservation
∫ ∞
0 σ(x)dx = N0

is satisfied, and there are no deposited particles for x ≤ 0 since we neglected horizontal
diffusion. One finds from Eq. 27 that the peak of the surface density σ(x) is at the downwind
distance

xm = βzm+1
0

(m + 1)(γ + m + 1)μ
(28)

from the place where particles were injected into atmosphere, while the mean horizontal
displacement X of the particles is

X = 1

N0

∞∫

0

x σ(x)dx =
Γ

(
γ

m+1 − 1
)

Γ
(

γ
m+1

)
βzm+1

0

(m + 1)2μ
, (29)

if γ > m + 1, and is infinite otherwise.
The formula (27) has the same structure as the classical result for the ground deposition

rate in a steady-state problem when particles are emitted from the permanent line source
(Rounds 1955; Godson 1958). Remarkably, in that works the deposition velocity vd was
chosen to be equal to the settling velocity gτ , thus setting the turbulence-induced flux to zero
at z = 0. Our analysis indicates that the result (27) is universal (i.e. independent on vd) as
long as the reference height r in the boundary condition (16) tends to zero.

4 Surface Source

In the previous sections, the evolution of an initial cloud of particles was considered. Here
we treat the case when particles disperse from a surface source that is uniform over a large
homogeneous area. Namely, we investigate the evolution of concentration field θ̃ after the
source is switched on at t = 0. Then the initial condition is θ̃ (z, 0) = 0.

First, let us consider the situation when the source provides the constant particle con-
centration near the ground. Equation 7 admits solutions in the self-similar form θ̃ (z, t) =
t−a f (z/μt) with some scaling index a, where the unknown function f obeys
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(a) (b)

Fig. 4 The vertical concentration profile of the particles with γ = 0.8 for two types of boundary conditions at
the ground: a surface source provides constant near-field concentration, see Eq. 31; b surface source provides
constant injection rate, see Eq. 33

ξ
d2 f

dξ2
+ (ξ + γ + 1)

d f

dξ
+ a f = 0, (30)

where ξ = z/μt . As ξ → 0 in the leading order one obtains f ∝ ξ−γ +constant. There-
fore, θ̃ ∝ t−a[(z/μt)−γ +constant] for z � μt . We expect the time independent long-term
asymptotic of θ̃ at small z, which requires one to choose a = γ . As a result, from Eq. 30 we
find

θ̃ (z, t) ∝ 1

zγ

+∞∫

z/μt

dζ ζ γ−1e−ζ . (31)

This concentration profile cannot be extended all the way to the lower boundary and should
be matched to the near-field concentration at z ∼ r , where the spatial scale r is determined
by the vertical size of the source or/and the characteristics of turbulence at ground level.

The self-similar distribution (31) indicates that the equilibrium plume gradually forms
above the surface source, maintaining constant concentration of particles near the ground,
see Fig. 4a. The plume height grows linearly with time as ∼μt and the vertical profile of
particle concentration at z � μt is given by a power law,

θ̃ ∝ 1

zγ
. (32)

Let us now consider another set-up, where instead of dynamical equilibrium near ground
we have a fixed upward flux. This is the case, for instance, when an industry area acts as a
permanent sources of pollution at the ground. Then the character of the solution is essentially
changed. The self-similarity is still the same, however, one should put a = 0 to insure the
constant particle flux at the ground. This leads to the following concentration profile

θ̃ (z, t) ∝
+∞∫

z/μt

dζ ζ−γ−1e−ζ , (33)
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which is valid at z � r .
We conclude from (33) that the dust front propagates to large z with the velocity μ, as in

(31). However, instead of the stationary profile (32) at z � μt we observe dust accumulation
(Fig. 4b)

θ̃ ∝
(
t

z

)γ

. (34)

The more detailed analysis presented in Appendix 3 confirms these results.

