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Vorticity statistics in the direct cascade of two-dimensional turbulence
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For the direct cascade of steady two-dimensional (2D) Navier-Stokes turbulence, we derive analytically
the probability of strong vorticity fluctuations. When � is the vorticity coarse-grained over a scale R, the
probability density function (PDF), P(� ), has a universal asymptotic behavior lnP ∼ −�/�rms at � �
�rms = [H ln(L/R)]1/3, where H is the enstrophy flux and L is the pumping length. Therefore, the PDF has
exponential tails and is self-similar, that is, it can be presented as a function of a single argument, �/�rms, in
distinction from other known direct cascades.
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As “every unhappy family is unhappy in its own way,”
nonequilibrium systems are expected to differ by the way
they deviate from equilibrium. All the more remarkable are
thus any universal features one can distinguish in the classes
of nonequilibrium systems. Turbulence is a paradigmatic far-
from-equilibrium state and the central question of physics of
turbulence is also that of universality: how much one needs to
know about external forcing to predict flow statistics. A related
question is that of symmetries of the statistics, particularly
whether scale invariance appears for the scales distant from L,
where turbulence is produced [1]. One distinguishes direct and
inverse cascades occurring at the scales much smaller or much
larger than L, respectively. Data suggest that the statistics of
inverse cascades are scale invariant [1–6] with some aspects
being even conformal invariant [7,8]. For example, the PDF
of � , that is, the vorticity ω = ∇ × v spatially averaged over
the disk of radius R, is empirically found to be a function
of a single variable rather than two in two-dimensional (2D)
inverse cascade:P(�,R) = �−1f (�R−2/3) [3–6]. Such self-
similarity was never observed in direct cascades; P(�,R)
changes the form as the ratio R/L varies [1,2].

One way to explain this profound difference between
direct and inverse cascades is to argue that fluid motions
are slower when scales are larger. As an inverse cascade
proceeds upscale, it has ample time to be effectively averaged
over small-scale fluctuations including those of the pumping,
whose only memory left is the flux value it generates. On the
contrary, small-scale fast fluctuations in a direct cascade stay
sensitive to the statistics of slow fluctuations at large scales [9];
nonlinearity enhances variability down the cascade so that
small-scale statistics is dominated by rare strong fluctuations.
One can also explain the difference between direct and
inverse cascades using the Lagrangian language. Correlation
functions are accumulated along the Lagrangian trajectories.
Inverse cascades are related to trajectories approaching each
other back in time, then two-particle behavior effectively
determines the evolution of multiparticle configurations and
the second moment determines the scaling of higher moments.
On the contrary, direct cascades correspond to trajectories
separating back in time, one then relates the breakdown of
scale invariance at vanishing viscosity to nonuniqueness of
explosively separating trajectories in a nonsmooth velocity
field; exponents of higher moments are then related to the

laws of decay of the fluctuations of the shapes of multiparticle
configurations. These laws depend on the number of particles
so that an infinite number of forcing-related parameters is
needed to predict the statistics at small scales [2].

Prior knowledge was based on experimental and numerical
data; the only analytical results were obtained for passive
fields in synthetic flows [2]. Here, for the first time, the
vorticity PDF tail is analytically derived from the equation
of motion. We consider the direct (enstrophy) cascade of
2D turbulence [10–12], whose physical mechanism is that
pumping-produced vorticity blobs are deformed by the flow
into thin streaks until viscosity dissipates them. In Lagrangian
terms, such turbulence is peculiar since it corresponds to
an exponential separation of trajectories. Indeed, constancy
of the enstrophy flux over scales, H = ∇〈(v1 − v2)ω1ω2〉 =
const, suggests the scaling |v1 − v2| ∝ |r1 − r2| (i.e., spatially
smooth velocity). In a steady state, the enstrophy dissipation
ν|∇ω|2 must stay finite in the inviscid limit ν → 0. The
velocity then cannot be perfectly smooth, but the possi-
ble singularities are no stronger than logarithmic [13,14].
If one assumes self-similarity in a sense that P(�,R) =
�−1f [�a/ ln(L/R)], then the flux constancy requires a = 3
[10,13,14]. Further using the self-similarity assumption, one
estimates the enstrophy transfer time through a given scale
R, determined by the stretching and contraction rate, as a
turnover time or an inverse vorticity at this scale. On the one
hand, that time decreases with the scale as ln−1/3(L/R), which
would suggest that the small-scale statistics is sensitive to the
statistics at larger scales. On the other hand, the total time
of enstrophy transfer from L down to the viscous scale η

diverges ∝ ln2/3(L/η) as η → 0. Particle trajectories are then
expected to separate exponentially rather than explosively and
stay unique even in the inviscid limit, that makes self-similarity
plausible, according to the above Lagrangian arguments.

