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h i g h l i g h t s

� Fracturing and low cost of gas stimulated significant recent expansion of the natural gas networks.
� Power system operators transition to gas as the main supply, also facing new reliability challenges.
� Natural gas-fired generators vary burn-rates to balance fluctuating output of wind generation.
� Impact of the gas-generator variations is seen in diffusive jitter of pressure within the gas network.
� Fluctuating pressure impacts both reliability of natural gas deliveries and safety of pipeline operations.
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The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of
natural gas in the United States driving an expansion of natural gas-fired generation capacity in many
electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio
standards are driving an expansion of intermittent renewable generation capacity such as wind and
photovoltaic generation. These two changes may potentially combine to create new threats to the
reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used
to balance the fluctuating output of wind generation. However, the time-varying output of these
generators results in time-varying natural gas burn rates that impact the pressure in interstate transmis-
sion pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same
generators and the safety of pipeline operations. We adopt a partial differential equation model of natural
gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations
of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in
time with points of maximum deviation occurring at the locations of flow reversals.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The ongoing evolution to intermittent wind and solar electric
generation is causing many electrical grid operators to use more
agile natural gas-fired electric generation to balance these new
stochastic resources. This interdependence causes a cascade of
the fluctuations of renewable generation into the systems that
supply fuel to the gas-fired generators, i.e. natural gas pipelines.
We develop a model of the coupling between electrical grid
fluctuations and natural gas pipeline systems, analyze the resulting
fluctuations of pipeline pressure, and draw conclusions about the
impact of renewable electrical generation on the stability and
security of natural gas pipelines.

By making unconventional natural gas sources economic to
extract, hydrofracking has created a revolution in the U.S. natural
gas industry [1]. Many of these new gas sources are in nontradi-
tional locations such as the Marcellus shale in Pennsylvania, the
Niobrara shale in Eastern Colorado, and the Bakken shale in North
Dakota. See Fig. 1. The dramatic increase in supply has driven
down prices [2] and spurred many new or expanded uses for nat-
ural gas [3,4]. This revolution in the natural gas supply and loads is
creating new challenges for natural gas pipelines that transport the
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Fig. 1. (Left) The natural gas pipeline network of the United States. Interstate pipelines are not significantly meshed and primarily display a tree-like structure. (Right) Major
US shale gas basins – new sources of natural gas that will encourage realignment of US national gas network.
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gas from source to load. With a limited amount of throughput and
short-term gas storage (in the form of pressure in pipeline itself),
these pipelines may become vulnerable as their operating environ-
ment changes.

A dominant new load on the gas pipelines is natural gas-fired
generators. Previously, the marginal cost of electricity from these
generators was higher than from coal-fired generators. However,
the rapid drop in gas prices has made gas generation competitive
with coal and spurred its construction. An example of this dramatic
expansion is in the electrical grid controlled by the Independent
System Operator of New England (ISO-NE) where natural gas-
fired electrical generation increased from 5% of total capacity to
51% in a span of 20 years [5]. A parallel development in many U.
S. electrical grids is the expansion of intermittent renewable gener-
ation such as wind and PhotoVoltaic (PV) generation—a trend that
is expected to continue as utilities work to meet state-imposed
renewable portfolio standards [6] that mandate a certain fraction
of electrical generation be derived from renewable sources. See
Fig. 2. In contrast to traditional nuclear, coal, or gas-fired genera-
tion, these new forms of generation have a small degree of control-
lability. To maintain the second-by-second balance of generation
and load, other grid resources must respond to counteract the fluc-
tuations of the intermittent generation. Although many different
types of advanced control of nontraditional resources are being
considered to provide these balancing services, e.g. grid-scale bat-
tery storage and demand response, the currently most available
Fig. 2. (Left) US power transmission grid (including potential future transmission expans
with proposed transmission lines to improve the integration of solar resources into the e
Grid, 2009.)
resources are the controllable traditional generators with gas-
fired generators being the most flexible among these.

The combination of expanded natural gas-fired generation and
its increased use to balance intermittent renewable generation is
creating loads on natural gas pipelines that are significantly differ-
ent than in the past. Traditional gas pipeline loads (Load Distribu-
tion Companies or LDCs) primarily serve space or water heating or
other individual customer needs and evolve slowly throughout the
day in a relatively well-known pattern that can be predicted based
on historical information and weather forecasts. Other traditional
pipeline customers are industrial loads that, although they may
change from day to day, are very predictable over the span of a
day. In contrast, when gas-fired generation is used to balance fluc-
tuating renewable generation, a component of the resulting gas
loads take on a stochastic nature. Unlike the gas load of an LDC,
wind and PV generation respond to short-term fluctuations in envi-
ronmental conditions, e.g. wind fluctuations on the timescale of
10–100 min and solar insolation fluctuations on the timescale of
1–100 min. At the longer timescales, these fluctuations may con-
tain spatiotemporal correlations that increase the aggregate fluctu-
ations of wind or PV generation across an entire electrical grid
magnifying the fluctuations of natural gas loads used by gas gener-
ators to balance these changes.

Fluctuating gas loads create new dynamics in natural gas pipeli-
nes that can impact their reliability and the reliability of all inter-
dependent infrastructures, including the electrical grid. To a great
ions) superimposed on wind power capacity map. (Right) Solar power capacity map
xisting power grid. (Adapted from National Public Radio, Visualizing the U.S. Electric
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extent, electrical grid dynamics are determined by the very small
amount of energy stored in the rotating kinetic energy of large cen-
tralized generators. Under a serious upset, this energy storage can
maintain the reliable operation of the grid for a second or two
while other resources are adjusted to compensate—typically an
adjustment of mechanical power input to these same generators
supported by a change in fuel burn rate. In some respects, if the
grid ‘‘storage” is sufficient to survive the initial upset, an electrical
grid with fuel-burning generators has very large amounts of stor-
age on longer timescale in the fuel supplied to those generators.

Gas pipelines dynamics evolve on very different timescales. In
the short term (10–100 min), gas pipelines have a large amount
of storage in the compressed natural gas in the pipeline itself. A
typical gas pipeline might be run very near its upper limit on pres-
sure of 800 psi whereas the minimum gas delivery pressure is
500 psi. Even if all gas injections into the pipeline were cutoff,
the gas loads would slowly reduce the pressure of compressed
gas over a few hours without any significant impact on the loads
until the gas pressure falls below the minimum delivery pressure.
However, unlike the electrical grid, there may be very little gas
storage on longer timescales. Injections of gas into the pipeline
are scheduled via bi-lateral transactions in gas markets and are
typically held constant throughout a 24-h period. Therefore, the
gas pressure in the pipeline evolves over both space and time
according to the spatiotemporal arrangements of the gas injection
and gas loads. If the injections and loads are out of balance, the gas
pressure will undergo spatiotemporal evolution. However, the
fluctuations in pressure will not be spatially uniform. In fact, the
pressure fluctuations are nonlocal with the swings at one locations
depending on the behavior at all other locations.