5 Effect of Particle Inertia

Equation 3 is derived from the equation of motion (2), which implies that the only effect of
particle inertia is the gravitational settling with the terminal velocity gτ . Previous studies
have shown that spatially homogeneous turbulence usually increases the average settling
velocity due to tendency of inertial particle to accumulate in regions of high flow strain rate
or low flow vorticity (see e.g. Wang and Maxey 1993). Here we discuss another mechanism
of settling velocity modification—turbophoresis, which is specific for inertial particles in
spatially non-uniform random flows.

To take into account the particle inertial response to turbulent fluctuations one should turn
to Eq. 2. Let us model incompressible chaotic flow u(r, t) by using an Ornstein–Uhlenbeck
process having finite correlation time τc. At t � τ, τc the vertical distribution θ̃ (z, t) of
particles carried by this flow is described by (Belan 2016; Belan et al. 2014)

∂t θ̃ = St

1 + St
∂2z [D(z)θ̃ ] + 1

1 + St
∂z[D(z)∂z θ̃ ] + gτ∂z θ̃ , (35)

where the Stokes number is defined as St = τ/τc and the effective turbulent diffusivity is
D(z) = ∫ 0

−∞〈uz(z, t)uz(z, 0)〉dt , the angle brackets denoting averaging over statistics of the
random flow. This equation implies that characteristic time scales τc and τ of, respectively,
fluid and particle velocities are much smaller than the typical time of evolution of the particle
concentration. The structure of Eq. 35 is quite transparent: it has the form of a conservation
law ∂t θ̃ = −∂z j̃z for θ̃ , where the vertical particle flux is given by

j̃z = −D(z)∂z θ̃ − St

1 + St

dD(z)

dz
θ̃ − gτ θ̃ (36)

The second term in the right-hand side is proportional to the diffusivity gradient and can be
interpreted as turbophoretic drift in the direction where the turbulence diffusivity decreases.
When diffusivity is linear, D(z) = μz, the gradient is constant and the equation takes the
form (7),

∂t θ̃ = μ∂z
(
z∂z θ̃

) + v̄∂z θ̃ , (37)

where the mean settling velocity is enhanced by turbophoresis,

v̄ = gτ + μSt/(1 + St). (38)

The phenomenon is more pronounced for highly inertial particles. Note in passing that it is
straightforward towrite the general steady-state solution of (37): θ̃ (z) = − j̃z/v̄+Az−v̄/μ and
self-similar regimes of propagation, like, for instance, θ̃ (z, t) = t−1 f (z/μt), with f (ξ) →
ξ−v̄/μ at ξ → 0 and f (ξ) → e−ξ at ξ → ∞, which is normalizable for v̄ < μ.

Clearly, the random flow described above is a gross simplification of real turbulence,
which contains hierarchy of spatial scales of motion associated with a range of time scales.
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For this reason, the fluctuating part of the fluid velocity cannot be quantitatively described
as a random process with a single correlation time. Nevertheless, our simple model can be
used to extract a theoretical estimate of an inertia-induced correction to the settling velocity.
Within the surface layer the typical spatial scale of turbulent eddies, which mainly contribute
the diffusivity at height z, is proportional to z. The corresponding correlation time is just
the turnover time τc(z) ∼ z/u∗. Thus, it follows from (38) that inertia increases the settling
velocity by the quantity of order u∗St (z)/(1 + St (z)), where the height-dependent Stokes
number is estimated as St (z) ∼ u∗τ/z. This increase is more significant closer to the ground.

The role of inertia in the modification of the settling velocity of particles located within
the atmospheric surface layer was investigated numerically in Chamecki and Meneveau
(2011). For μ = 0.32 ms−1 and γ = 0.625, they reported the 17 % increase in the settling
velocity at height z = 3 m. However, as explained in the recent work (Pan et al. 2013), that
analysis strongly overestimates the effects of inertia due to the incorrect calculation of fluid
acceleration in the numerical scheme. In agreement with this remark, our model gives only
≈0.5 % correction to the mean vertical velocity for the same set of parameters.