Von Neumann [15] and Kraichnan [10] argued that an
infinite number of vorticity conservation laws can make the
vorticity cascade nonuniversal; we later countered that the
fluxes of higher vorticity invariants must be irrelevant due to
the phenomenon of “distributed pumping” [13]. Self-similarity
breakdown was found empirically for the vorticity isolines,
which are conformal invariant in the inverse cascade, while
in the direct cascade they are not scale invariant but multi-
fractal with the fractal dimension 3/2 and higher dimensions
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saturating at 1 [7,8] (that may be related to strain persistence
that leads to long thin streaks of vorticity); that leads one to
expect that the bulk vorticity statistics is not self-similar either.

Here we analytically derive the (non-Gaussian) tail of the
PDF of the vorticity � coarse-grained over the scale R in
the direct (enstrophy) cascade of 2D turbulence permanently
pumped by an external force. We show that the tail is
exponential,

lnP(�,R) ∼ −|� |[H ln(L/R)]−1/3, (1)

for a driving force with a finite correlation time. In particular,
Eq. (1) shows that the PDF is self-similar, that is, it can be
presented as P(�,R) = �−1f [� 3/ ln(L/R)]. To obtain the
tail of the single-point vorticity PDF, the ratio L:R should be
substituted by L/η = √

Re in Eq. (1).
We start with the forced 2D Navier-Stokes equation:

∂ω/∂t + (v∇) ω = ν∇2ω + φ, (2)

where ∇ · v = 0 due to incompressibility. The pumping φ is
assumed to be a random Gaussian field spatially correlated
on the scale L and short correlated in time: 〈φ(0,0)φ(t,r)〉 =
δ(t)χ (r), where χ (r) → 0 as r/L → ∞ and χ (0) = H . We
show below that the processes that contribute to the vorticity
PDF tails take a long time which allows effective averaging
over forcing so that our results are asymptotically valid for
any force with a finite correlation time. The viscous term will
be ignored as long as we consider flow fluctuations on scales
larger than η.

The vorticity statistics can be described by the Martin-
Siggia-Rose formalism [16] where averages are path integrals,∫
DpDω exp(iI) . . ., with the effective action

I =
∫

dtd2rp

[
∂tω + v∇ω + i

2

∫
d2r1χ (r − r1)p(r1)

]
.

The field p is introduced to put (2) into the exponent
and to average then over the φ statistics. Since the action
contains a cubic term originating from the nonlinear term
in Eq. (2), one is unable to calculate the path integrals
explicitly, nor use perturbation theory since the coupling
is strong. We examine tails of P(�,r) using �/�rms as
a large parameter and calculating the path integral in the
saddle-point approximation, employing the so-called instanton
formalism adapted for turbulence in [17]. In this way, one looks
for an action extremum, defined by the instanton equations
δI/δω = 0 = δI/δp with appropriate boundary conditions.
Both the action and the measured quantity � are invariant
with respect to rotations and so are instanton equations and
their boundary conditions. However, axial symmetry turns
nonlinearity in the instanton equations into zero (i.e., a
“naive instanton” is meaningless). The physical reason is
quite transparent: There is neither stretching nor contraction
for axially symmetric flows so that the force can pump the
vorticity forever. The flow realizations that determine � must
have their axial symmetry broken. We establish below that the
angle-dependent part of the vorticity remains much smaller
than the isotropic part during most of the evolution (by virtue
of the large parameter �/�rms). That will allow us to integrate
over the angle-dependent degrees of freedom (in the Gaussian
approximation) and obtain a renormalized action for the zero

angular harmonic ω0. Moreover, we show that only the second
angular harmonic provides for the relevant renormalization by
virtue of the large parameter ln(L/R). We then find the new
(effectively axially symmetric) instanton that corresponds to
the renormalized action and gives the tails of P(�,R).