The feedback between fluctuating gas loads and gas pressure
creates coupled reliability concerns across the natural gas pipeline
and electrical grid infrastructures. The nonlocal effects mentioned
above can couple with spatiotemporal correlations in the fluctua-
tions of renewable generation through the response of the gas gen-
erators to magnify pressure fluctuations at certain locations in the
pipeline. These fluctuations may lead to significant over or under
pressures, both of which have serious impact on the reliability
and safety of the pipeline itself. Under pressures may impact the
gas generators by forcing them to reduce electrical output or
potentially shutdown to preserve the integrity of service to other
pipeline customers. As we will show in this manuscript, the most
sensitive locations are those of zero flow at the end of the pipeline
with unidirectional flow or at location(s) of flow reversal in pipeli-
nes with well separated injection locations. Therefore, the evolving
spatial dependence of U.S. natural gas supply will couple to the
stochasticity to create additional uncertainty in the reliability of
the gas and electrical systems.

Neither gas pipeline nor electrical grid operators have the anal-
ysis tools to sufficiently address the probabilistic nature of the reli-
ability impacts created by the coupled stochasticity of these
infrastructures. The goal of the manuscript is to lay the foundation
for these tools by developing a model and analysis to predict the
spatiotemporal evolution of the probability distribution of gas
pipeline pressure fluctuations. This first step seeks to develop a
measure of probabilistic risk that can be subsequently integrated
into the operations of both the electrical and pipeline infrastruc-
ture networks. We approach the problem by adopting phenomeno-
logical gas flow equations consisting of Partial Differential
Equations (PDE) in one spatial dimension that have been accepted
as accurate representations of long natural gas pipelines [7–11].

We develop models of fluctuations of gas-fired generator natu-
ral gas loads and the constraints imposed by natural gas markets to
analyze the stochastically-driven PDEs. We develop analytic
expression for probability distributions of gas pipeline pressures
as a function of space and time and as a function of the settings
of gas compressor stations that push the gas along the pipeline.
Our analysis shows that, under constant compressor station set-
tings, the mean square pressure fluctuations grow linearly in time
similar to a diffusive process. We find that the largest mean square
pressure fluctuations occur at location of zero flow that can poten-
tially occur at any location along the pipeline depending on the
average natural gas injections and loads. The results form the basis
for a risk-aware optimization problem for the gas compressor sta-
tions controls.

The material in the rest of the manuscript is organized as fol-
lows. Section 2 reviews the state of the art in modeling gas & grid
coupling and impact of wind generation on the gas network. Sec-
tion 3 describes the basic model of natural gas pipelines. Section 4
describes pressure sensitivity to fluctuating gas draws. Future
work and extensions are discussed in Section 5. Appendixes
describe in greater detail the physical models of gas flow and the
approximations used to develop the models discussed in the main
text.
2. Synopsis of the state of the art

2.1. Modeling of the gas & grid coupling

Numerous studies have considered combined optimization and
operational planning for interacting energy infrastructures. Inte-
grated natural gas and electric optimal power flow [12,13] and
optimal unit commitment with natural gas security constraints
[14–16] have been proposed, in addition to techniques for short-
term operation [17–21] and expansion planning [22,23]. Those
studies rely on the steady-state Weymouth equations [24,25],
which do not capture the dynamic fluctuations that lead to intra-
day gas supply issues. Studies on coordinated multi time-period
scheduling have also relied on steady-state equations [26], as well
as on finite-difference approximations [27,28]. This is a vibrant
field of research where many new ideas continue to emerge. For
example, ISO-like natural gas coordinator was suggested in [29]
to harmonize gas and power industries and enable responsive
coordination. Notice that to verify this and other suggestions in a
meaningful way further development of optimization and control
techniques that utilize physically realistic models of gas network
flow transients on the time-scale of power system operations are
needed.

2.2. Wind variability impacts on gas supply systems

Several studies have examined the impact of wind variability on
the operation of natural gas infrastructure networks [20,30], which
used the so-called ‘‘Panhandle A” approximation and the
Weymouth equation, respectively, for gas system simulation [7].
Similar approaches have been used to examine the impact of
stochastic variability on gas systems due to other energy sources
with multi-scale behaviors, such as hydro power [17]. A recent
study has examined risk assessment for integrated electric power
and natural gas systems and proposed techniques for obtaining
gas system security certificates within the electric generator
dispatch space [31].
3. Model of natural gas pipelines

The Transco pipeline (see Fig. 3) is a major interstate pipeline
that delivers large quantities of natural gas to population centers
and to natural gas-fired generators that supply electricity to those
same population centers. Like many other major interstate pipeli-
nes, the Transco pipeline displays a nearly radial structure and it is
equipped with many compressors that are often nearly equally



Fig. 3. Schematic representation of the Transco gas transmission network.
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spaced along its length (�50–100 km between compressors). These
two properties are reasonably well approximated by the radial,
distributed compression model discussed in the main text. Under
these two approximations, the Transco and similar pipelines can
be analyzed using the simplified models and analysis discussed
in the following.

We adopt a phenomenological, spatially one-dimensional
model of a transmission pipeline delivering gas over long distances
(�1000’s of km)—a reasonable model of interstate pipelines in the
US. The form of this model is generally accepted as an accurate rep-
resentation of long pipelines [7–11]. See the supplementary infor-
mation (Appendixes) for model derivation and additional details.
The gas injections may be configured in many different ways, e.g.
at a single source at the originating end of the pipeline, two sources
at either end of the pipeline, or in a distributed manner along the
pipeline. However, in all that follows, the injections will be
assumed to be constant in time–a simplification that is also a close
representation of pipeline operations in the U.S. Natural gas loads
are distributed along the pipeline and may fluctuate in time. Pres-
sure gradients drive the gas along the pipeline from sources to
sinks, and these gradients are maintained by gas compressors. A
few other assumptions in the derivation and analysis of the model
are made, but these are mostly taken to simplify the presentation.
We will point out where these assumptions can be removed via
more complicated analysis.