6 Conclusion

We have examined the dispersion of airborne particles under the action of a non-uniform tur-
bulent vertical diffusion, gravitational sedimentation and mean horizontal advection. There
is a long-standing interest in this problem in the fields of atmospheric pollution, meteorol-
ogy, agriculture, biology and many others. Our simple model of statistical description is
based on the two-dimensional transport equation (3): only distributions along the vertical
and streamwise directions are studied. In contrast to the majority of previous works on the
subject, we have focused on non-stationary phenomena. The main part of our analytical
results concerns the time evolution of airborne concentration in situations when particles
are initially injected into the atmosphere at a finite height above the ground level. In Sect.
2, we analyzed the limit of negligible gravitational sedimentation. If the underlying surface
is perfectly reflecting, the vertical profile of particle distribution is given by Eq. 9, while
the mean horizontal displacement of particles changes in time according to Eq. 13. For the
opposite case of a perfectly absorbent boundary condition, we demonstrate that total amount
of airborne material decrease with time logarithmically slow. In Sect. 3, we treated the more
general situation when gravity is non-negligible. Our theory predicts the time dependence of
the total number of airborne particles (20) and resulting surface density of deposited material
(27) in the case of radiative boundary condition (16) at ground level. Moreover, we described
the motion of the centre of mass of a particle cloud, see Eqs. 22 and 23. In Sect. 4, we con-
sidered the non-stationary distribution of airborne particles above a uniform area source. The
sources providing constant near-field concentration and constant particle flux were analyzed
separately.

The next step was to take into account particle inertia, which makes the mean vertical
drift different from Stokes terminal velocity gτ . We argued that there is an increase in
settling velocity because of the turbophoretic drift of inertial particles in the direction of
lower turbulence diffusivity, i.e. towards the ground. For sufficiently inertial particles, the
factor gτ should be replaced by some effective settling velocity which accounts for the
inertial corrections to mean vertical drift. Note that the turbophoresis-induced correction is
height-dependent and may be significant only in close vicinity to the ground.
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Finally, let us mention a few issues that are of interest in investigating further. In this study
the absorbing boundary condition at the ground level was imposed to describe the particle-
ground interaction. We assumed that every particle that comes to rest at the ground remains
there. A natural extension includes the effects of particle re-suspension. The corresponding
initial-boundary value problem for airborne concentration needs separate analysis, which
will be the subject of future work. It should also be noted, that our simple two-dimensional
model cannot predict details of particle spreading in crosswind direction which arises from
the horizontal turbulent diffusion. In fact, the onlymechanism of horizontal transport that was
taken into account herein is the advection by themean flow.Ourmethods admit generalization
for the case of non-zero horizontal diffusivity.

Acknowledgments The work in Israel was supported by the Israeli Science Foundation and the Minerva
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Appendix 1

Let us consider the dispersion of N0 particles released initially at the height z0 above the
ground level. Our goal is to derive the number N (t) = ∫ ∞

0 θ̃ (θ, t)dz of particles in the air as
a function of time. To be able to impose the boundary condition at the surface, we regularize
the problem by having a non-zero diffusivity at z = 0. This give the transport equation

∂t θ̃ = μ∂z[(z + r)∂z θ̃ ] + gτ∂z θ̃ , (39)

subject to the conditions [μ(z+r)∂z θ̃ +gτ θ̃ ]z=0 = [vdθ ]z=0 and θ̃ (z, 0) = N0δ(z−z0). The
spatial scale r is a regularization parameter. At the end of the calculations, the limit r → 0
will be taken.

Performing the Laplace transform

θ̃s(z) =
+∞∫

0

dte−st θ̃ (z, t), (40)

one obtains an ordinary second-order differential equation

μ∂z[(z + r)∂z θ̃s] + gτ∂z θ̃s − sθ̃s = −N0δ(z − z0), (41)

which should be supplemented by the condition [D(z)∂z θ̃s + gτ θ̃s]z=0 = [vdθs]z=0.
We pass to the new variable ξ = √

z + r and substitute θ̃s = ξ−γ f . At ξ �= √
z0 + r the

function f obeys the modified Bessel’s equation

μξ2
d2 f

dξ2
+ μξ

d f

dξ
−

(

γ 2 + 4s

μ
ξ2

)

f = 0. (42)