To realize this program for the enstrophy cascade, we
use a Lagrangian frame attached to a fluid particle. In polar
coordinates, r = (r cos ϕ,r sin ϕ), we expand ω and p over
the angular harmonics ω(r) = ∑

ωm(r) exp(imϕ), 2πp(r) =∑
pm(r) exp(imϕ). As shown below, slow strongly fluctuating

degrees of freedom are described by ω0, p0. It makes no sense
to simply omit the degrees of freedom related to high angular
harmonic in the action I, since the resulting action I0 does
not describe any deformation of ω0. Therefore, one has to
account for ωm, pm to obtain an effective action Ieff for the
zero harmonics:

exp(iIeff) =
∫ ∏

m>0

Dω±m Dp±m exp (iI) . (3)

The action Ieff will then describe deformations of the zero
angular harmonic ω0 induced by fluctuations of high har-
monics. The action has a number of terms, I = I0 + I3 +∑

m (Im + I−m + Iim). Here I0 contains only p0,ω0. The
quadratic terms are Iim = − ∫

dt d2r∂rp0(vmω−m + v−mωm)
and Im containing pmp−m, p−mωm. The term I3 is cubic
in pm,ωm with m �= 0; it is small and neglected in what
follows. That allows one to derive an effective action for
the zero harmonic, Ieff = I0 + �I, by integrating over other
harmonics in the Gaussian approximation. If Iim = 0 then
�I = 0, since any path integral of the form

∫
DpDω p(ωt +

. . .) is unity due to causality. Therefore,

�I =
∑
m

∞∑
n=1

in−1

n!
〈〈(Iim)n〉〉, (4)

where the double brackets denote cumulants obtained by
integration over ω±m,p±m with the weight exp(iIm + iI−m).
Consistently considering small fluctuations (as in neglecting
I3) we take only the term with n = 1, which is determined by
the pair correlation functions, Fm = 〈ωm(t,r1)ω−m(t,r2)〉.

We pass to the logarithmic variable ξ = ln(r/L) and
consider small scales: r � L. The term 〈Ii2〉 in Eq. (4)
contains an extra power of |ξ | � 1 (as noticed already in [13]
and is likely related to peculiarity of elliptic vortices) so we
retain only this term:

�I ≈ i

∫
dt dξ q(t,ξ )

∫
ξ

dζ [F2(ζ,ξ ) − F2(ξ,ζ )], (5)

where q(ξ ) = r2p0(r). Here F2 is a functional of ω0 to be
extracted from the equation that in the main logarithmic
approximation is written as follows [18]:

∂tF2(ξ1,ξ2) + iÔ1F2 − iÔ2F2 = χ2 ,
(6)

Ôf (ξ ) =
∫

dξ ′
[
ω0δ(ξ ′ − ξ ) + θ (ξ ′ − ξ )

2
∂ξω0(ξ )

]
f (ξ ′) .

Here χ2(r1,r2) = ∫
dϕ cos(2ϕ)χ (r1 − r2) /2π and θ is the

step function. One expresses (5) via (6) at ξ1 = ξ2:

�I = −2
∫

dt dξ q(t,ξ )[∂ξω0(t,ξ )]−1∂tF2(t,ξ,ξ ) . (7)
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This term describes how fluctuations distorted by a strong
vortex ω0 act back on the vortex.

To solve (6), we find the right and left eigenfunctions of the
operator Ô, respectively,

ϕλ = θ (ω0 − λ)2∂ξ

√
ω0 − λ ,

φμ(ξ ) = (2π )−1 lim
ε→0

Re [μ − ω0(ξ ) + iε]−3/2 ,

and expand F2(ξ,ζ ) = ∫
dλ dμ�(λ,μ)ϕλ(ξ )ϕμ(ζ ) in (6):

[∂t + i(μ − ν)]�(t,μ,ν) +
∫

dλ �(λ,ν)J (μ,λ)

+
∫

dλ�(μ,λ)J (ν,λ) =
∫

dξ dη φμ(ξ )φν(η)χ2(ξ,η), (8)

J (μ,λ) ≡
∫

dζ φμ(ζ )∂tϕλ(ζ )

≈ δ′(μ − λ)ψ(λ) + δ(μ − λ)ψ ′(λ)/2, (9)

where ψ(ω0) = ∂tω0. In the last line we used the adiabatic
approximation, since the instanton is shown below to change
slowly on its own rotation timescale ω−1

0 . Substituting (9)
into (8) we get the first-order equation, which we solve
by the method of characteristics. The initial condition for
this equation is posed at some distant past moment t∗
where ω0 is of the order of a typical (rms) fluctuation
and is some slow (logarithmic) function of the distances
in the region |ξ | � ln(L/R) so that ∂ξ ln ω0 ∼ ξ−1. We
assume that at t = t∗ the second moment is 〈ω(r1)ω(r2)〉 �
H 2/3 ln2/3(|r1 − r2|/L). Strictly speaking, we cannot derive
that from the equation of motion. That choice is consistent
with the flux relation and, as we show below, is self-consistent
with the higher moments described by the PDF tail to be
derived. The second angular harmonic is then F2(t∗,ξ1,ξ2) =∫ 2π