3.1. Gas dynamic equations

By integrating over the cross section of the natural gas pipeline,
the three-dimensional equations of hydrodynamics are reduced to
a representation in one spatial dimension. Mass conservation
becomes

c�2
s @tpþ @x/ ¼ �q; ð1Þ
where t is time, x is coordinate along the pipe (0 < x < L), p is the
pressure along the pipe, / is the mass flow along the pipe, qðxÞ is
the density of the distributed gas consumption (q > 0 for injection
and q < 0 for loads), and cs is sound velocity of the gas. Using a
friction factor b as a phenomenological representation of turbulent
drag, Navier–Stokes equation becomes

@xpþ b
2d

/j/j
p

¼ cp: ð2Þ

Here, d is the pipe diameter and cðxÞ is a distributed representation
of the many compressor stations in long pipelines. A real compres-
sor station can operate in several different modes, one of which is a
fixed compression ratio c such that pout ¼ cpin where pout and pin are
the pressures at the outlet and inlet of the compressor. Here, we
have distributed this lumped compression ratio along the pipeline
such it makes a positive contribution to the @xp of size cðxÞ. Fast
acoustic transients are ignored in Eq. (2) by assuming cs � u, where
u is the typical gas velocity. u is generally small enough that this
condition holds everywhere in the pipeline, however, u (and its
associated Reynolds number) is also large enough that b can be
taken to be constant. We note that Eqs. (1) and (2) have already
been supplemented with an ideal gas isothermal equation of state
for the natural gas of the form p ¼ c2sq. (See e.g. [32] for modern dis-
cussion of the modeling and simulations in the general non-
isothermal case.) The model derivation in the Appendixes addresses
more general and more realistic settings such as meshed networks
and compression spatially concentrated at the nodes.

3.2. Simplified market model

The flow of natural gas in a pipeline is scheduled via bilateral
transactions between buyers and sellers in a day-ahead market
with market clearing and gas flows scheduling done well in
advance of the following 24-h period of gas delivery. Scheduling
consists of determining the locations and constant rates of gas
injections. The gas pipeline operator expects that gas loads will
be fairly uniform over the 24-h delivery period. Some level of fluc-
tuating gas load is allowed, and it is these fluctuations that is
expected to grow as natural gas-fired electrical generation is
increasingly used to balance renewable fluctuations. After the



Fig. 4. Stationary mass flux /ðstÞðxÞ and compression cðxÞ though the pipeline versus
the distance x along the pipeline. Here, the length of the pipeline as been set to one,
i.e. L = 1. The plot shows two different cases of stationary mass flux to demonstrate
the effect on the spatial dependence of the sensitivity parameter ZðxÞ=Y . In both
cases, the flow reversal occurs at x� ¼ 0:6. The combined mass flux into the pipe
from x = 0 and x = 1 is the same for both cases. Case 1 is comprised of uniformly
distributed gas loads at all locations along the pipeline. Case 2 represents a
combination of some distributed load along with a concentrated load at
x ¼ x� ¼ 0:6.
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24-h delivery period begins and gas buyers have better estimates
of their actual needs, they can make mid course corrections by
transacting and scheduling gas flows in two subsequent intra-
day markets at 10 and 14 h after the start of the 24-h delivery per-
iod. In the three intervening periods, the gas injections are held rel-
atively constant, and it is these periods we seek to analyze.

We model these subperiods by first solving for a stationary
solution where time-averaged gas loads qðstÞðxÞ are given and are
globally balanced by time-independent gas injections at either
end of the pipeline, i.e. /ðstÞð0Þ ¼ /0 P 0 and /ðstÞðLÞ ¼ /L � 0. The
stationary gas flow along the pipe is related to the loads by

@x/
ðstÞðxÞ ¼ �qðstÞðxÞ; ð3Þ

and the global mass balance implies

/ðstÞð0Þ � /ðstÞðLÞ ¼
Z L

0
dx q0ðxÞ: ð4Þ

Natural gas pipeline operators require that Eq. (4) be satisfied over
the 24-h delivery period. To insure this condition over the 24-h per-
iod, there may be some deviation in the balance in the intra-day
periods to compensate for inaccurate forecasting or changes in
the average gas loads. However, in the remainder of this discussion,
we will assume that the stationary solution is balanced in each
intra-day subperiod. In the following, we will add fluctuations to
qðstÞðxÞ, and therefore /ðstÞðxÞ, to model the affects of renewable gen-
eration on the pipeline pressure fluctuations.

3.3. Compressor model for stationary flows

Before adding fluctuations, we first describe the control of the
gas compressors for the stationary gas flows. If the gas loads qðxÞ
and flow /ðxÞ were actually stationary, then the control for the
gas compression stations could be computed once and imple-
mented for the entire 24-h gas delivery period, or at least for the
intra-day periods. Natural gas pipeline operators seek to maintain
a relatively uniform pressure profile up to the pressure drop
between compressor stations. Our simple model of spatially-
distributed compression cðxÞ in Eq. (2) is a reasonable representa-
tion of gas pipeline operations and provides a spatially uniform
pressure p0 when

cðxÞ ¼ b/ðstÞðxÞj/ðstÞðxÞj
2dp2

0

: ð5Þ

We pick this model for ease of presentation. Spatially discrete com-
pression and nonuniform pressure profiles [33–36] can be incorpo-
rated in an edge-node network model in straightforward manner.
See Appendixes for additional discussions.

4. Pressure sensitivity to fluctuating gas draws

Time-dependent gas loads require the solution of the dynamic
versions of Eqs. (1) and (2). Here, we consider the time-
dependent component to be fluctuations of the gas loads about
their forecasted values, qðt; xÞ ¼ qðstÞðxÞ þ nðt; xÞ, where nðt; xÞ mod-
els the random, zero mean and statistically stationary fluctuations.
As described in Appendix B when these fluctuations are relatively
weak (even though they may be spatio-temporarily nontrivial), an
analytical solution for the time-dependent variance of the gas pres-
sure valid at t � s becomes

hðdpðxÞÞ2i
p2
0

¼ qðstÞc2s s
p2
0

� �2
t
s

ZðxÞ
Y

� �2Z Z L

0

dx1 dx2
L2

hnðt;x1Þnðt;x2Þi
ðqðstÞÞ2

: ð6Þ

The solution shows that a pipeline’s sensitivity to fluctuating gas
draws depends on the stationary solutions /ðstÞðxÞ or cðxÞ and the
statistics of the fluctuating gas loads.
Here, we analyze three exemplary stationary configurations to
explore the qualitative features of this sensitivity. The first two
cases are shown in Fig. 4.

� Case 1 displays injection of gas only at the two ends of the pipe-
line (/ðstÞð0Þ=/0 ¼ 1 and /ðstÞðLÞ=/0 ¼ �2=3) with uniformly dis-
tributed gas draws along the pipeline (qðstÞ = const). The
resulting mass flux along the pipeline is /ðstÞðxÞ ¼ /0ð1� x=x�Þ
– thin black trace in Fig. 4 – where x� ¼ 0:6L. According to Eq.
(5), the stationary compression is proportional to /ðstÞj/ðstÞj cre-
ating a compression profile that goes to zero at x� and is biased
toward either end of the pipeline at x ¼ 0 or x ¼ L – thick black
trace in Fig. 4.