Therefore, two linearly independent solutions of Eq. 41 for z �= z0 can be chosen as

θ̃s1(z) = (z + r)−γ /2Iγ (2
√
s(z + r)/μ), (43)

θ̃s2(z) = (z + r)−γ /2Kγ (2
√
s(z + r)/μ), (44)

where Iγ and Kγ denote the modified Bessel functions of the first and second kind respec-
tively Abramowitz and Stegun (1964).
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Next it is straightforward to find that the function

θ̃s(z) =
⎧
⎨

⎩

A1θ̃s1(z) + A2θ̃s2(z), 0 ≤ z ≤ z0,

A3θ̃s2(z), z ≥ z0,
(45)

with

A1 = 2N0

μ
(z0 + r)γ /2Kγ

(

2

√
s(z0 + r)

μ

)

, (46)

A2 =
√

sr
μ
I ′

γ

(
2
√

sr
μ

)
−

(
vd
μ

− γ
2

)
Iγ

(
2
√

sr
μ

)

(
vd
μ

− γ
2

)
Kγ

(
2
√

sr
μ

)
−

√
sr
μ
K′

γ

(
2
√

sr
μ

) A1, (47)

A3 =
Iγ

(
2
√

s(z0+r)
μ

)

Kγ

(
2
√

s(z0+r)
μ

) A1 + A2, (48)

satisfies Eq. 41 together with the boundary condition [D(z)∂z θ̃s + gτ θ̃s]z=0 = [vd θ̃s]z=0.
The ground deposition flux j̃z(t) = −[vd θ̃ ]z=0 is given by the following contour integral

j̃z(t) = − vd

2π i

∫

C
ds est

(
A1θ̃s1(0) + A2θ̃s2(0)

)

= − N0

2π i

vd

μ

∫

C
ds est

(
1 + z0

r

)γ /2 Kγ (2
√
s(z0 + r)/μ)

(
vd
μ

− γ
2

)
Kγ (2

√
sr/μ) −

√
sr
μ
K′

γ (2
√
sr/μ)

.

(49)

Now we put r → 0 and obtain

j̃z(t) = − N0

iπΓ (γ )

∫

C
ds est

(
sz0
μ

)γ /2

Kγ

(

2
√
sz0
μ

)

. (50)

Note that the deposition velocity vd drops out in this limit. The branch cut for the analytic
continuation of the integrand in (50) is defined on the negative real axis of the complex plane.
Then, we use so-called Hankel integration contour which extends from the point −∞− 0 · i ,
around the origin counter-clockwise and back to the point −∞ + 0 · i . This leads us to the
following result

j̃z(t) = − N0

iπΓ (γ )

(
z0
μ

)γ /2 ∞∫

0

sγ /2e−st
[
eiπγ/2Kγ (2i

√
sz0/μ)

− e−iπγ/2Kγ (−2i
√
sz0/μ)

]
ds = − N0

Γ (γ )

zγ0
μγ tγ+1 exp

(

− z0
μt

)

. (51)

The deposition flux j̃z and the number of airborne particles N are related by identity j̃z =
dN/dt . Performing integration of (51) over t we obtain the survival probability p(t) ≡
N (t)/N0 in the explicit form (17).
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Appendix 2

Here we derive the exact expression (27) for the surface distribution of deposited particles
σ(x). For this aim we turn to Eq. 3 and add the constant correction μr to diffusivity in order
to avoid the vanishing of coefficient near highest spatial derivative. The resulting transport
equation is as follows,

∂tθ = μ∂z[(z + r)∂zθ ]n + gτ∂zθ − βzm∂xθ. (52)

The initial and boundary conditions are chosen to be θ(x, z, 0) = N0δ(x)δ(z − z0) and
[μ(z + r)∂zθ + gτθ ]z=0 = [vdθ ]z=0.

The surface density σ(x) is given by the total number of settled particles per unit length
in the downwind direction, i.e.