� Case 2 is a simple modification of Case 1 that concentrates the
gas draws near a single location at x�. In Case 2,
/ðstÞðxÞ ¼ /0 0:918 signð1� x=x�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1� x=x�j
p

– thin red trace in
Fig. 4 – where the choice of the 0.918 factor for Case 2 makes
the total gas injection into the pipeline, /ðstÞð0Þ � /ðstÞðLÞ, the same
as in Case 1. The larger gas draws near to x� are indicated by the
higher values of @x/

ðstÞ at x�. The resulting compression shows a
linear dependence with heavier weighting of compression clo-
ser to x� than in Case 1.

Using the distributed compression cðxÞ in Fig. 4, ZðxÞ=Y is com-
puted using Eq. (6). The results for Case 1 and Case 2 are shown in
Figs. 5 and 6, respectively. The different traces in these Figures are

for different values of the coefficient, C � b/2
0L=ðdp2

0Þ, that scales
the compression density cðxÞ. Interpreting the distributed com-
pression in terms of a set of discrete compressor stations of uni-
form compression ratio, Case 2 with C ¼ 50 corresponds to
between 6 and 7 compressors with compression ratio 1.5 placed
uniformly between x = 0 to x�, i.e. a typical number of compressors
for a mildly stressed pipeline configuration.

When the pipeline is under very little stress (C ¼ 1), both Case 1
and Case 2 show a relatively uniform ZðxÞ=Y � 1. Under these con-
ditions, there are no regions of the pipeline that show a signifi-
cantly enhanced sensitivity to stochastic gas loads. As the stress
is increased (larger C), proportionally more compression is
deployed in the stationary solution. Both Case 1 and Case 2 show
a depression of ZðxÞ=Y near the ends of the pipeline, i.e. the



Fig. 5. The fluctuation sensitivity parameter ZðxÞ=Y versus x for Case 1 in Fig. 4. For
a given pipeline geometry, the different curves represent different scalings of the
total stationary mass flux into the pipeline or the total compression deployed in the
stationary solution.
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injection points, and an enhancement near x�. Although the total
gas injection into the pipeline is the same in Cases 1 and 2 (for
the same value of C), the enhancement of the sensitivity to stochas-
tic gas loads in Case 2 is stronger and more focused for two rea-
sons. First, the total (aggregated) compression on the system is
larger in Case 2. This can be seen from the curves for compression
cðxÞ in Fig. 4. Second, the stationary gas loads are more concen-
trated near x� resulting in more compression located near x�. After
normalization by Y ; ZðxÞ=Y displays a sharper peak. If the gas load
were entirely concentrated at x�, the mass flux and compression
would be uniform along the pipeline (on either side of x�), and
the peak in ZðxÞ=Y would be even sharper.

The result that the pipeline shows the highest sensitivity to
fluctuations near x� is not a coincidence. The mass flux in the pipe-
line exhibits a reversal at this point and the compression changes
sign. It is at the flow reversal that the integral in Eq. (6) of the
Appendix is the largest. Therefore, in pipelines where the direction
of the stationary mass flux is primarily in one direction over long
distances, the resulting compression will cause the points of flow
reversal to be the most sensitive to pressure fluctuation from
stochastic gas draws. This qualitative result begins to suggest the
possibility of fluctuation-aware control algorithms that adjust
either the mean gas pressure or the spatial distribution of
Fig. 6. Same as Fig. 5 except for Case 2 in Fig. 4.
compression to limit the probability of the gas pressure violating
either upper or lower pressure limits.

Gas injections at the ends of the pipeline do not always domi-
nate the flow in a pipeline. Such a situation may occur near the
beginning of a major pipeline where there are many sources of
gas injections interspersed with many gas customers. The flow in
the pipeline may alternate many times before a significant unidi-
rectional flow builds up. This situation often occurs in the Williams
Transco interstate pipeline near its beginning in Texas[37]. This sit-
uation may also arise in smaller intrastate pipelines where many
smaller, spatially distributed sources are injecting into a pipeline
that is serving many different customers. Case 3 models these
configurations by distributing both gas loads and injections
along the pipeline with zero injection or load at the ends, i.e.
/ðstÞð0Þ ¼ /ðstÞðLÞ ¼ 0. Fig. 7 (solid line) displays a realization of
spatially disordered stationary loads and injections qðstÞðxÞ that cor-
responds to a total gas flow equivalent to C 	 14:9 in Case 1 or 2
from above. Although the total gas injection is similar, the frequent
flow reversals limit and the build up of the integral in Eq. (6)
reduces the values of ZðxÞ=Y in Fig. 7 (dashed line) as compared
to the Cases 1 and 2 where the flow is more spatially uniform.
The spatial disorder of qðstÞðxÞ results in a system that is more
robust to fluctuations of gas loads.
5. Perspectives

We have developed a dynamical model of natural gas pipelines
that incorporates the effect of fluctuating gas injections and loads
on the pressure at all points along the pipeline. The model divides
the injections and loads into a stationary component and a fluctu-
ating in time component. Compressors along the pipeline are
adjusted so that the solution for the stationary gas pressure is spa-
tially uniform. An asymptotic solution for the fluctuating pressure
factorizes into a product of two terms. The first term depends on
the profile of the stationary injection/consumption along the paper
and is related to the compression deployed in the stationary solu-
tion. Surprisingly, this term does not depend on the gas load fluc-
tuations. The second term grows diffusively in time as given by a
spatiotemporal integral of the zero-mean gas load fluctuations.
Results for exemplary cases show that the sensitivity of pressure
fluctuations to gas load fluctuations is peaked at and around loca-
tions of stationary mass flux reversals. The results suggest the
Fig. 7. Disordered stationary gas injections and loads (qðstÞ , solid line) and the
fluctuation sensitivity parameter (ZðxÞ=Y , dashed line) versus x for Case 3. The total
gas injection into the pipeline is equivalent to C 	 14:9 in Case 1 in Fig. 5 or Case 2
in Fig. 6. The disorder of qðstÞðxÞ results in many flow reversals that suppress ZðxÞ=Y
suggesting that this configuration is more robust to gas load fluctuations than a
pipeline with more unidirectional flow.
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development of a risk-aware gas compressor control that limits the
probability of the gas pressure exceeding upper engineering limits
or lower contract delivery limits. Pipelines with spatially-
disordered injections and loads show less sensitivity to gas load
fluctuations.

There are many areas for future work including:

� The current formulation should be converted to a node-edge
network model more amenable to the simulation of real gas
networks with compression concentrated at gas compressor
stations.

� Discrete compressor stations will force the relaxation of our
assumption of spatially uniform pressure.

� The solution for the stationary compression should be con-
verted to an optimization for gas pipeline operations (e.g. for
minimum cost of compression, maximum throughput, etc)
while limiting the probability of violating an upper or lower
gas pressure limit.
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Appendix A. Description of appendixes

The Supplementary Information contained in the Appendixes
describes in greater detail the physical models of gas flow and
the approximations used to develop the models discussed in the
main text.

Methods used to derive main results of the paper are detailed in
Appendix B, consisting of two Subsections devoted to discussion of
the linearized one-dimensional model of stochastic gas dynamics
and following analysis of the probabilistic measure of risk,
respectively.

The remaining Appendixes provide discussions of more
general modeling needed to support the paper’s conclusions.
Appendix C describes basic hydrodynamic equations for a
single pipe and discusses the slow transient approximation
used in the main text. Appendix D generalizes the single pipe
Dynamic Gas Flow (DGF) description to the case of non-steady
gas flows over a meshed network. Appendix E briefly discusses
steady Gas Flow (GF) solutions of the DGF model and puts
them in the context of the Optimum Gas Flow (OGF) problem
used to determine gas compressor operation. In Appendix F,
the DGF system is linearized around a steady solution and
the general solution of the linear dynamic problem over the
network is constructed. The solution is split into homogeneous
(zero mode) and inhomogeneous parts and it is argued that
the inhomogeneous part of the linearized DGF becomes asymp-
totically small in the regime of interest. Here we also add a
Subsection briefly discussing the inhomogeneous correction,
for the general case and then also for the special model of a
long pipeline with distributed compression discussed in the
main text.
Appendix B. Methods

B.1. Linearized model of stochastic gas dynamics

The stationary solution described above applies to gas pipelines
with well-behaved gas loads. Under these conditions, the pressure
p0 does not vary and the pipeline operations are very secure and
reliable. Stochastic gas loads that arise from gas generation com-
pensating fluctuating renewable generation change this picture.
Fluctuating gas loads are added to the stationary solution

qðstÞðxÞ ! qðt; xÞ ¼ qðstÞðxÞ þ nðt; xÞ; ðB1Þ

where nðt; xÞ is zero mean (hni ¼ 0) so that each load, although
stochastic, is restricted to consume its scheduled amount qðstÞðxÞ
over the intra-day market subperiod. The stochastic component of
the gas load nðt; xÞ is expected to include spatiotemporal correla-
tions typical of renewable generation, e.g. nðt; xÞ for wind generation
is expected to be correlated on the time scale of tens of minutes to
hours over lengths from tens to hundreds of miles.

The effect of the stochastic gas loads is analyzed by linearizing
the hydrodynamic model in Eqs. (1) and (2). (Linearization of the
basic non-stationary gas flow equations was already discussed in
the literature, however only in the context of simplifying numeri-
cal evaluations of the underlying partial differential equations (e.g.
[38] and references therein). Here, we carry it two steps further–
we derive analytical relations and then to analyze effects of
stochastic fluctuations and spatial disorder in gas loads. Another
recent analytical approach retains the basic nonlinearity but
assumes adiabaticity, i.e. very slow changes in the gas loads [39].
Although promising computationally, this approach fails to
account for fast, but not necessarily large, fluctuations in the gas
draws originating from the electric grid-natural gas pipeline inter-
action.) Expanding these equations to first order in the fluctuations
yields

c�2
s @tdpþ @xd/ ¼ �n; ðB2Þ

@xdpþ b
d
/ðstÞd/
p0

� b
d
ð/ðstÞÞ2
p2
0

dp ¼ 0; ðB3Þ

where dp and d/ are the fluctuating pipeline pressures and mass
flows, respectively. Although the gas loads fluctuate, the gas injec-
tions /0 and /L remain at their stationary values imposing condi-
tions on the fluctuating mass flows

Z L

0
dx @xd/ ¼ 0: ðB4Þ

The structure of Eqs. (B2)–(B4) provides some guidance regard-
ing the types of solutions expected. Differentiating Eq. (B3) with
respect to x (and temporarily assuming a uniform /ðstÞ) enables
the elimination of d/ via Eq. (B2). The resulting PDE in dp has the
structure of a nonlinear diffusion equation that is driven by exoge-
nous perturbations nðt; xÞ. Because hni ¼ 0 over the intra-day peri-
ods, it is tempting to drop all time derivatives in Eq. (B4) and
compute time-independent mean square fluctuations of dp, how-
ever, this approach is incomplete. Spatiotemporal correlations in
nðt; xÞ occurring on time scales shorter than the intra-day period
will result in gas draw fluctuations that create shorter-term imbal-
ance with net flow of gas into or out of the pipeline. Eq. (B4) shows
that these non-zero net fluctuations are not allowed to leak out
either end of the pipeline because /0 and /L are held fixed. The
only way for the system to accommodate these short-term corre-
lated fluctuations is through a ‘‘zero mode” where the average
pressure in the entire pipeline raises or falls along with the fluctu-
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ating injections. This zero mode and its effects on the pipeline pres-
sure fluctuations are the emphasis of the remainder of this
manuscript.

B.2. Probabilistic measure of risk: analysis

To represent the slow drifts of pipeline pressure discussed
above, we suggest a solution to Eqs. (B2) and (B3) of the form

dpðt; xÞ ¼ aðtÞZðxÞ þ bðt; xÞ; ðB5Þ
where the two components of the solution respond to the different
characteristics of the fluctuations nðt; xÞ. The first component
aðtÞZðxÞ is the zero mode where ZðxÞ is a slowly varying function
of x that captures the spatial distribution of gas stored in the pipe-
line as pressure rise or fall driven by the correlated component of
the fluctuating gas draws. The time dependence of these global
pressure swings are captured by aðtÞ. In contrast, bðt; xÞ varies more
rapidly in space and responds to the uncorrelated component of the
fluctuations of nðt; xÞ that occur on finer spatial and time scales. The
larger spatial derivatives of bðt; xÞ result in relatively rapid diffusion
of pressure (and gas) which limits the impact of bðt; xÞ on pressure
fluctuations.

Substituting our proposed solution (B5) into Eqs. (B2) and (B3)
yields an equation for the zero mode

@xZ � b
d
/ðstÞðx0Þj/ðstÞðx0Þj

p2
0

Z ¼ 0; ðB6Þ

which has a solution

ZðxÞ ¼ exp
Z x

0
dx0

b/ðstÞj/ðstÞj
dp2

0

" #
¼ exp

Z x

0
2cðx0Þdx0

� �
: ðB7Þ

The solution for ZðxÞ does not depend on the form of the fluctua-
tions n. Rather, it depends on the stationary solution /ðstÞðxÞ, or
equivalently on deployed gas compression in the stationary solu-
tion. The same substitution also yields an expression for aðtÞ that
does depend on the gas load fluctuations:

c�2
s Z@taþ dxd/ ¼ �n: ðB8Þ
Since aðtÞ is independent of x, Eq. (B8) can be integrated over the
length of the pipeline to yield an explicit expression for aðtÞ:

a ¼ � c2s
LY

Z t

0
dt0
Z L

0
dx nðt0; xÞ; Y ¼

Z L

0
dx Z=L; ðB9Þ

where Eq. (B4) has been used to eliminate the d/ term.
The physical interpretation of the zero mode aðtÞZðxÞ now

becomes clear. The double integral in Eq. (B9) filters out the uncor-
related components of n showing that the time dependence of the
zero mode aðtÞ only responds to the fluctuations of n that are cor-
related in space (over the entire length of the pipeline) and in time
(since the beginning of the intra-day market period). A discussion
of the solution component bðt; xÞ is given below in Section F.1.