σ(x) = −
+∞∫

0

jz(x, z = 0, t)dt, (53)

where jz = −μ(z + r)∂zθ − gτθ is the vertical component of particle flux. Let us rewrite
this relation as

σ(x) = −Jz(x, z = 0), (54)

where Jz = −μ(z + r)∂zΘ − gτΘ is the flux for integrated concentration Θ(x, z) =∫ ∞
0 θ(x, z, t)dt which obeys the equation

μ∂z[(z + r)∂zΘ]n + gτ∂zΘ − βzm∂xΘ = −N0δ(x)δ(z − z0), (55)

with the boundary condition [μ(z + r)∂zΘ + gτΘ]z=0 = [vdΘ]z=0.
Next, we perform the Laplace transform of Θ(x, z) with respect to x

Θs(z) =
+∞∫

0

e−sxΘ(x, z)dx . (56)

This transformation leads to the following inhomogeneous differential equation for Θs(z)

μ∂z[(z + r)∂zΘs]n + gτ∂zΘs − sβzmΘs = −N0δ(z − z0). (57)

For 0 ≤ z ≤ z0 the solution of this equation under the condition [μ(z+r)∂zΘ +gτΘ]z=0 =
[vdΘ]z=0 reads

θ̃s(z) = B1Θs1(z) + B2Θs2(z), (58)

where

Θs1(z) = (z + r)−γ /2Iγm

(

2

√
βs

μ

(z + r)
m+1
2

m + 1

)

, (59)

Θs2(z) = (z + r)−γ /2Kγm

(

2

√
βs

μ

(z + r)
m+1
2

m + 1

)

, (60)

B1 = 2N0

(m + 1)μ
(z0 + r)γ /2Kγm

(

2

√
βs

μ

(z0 + r)
m+1
2

m + 1

)

, (61)
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B2 =
r

m+1
2

√
βs
μ
I ′

γm

(

2
√

βs
μ

r
m+1
2

m+1

)

−
(

vd
μ

− γ
2

)
Iγm

(

2
√

βs
μ

r
m+1
2

m+1

)

(
vd
μ

− γ
2

)
Kγm

(

2
√

βs
μ

r
m+1
2

m+1

)

− r
m+1
2

√
βs
μ
K′

γm

(

2
√

βs
μ

r
m+1
2

m+1

) B1, (62)

and γm = γ /(m + 1).
Now we apply the inverse Laplace transform to the solution (58) and substitute result into

(54). This gives the surface density of particles in the form of an integral in the complex
plane

σ(x) = vdN0

2π i

∫

C

esx
(
1 + z0

r

)γ /2 Kγm

(

2
√

βs
μ

(z0+r)
m+1
2

m+1

)

(
vd − μγ

2

)Kγm

(

2
√

βs
μ

r
m+1
2

m+1

)

− r
m+1
2

√
μβsK′

γm

(

2
√

βs
μ

r
m+1
2

m+1

)ds,

(63)
which in the limit r → 0 becomes

σ(x) = N0z
γ /2
0 βγm/2

μγm/2(m + 1)γmΓ (γm)π i

∫

C
esx sγm/2Kγm

⎛

⎝2

√
βs

μ

z
m+1
2

0

m + 1

⎞

⎠ ds. (64)

To calculate this integral we define contour C as the Hankel path extending from the point
−∞ − 0 · i , circling the origin counter-clockwise, and returning to the point −∞ + 0 · i .
After some algebra the closed form expression (27) can be derived.

Appendix 3

Here we consider the case where the surface source is switched on at t = 0. For definiteness,
we speak about the dust produced by the industrial area. Evolution of the dust concentration
is described by (39). In this sub-section we put μ → 1 thus passing to

∂t θ̃ = ∂z

{
[(z + r)∂z + γ ]θ̃

}
. (65)

with the initial condition θ̃ (z, 0) = 0 We consider two different boundary conditions corre-
sponding to a fixed dust concentration at z = 0 and to a fixed particle flux at z = 0.