The zero mode aðtÞZðxÞ will dominate the contribution to dpðtÞ
at times longer than the correlation time s of nwhere s is expected
to be in the range of tens of minutes to hours for fluctuating gas
loads creating by gas-fired electric generators balancing intermit-
tent wind generation. For t � s, we may safely drop the b in favor
of aðtÞZðxÞ and estimate the pressure variation covariance as

hðdpðxÞÞ2i ¼ c4s st
L2

ZðxÞ
Y

� �2 ZZ L

0
dx1 dx2hnðt; x1Þnðt; x2Þi; ðB10Þ

where we have also assumed statistical stationarity of nðt; xÞ over
time.

Eq. (B10) can be rearranged slightly to reveal a physical inter-
pretation, as shown in Fig. 6 of the main text. The first term on
the right hand side of Eq. (6) of the main text is the square of the
fractional pressure decline if the entire pipeline was subject to
the spatially averaged gas load qðstÞ without any compensating
injections for one correlation time s of the gas load fluctuations.
This first term is multiplied by the number of correlation times
(t=s) since the intra-day period began. The third term provides
the only x dependence and describes the sensitivity of different
locations in the pipeline to pressure fluctuations. This dependence
comes entirely through ZðxÞ which (see Eq. (B7)) depends only on
the compression deployed in the stationary solution. The depen-
dence on ZðxÞ demonstrates that a highly stressed pipeline, i.e.
one with a large

R
cðx0Þdx0, is more susceptible to pressure fluctua-

tions driven by stochastic gas loads, and ZðxÞ shows which pipeline
locations are most susceptible. The final term on the right hand
side of Eq. (6) of the main text measures the spatial average of
the correlated fluctuations in the gas loads normalized by the aver-
age stationary gas load.

The right hand side of expression for aðtÞ in Eq. (B9) is a time
integral over a stochastic process, and per the law of large
numbers, aðt; xÞ and dpðt; xÞ are expected to be asymptotically
Gaussian when the integration time is longer than the correla-
tion time of n. In this limit, the estimate of the pressure fluctu-
ation covariance in Eq. (B10) or Eq. (6) of the main text also
predicts the tails of the distribution over dp, thus allowing the
estimation of the probability of relatively rare events of high
or low pressure fluctuations (under the condition that the fluctu-
ations are still within the linear approximation used here). Eq.
(B10) becomes a probabilistic measure of risk to reliability of
natural gas pipeline operations and a route to modeling the risk
that cascades to the interdependent infrastructures such as
electric power systems.

Appendix C. Gas flow equations: individual pipe

Following [36], we consider the flow of a compressible gas in a
single length of pipe. Major transmission pipelines are typically
16–48 inches in diameter and operate at high pressures and mass
flows, e.g. 200–1500 psi (psi) and moving millions of cubic feet of
gas per day [40,41]. Under these highly turbulent conditions, the
pressure drop and energy loss due to shear is well represented
by a nearly constant phenomenological friction factor f. The result-
ing gas flow model is a partial differential equation (PDE) with one
spatial dimension x (along the pipe axis) and one time dimension
[7–9]:

@tqþ @xðuqÞ ¼ 0; ðC1Þ

@tðquÞ þ @xðqu2Þ þ @xp ¼ �qujuj
2d

f � qg sina; ðC2Þ
p ¼ qZRT: ðC3Þ
Here, u;p;q are velocity, pressure, and density at position x; Z is the
gas compressibility factor; T is the temperature, R is the gas con-
stant, and d is the diameter of the pipe.

Eqs. (C1)–(C3) represent mass conservation, momentum bal-
ance and the ideal gas thermodynamic relation, respectively. The
first term on the rhs of Eq. (C2) represents the friction losses in
the pipe. The second term on the rhs of Eq. (C2) accounts for the
gain or loss of momentum due to gravity g if the pipe is tilted by
angle a. The frictional losses typically dominate the gravitational
term, which is typically dropped. Similarly, the gas inertia term
@tðquÞ is also typically small compared to the frictional losses (as
the flow velocity is significantly smaller than sound velocity) and
is dropped. For simplicity of presentation, we have also assumed
that the temperature does not change significantly along the pipe.

Taking into account these assumptions, Eqs. (C1)–(C3) are
rewritten in terms of the pressure p and the mass flux / ¼ uq:
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c�2
s @tpþ @x/ ¼ 0; ðC4Þ

@xpþ b
2d

/j/j
p

¼ 0; ðC5Þ

where cs �
ffiffiffiffiffiffiffiffiffi
ZRT

p
is the sound velocity and b � fZRT are both consid-

ered constant. To resolve the dynamic problem for t 2 ½0; s
 over
x 2 ½0; L
 we also need to supply Eqs. (C4), (C5) with initial and
boundary conditions for flows,

t ¼ 0; 8x 2 ½0; L
 : /ð0; xÞ ¼ /0ðxÞ; ðC6Þ
8t : /ðt;0Þ ¼ qðinÞðtÞ; /ðt; LÞ ¼ qðoutÞðtÞ; ðC7Þ
which are consistent, i.e. /0ð0Þ ¼ qðinÞð0Þ and /0ðLÞ ¼ qðoutÞð0Þ, in
addition fixing pressure initially at an end of the pipe, e.g.
pð0;0Þ ¼ p0.

Appendix D. Dynamic Gas Flow (DGF) over network

The single pipe setting in Eqs. (C4) and (C5) is generalized to a
gas network represented by a graph G ¼ ðV; EÞ with a set of ver-
texes V and set of edges E, where the edges will be considered
directed or undirected, depending on the context. See Fig. 8 for a
schematic illustration. We will adopt ði; jÞ and fi; jg notations for
directed and undirected edges, respectively. Each vertex, i 2 V rep-
resents a node with a gas injection/consumption rate qi (mass per
unit time). Each edge ði; jÞ 2 E is a single pipe with mass flow /ij.
The flow along each edge is described by a set of PDEs:

8t 2 ½0; s
; 8fi; jg 2 E; 8x 2 ½0; Lij
 :
c�2
s @tpijðt; xÞ þ @x/ijðt; xÞ ¼ 0; ðD1Þ

@xpijðt; xÞ þ
b
2d

/ijðt; xÞj/ijðt; xÞj
pijðt; xÞ

¼ 0; ðD2Þ

where pijðt; xÞ and /ijðt; xÞ are the pressure and mass flow, respec-
tively, at time t and position x along edge ði; jÞ of length Lij. Here,
pij ¼ pji;/ij ¼ �/ji, and Lij ¼ Lji. See Fig. 8a for a schematic descrip-
tion of the variables.

The flow of gas create a pressure drop. To compensate, the pres-
sure is boosted at compressor stations potentially located at both
ends of each edge fi; jg. ai!j is the compression ratio of the station
adjacent to node i while aj!i is the compression ratio adjacent to
node j. We choose to place compressors at the two ends of every
line/pipe for generality, which also simplifies the notations in the
following discussion. In reality there will be only none or one com-
pressor on any particular edge of the graph. Note also that ai!j may
be larger or smaller than unity, thus representing compression or
decompression. If only compression is allowed, then ai!j P 1.
The relationships between the pressures in Fig. 8 are

8t 2 ½0; s
; 8ði; jÞ 2 E : pijðt; 0Þ ¼ pi!jðtÞ;
pijðt; LijÞ ¼ pj!iðtÞ; pi!j ¼ piai!j; pj!i ¼ pjaj!i;

ðD3Þ
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Fig. 8. Schematic illustration of the network-structure notations. (a) Schematic illustratio
and labeled by their nodal pressure pi and pj . Compressors are indicated with filled square
Nodal pressure pi is modified by the compression ratio ai!j yielding pijðxij ¼ 0Þ. The pre
pijðxij ¼ LijÞ ¼ pj . (b) Schematic of many edges connected in a meshed network. Nodes ar
node where pressure is maintained constant throughout the dynamics. Compressors an
where pi and pi!j are the pressures at node i and just past the com-
pressor on edge ði; jÞ adjacent to node i and the last part of Eq. (D3)
is added for clarity. If there is no compressor installed at the begin-
ning of the edge ði; jÞ or if the compressor is inactive, ai!j ¼ 1. In the
current operational paradigm, compression rates are not changed
very frequently, however, we anticipate changes and allow the
ai!j to depend on time.

Eqs. (D2) and (D3) are complemented with mass conservation
at all nodes of the network:

8t 2 ½0; s
; 8i 2 V :
X

j:ði;jÞ2E
/ijðt;0Þ ¼ qiðtÞ: ðD4Þ

When the gas injections qðtÞ ¼ ðqiðtÞji 2 VÞ for are given for t 2 ½0; s
,
nodal conditions (D4) generalize the single-pipe boundary condi-
tions in (C7) to a pipe network. Eqs. (D1)–(D4) constitute a com-
plete set of equations describing the Dynamic Gas Flow (DGF)
problem if they are supplemented with compression ratios, i.e.
a ¼ ðai!jjði; jÞ 2 EÞ, initial conditions on the flows

t ¼ 0; 8fi; jg 2 E; 8xij 2 ½0; Lij
 :
/ijð0; xijÞ ¼ /ðinÞ

ij ðxijÞ;
ðD5Þ

and pressure at one arbitrarily chosen slack node, pi¼0ð0Þ ¼ p0.

Appendix E. Stationary gas flow and optimum gas flow

The stationary/steady version of the DGF problem is the Gas
Flow (GF) problem. In the GF problem, all input parameters (con-
sumptions/injections, compression ratios and the pressure at the
slack bus) are constant in time, and the total injection and con-
sumption are balancedX
i2V

qðstÞ
i ¼ 0: ðE1Þ

The steady solution of Eq. (D1) is uniformmass flow along each pipe
in the network, 8fi; jg : /i!j ¼ const. Substituting this result into
Eq. (D2) and taking straightforward spatial integration yields alge-
braic relations between flow through and pressures at both ends
of every pipe in the network

8ði; jÞ 2 E : pðstÞ
i!j ¼ pðstÞ

i ai!j; ðpðstÞ
ij ðxÞÞ2 ¼ ðpðstÞ

i!jÞ
2 � bx

d
/ðstÞ

ij j/ðstÞ
ij j:

ðE2Þ
The GF problem has a unique solution provided the compression
ratios are known.

Compression ratios a are time-independent in the steady GF
setting. The configuration of a over the network is typically
decided using a combination of economic and operational factors.
The model selected in the main text corresponds to a simple
greedy approach, i.e. maintain constant pressure throughout the
21
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12p
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(b)

n of a single edge ði; jÞ of a network. Nodes at either end are indicated by open circles
s. Mass flow /ij is directed from i to j and injections qi and qj contribute to this flow.
ssure falls along fi; jg reaching pijðxij ¼ LijÞ. If compressor aj!i is not present, then
e indexed by i ¼ 0;1; . . ., where node 0 is typically reserved for the swing bus – the
d injections and edge mass flows are the same as in (a).
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network for flows corresponding to the forecasted comsumptions/
injections. This model roughly replicates the behavior of pipeline
operators in the U.S. where the energy consumed in the compres-
sion of the gas is not a major concern. More sophisticated compres-
sion dispatch options, in particular minimization of the total work
spent on compression subject to maintaining pressure within
acceptable limits, have been extensively discussed in the literature,
e.g. [33,34,36,42] and references therein.

Appendix F. Perturbative solution of the DGF problem

We generalize discussion in the main text by introducing
stochastic gas loads (due, e.g., to natural gas-fired generators) from
a line to a network, such that qðtÞ ¼ qðstÞ þ nðtÞ where components
of nðtÞ ¼ ðniðtÞji 2 VÞ are time varying but relatively small in com-
parison with qðstÞ. We look for a linearized solution of the DGF
problem of the form pðtÞ ¼ pðstÞ þ dpðtÞ and /ðtÞ ¼ /ðstÞ þ d/ðtÞ,
where the respective corrections are small, i.e. jdpðtÞj � pðstÞ and
jd/ðtÞj � /ðstÞ. The linearized versions of Eqs. (D1)–(D4) become

8t 2 ½0; s
; 8fi; jg 2 E; 8x 2 ½0; Lij
 :
c�2
s @tdpij þ @xd/ij ¼ 0; ðF1Þ

@xdpij þ
b
2d

 
d/ijj/ðstÞ

ij j
pðstÞ
ij

þ /ðstÞ
ij jd/ijj
pðstÞ
ij

� dpij/
ðstÞ
ij j/ðstÞ

ij j
ðpðstÞ

ij Þ2
!