Let us produce the Laplace transform with respect to time

θ̃s(z) =
∫ ∞

0
dt exp(−st)θ̃ (z, t). (66)

The inverse Laplace transform reads

θ̃ (z, t) =
∫

C

ds

2π i
exp(st)θ̃s(z), (67)

where integration is performed along a line parallel to the imaginary axis to the right of all
singularities of θ̃s. In terms of θ̃s the Eq. 65 becomes

sθ̃s = ∂z

{
[(z + r)∂z + γ ]θ̃s

}
. (68)

A solution of the Eq. 68 tending to zero as z → ∞ is

θ̃s(z) ∝ (z + r)−γ /2Kγ (2
√
s(z + r)). (69)
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Let us pose the boundary condition θ̃ = 1 at z = 0. In terms of the Laplace transform the
boundary condition is θ̃s(0) = s−1. The solution (69) with the boundary condition is

θ̃s(z) = 1

s

(
r

z + r

)γ /2 Kγ (2
√
s(z + r))

Kγ (2
√
sr)

. (70)

Now we should perform the inverse Laplace transform. When (70) is substituted into Eq. 67
one finds

θ̃ (z, t) =
∫

C

ds

2π is

(
r

z + r

)γ /2 Kγ (2
√
s(z + r))

Kγ (2
√
sr)

exp(st). (71)

For small values of argument Kγ (x) = 2−1Γ (γ )(2/x)γ . Substituting the expression into
Eq. 71 one obtains

θ̃ (z, t) = rγ

Γ (γ )

∫

C

ds

π is

(
s

z + r

)γ /2

Kγ (2
√
s(z + r)) exp(st)

= 1

Γ (γ )

rγ

(z + r)γ

(
z + r

t

)γ /2 ∫

C

dζ

π iζ
ζ γ/2Kγ (2

√
ζ(z + r)/t) exp(ζ ). (72)

If z � t then the main contribution to the integral (72) is produced by the residue in the pole
ζ = 0, therefore

θ̃ ≈ (r/z)γ , (73)

for z � r . If z � t then the main contribution to the integral (72) stems from the saddle
point ζ = (z + r)/t , therefore

θ̃ ∝
(
h

z

)γ ( z

t

)γ−1
exp

(
− z

t

)
, (74)

for z � r .
Let us now consider another boundary condition at z = 0 that implies constant upward

flux of particles:
− r∂z θ̃ − γ θ̃ = 1. (75)

We focus on the the case γ < 1. Then the main terms of the McDonald function expansion
at small x are

Kγ (x) ≈ 1

2

[

Γ (γ )
( x

2

)−γ + Γ (−γ )
( x

2

)γ
]

.

Therefore the boundary condition (75) leads to

θ̃s(z) = 1

s1+γ /2(z + r)γ /2

Kγ (2
√
s(z + r))

Γ (1 − γ )
. (76)

Substituting the expression into Eq. 67 we find

θ̃ (z, t) =
∫

C

ds

2π i
exp(st)

1

s1+γ /2(z + r)γ /2

Kγ (2
√
s(z + r))

Γ (1 − γ )

=
(

t

z + r

)γ /2 ∫

C

dζ

2π iζ 1+γ /2 exp(ζ )
Kγ (2

√
ζ(z + r)/t)

Γ (1 − γ )
. (77)
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At small z/t the integral is gained at ζ ∼ 1. Substituting themain asymptotic of theMcDonald
function and deforming the integration contour to the negative semi-axis, one obtains

θ̃ (z, t) = Γ (γ )

Γ (1 − γ )

(
t

z

)γ ∫

C

dζ

4π iζ 1+γ
exp(ζ )

= Γ (γ )

2Γ (1 + γ )Γ (1 − γ )

(
t

z

)γ

, (78)

for z � r . At large z/t the integral is determined by the saddle point where the asymptotic
expression for Kγ can be exploited. As a result, one finds

θ̃ ∝
(
t

z

)1+γ

exp
(
− z

t

)
, (79)

for z � r . The expressions (78,79) demonstrate the same self-similarity as the expressions
(73,74) do, however, with other power prefactor.
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