¼ 0; ðF2Þ

8t 2 ½0; s
; 8ði; jÞ 2 E : dpi!j ¼ dpiai!j; ðF3Þ
dpijðt;0Þ ¼ dpi!jðtÞ; dpijðt; LijÞ ¼ dpj!iðtÞ; ðF4Þ
8t 2 ½0; s
; 8i 2 V :

X
j:ði;jÞ2E

d/ijðt;0Þ ¼ niðtÞ: ðF5Þ

The remainder of the Subsection is devoted to finding an
asymptotic solution of Eqs. (F1)–(F5). Here, asymptotic implies
finding solutions for time s longer than the correlation time of
the fluctuation consumption n. We seek solutions that eliminate
the complexity of the PDE of Eqs. (F1)–(F5)nd that connect the
nodal quantities by algebraic relationships.

Therefore, generalizing the solution proposed in the main text,
we look for a solution of Eqs. (F1) and (F2) of the form

dpij ¼ aijðtÞZijðxÞ þ bijðt; xÞ; ðF6Þ
where aijðtÞ only depends on time. Here in Eq. (F6) ZijðxÞ solves the
following linear homogeneous equation

@xZij � b
d

/ðstÞ
ij j/ðstÞ

ij j
pðstÞ
ij

Zij ¼ 0; ðF7Þ

where ZijðxÞ counts x from node i, i.e. reversing the direction of
counting one gets, ZijðLijÞ ¼ Zjið0Þ.

Assuming that s is sufficiently large, we conjecture (which will
be verified after the global asymptotic solution is found) that the
major contribution to dpij in Eq. (F6) originates from the first
‘‘zero-mode” term aijðtÞZijðxÞ that (as will be seen below) grows
in time compared to the second term that does not.

To find the leading (zero mode) term we proceed as follows. The
integration of Eq. (F7) over the spatial dependence of the stationary
profile (E2), yields

ZijðxÞ ¼
pðstÞ
i!j þ pðstÞ

j!i

2pðstÞ
ij ðxÞ

; ðF8Þ

where the normalization constant is chosen to guarantee,R L
0 ZijðxÞdx=L ¼ 1. We solve for the time-dependent factor aijðtÞ by
substituting dpij with aijðtÞZijðxÞ into Eq. (F1) and integrate the result
over the entire spatial extent of the pipe fi; jg yielding
aijðtÞ ¼ c2s

Z t

0
dt0 d/ijðt0;0Þ � d/ijðt0; LÞ
� �

: ðF9Þ

In the asymptotic limit where dpij is approximated by aijðtÞZijðxÞ for
every pipe (graph edge), Eq. (F4) can only be satisfied if the aijðtÞ
have the same functional dependence on time, i.e.,

8fi; jg 2 E : aijðtÞ ¼ aðtÞcij; ðF10Þ
where cij ¼ cji is an edge specific constant. To compute the global
time-dependent factor aðtÞ in Eq. (F10) we sum over all the nodes
of the graphX
i2V

ni ¼
X
fi;jg2E

d/ijðt;0Þ � d/ijðt; LijÞ
� �

; ðF11Þ

integrate over time, define

NðtÞ¼:
Z t

0
dt0
X
i2V

niðt0Þ; ðF12Þ

and finally sum Eq. (F10) overall edges:

aðtÞ ¼ c2sNðtÞP
fi;jg2Ecij

: ðF13Þ

Therefore, 8t; 8fi; jg 2 E; x 2 ½0; Lij
:

dpijðt; xÞ 	
c2sNðtÞP
fi;jg2Ecij

cijZijðxÞ: ðF14Þ

The unknown edge constants cij are derived by substituting Eq.
(F14) into Eqs. (F3) and (F10) yielding

8i; 8j; k s:t:ði; jÞ; ði; kÞ 2 E :
cijZijð0Þ
ai!j

¼ cikZikð0Þ
ai!k

: ðF15Þ

Eqs. (F14), (F15) and (F8) express the complete asymptotic (zero
mode) solution of the DGF problem.

Assuming that the random gas load fluctuations niðtÞ are zero-
mean, temporarily homogeneous, and relatively short correlated
in both time (the correlation time is less than s) and space (the cor-
relation length is less than the spatial extent of the network), and
observing that dpij in Eq. (F14) is given by a time-integral and
spatial-sum of the fluctuations, one concludes that according to
the Large Deviation theory, the pressure fluctuations form a Gaussian
random process which jitter diffusively in time, i.e. the Probability
Distribution Function (PDF) of dpijðt; xÞ is

Pðdpijðt; xÞ ¼ dÞ ! 2ptDijðxÞ
� ��1=2 exp � d2

2tDijðxÞ

 !
; ðF16Þ

Dij ¼ c2s cijZijðxÞP
fk;lg2Eckl

 !2 X
n2V

nnðt0Þ
 !2* +

; ðF17Þ

where the correlation function on the right-hand-side does not
depend on t0 due to assumption of the statistical homogeneity of n.

F.1. Correction to the asymptotic solution

In the general analysis of the preceding Section of this SI, the
pressure fluctuations are separated into homogeneous (zero mode)
and inhomogeneous (forced) components, according to Eq. (F6).
The formal separation in Eq. (F6) leads to a differential equation
for the inhomogenous solution bðt; xÞwhich, for the general formu-
lation above, is fully defined by Eqs. (F18) and (F19).

Once the leading, growing in time, contribution to dpij is found,
one verifies that, bijðt; xÞ, extracted from

@xbij þ b
2d

 
d/ijj/ðstÞ

ij j
pðstÞ
ij

þ /ðstÞ
ij jd/ijj
pðstÞ
ij

� dpij/
ðstÞ
ij j/ðstÞ

ij j
ðpðstÞ

ij Þ2
!

¼ 0; ðF18Þ

c�2
s Zij

d
dt

aij þ @xd/ij ¼ 0; ðF19Þ
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does not growwith time, and thus it is asymptotically smaller—con-
sistently with what was conjectured above to derive the leading
contribution.

Let us discuss this asymptotic separation of the solution into
dominant contribution and correction in more details for the sim-
plified analysis/model of the main text. Repeating the solution sep-
aration on the (simplified) continuous-compression model, we find
a differential equation for bðt; xÞ in terms of d/, i.e.

@xbþ b
d
j/stjd/þ /stjd/j

2p0
� b
d
ð/stÞ2
p2
0

b ¼ 0: ðF20Þ

Fluctuations in d/ drive bðt; xÞ, but unlike for the homogeneous
solution, Eq. (F20) shows that this effect is entirely local. Specifi-
cally, Eq. (14) of the main text shows that the homogeneous compo-
nent responds to the global imbalance in gas loads while the
response in Eq. (F20) is to the local d/. In addition, the response
in Eq. (F20) decays in space and does so quickly in areas of high
compression for the stationary solution (see Eq. (5) of the main
text). In contrast, the homogeneous solution grows more quickly
in areas of high compression (see Eq. (12) of the main text). These
two properties contribute to the dominance of the homogeneous
solution over the inhomogeneous solution at longer times.
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