0 e−2iϕ〈ω(r1)ω(r2)〉(dϕ/2π ) ≈ H 2/3|ξ1|−1/3δ(ξ1 − ξ2) and
�(t∗,λ,μ) ∼ (Hξ )2/3(λμ)−1/2δ′(λ − μ). With that we obtain
the homogeneous solution,

F2(t,ξ,ξ )

t − t∗
∼ H 2/3(∂ξω0)2

∫
dζ ζ 2/3∂ζ ln ω0(t∗,ζ )

×θ [ω0(t,ξ ) − ω0(t,ζ )]

ω0(t,ξ ) − ω0(t,ζ )
∼ H 2/3∂ξω0

ξ 1/3
L , (10)

where L = ln |ω0/∂ξω0| � ln ln(L/R). At the derivation we
used ∂ζ ln ω0(t∗,ζ ) � 1/ζ and cut off the logarithmic di-
vergence due to a finite (order-unity) width of F2(t∗,ξ1,ξ2)
over ξ1 − ξ2. In much the same way one can obtain the
inhomogeneous (pumping-generated) solution: F

pump
2 (ξ,ξ ) ∼

H 1/3ω0
−1(∂ξω0)2, which is much smaller since we shall

obtain a slow instanton with H 1/3t∗ � 1. That means that
the pumping-produced anisotropic fluctuations give a smaller
contribution than deformation of an initial fluctuation. The
consequence is that the tail of the vorticity PDF is insensitive to
the form of the pumping correlation function and is determined
solely by its zeroth moment, that is, the vorticity flux H .
That means universality of the statistics of strong vorticity
fluctuations.

Substituting (10) into (7) one obtains �I and then the
effective action,

Ieff = �I +
∫

dt dξ q∂tω0 + iH

2

∫
dt dξ1 dξ2 q(ξ1)q(ξ2).

After some rescaling of the fields the action gives the following
instanton equations:

∂tω0 = (H 2/3ξ−1/3/∂ξω0)∂t [(t − t∗)∂ξω0L] + HQ, (11)

∂tq = −∂ξ {L(H 2/3ξ−1/3/∂ξω0)∂t [(t − t∗)q]}, (12)

where Q = −i
∫

dζ q(ζ,t). In deriving (12) we exploited the
large value of the logarithm ln(L/R) treating L as a constant.
Apart from the logarithm L, the correction to the action �I
depends only on the vorticity spatial derivative ∂ξω0. As a
result, the variation with respect to ω0 gives (12), which is
a continuity equation, so that dQ/dt = 0 in the main order
in the large logarithm. The first term in the rhs of (11) is
negative at ξ < 0 that is the correction (7) describes decrease
of the vorticity due to deformation of the circular vortex
by elliptic perturbations. Since Q is t independent, then ω0

grows linearly: ω0 = [2H 2/3ξ−1/3 ln |ξ | + HQ](t − t∗). With
the logarithmic accuracy, � = ω0[0, ln(L/R)], that enables
one to express t∗ via � and Q. Then one substitutes it into the
total action, optimizes over Q and finds

lnP ≈ iIsaddle
eff ≈ −H

∫
dt Q2/2 ≈ −HQ2|t∗|/2

� −4H−1/3� [ln(L/R)]−1/3 ln[ln(L/R)]. (13)

Omitting here the slow factor ln[ln(L/R)] one obtains Eq. (1).
The value of ω0(t∗) does not enter as long as ω0(t∗) � � .

The instanton solution thus found enables one to check the
assumptions made in deriving Ieff . The applicability condition
of the saddle-point approximation is |� 3| � H ln(L/R) and
we consider the inertial interval where ln(L/R) � 1. The
fluctuations on the background of our instanton are indeed
small: F2 � t∗ω0ξ

−4/3ω2
0/ξ � ω2

0 as was assumed. Higher
correlation functions are smaller than F2, which justifies
neglecting I3 and n > 1 terms in (4). The instanton lifetime
|t∗| � 1/� , that is indeed ω0(t) changes weakly during the
time ω−1

0 .
It is illuminating to compare the vorticity statistics in the

direct 2D cascade with the statistics of the passive scalar in a
spatially smooth random flow. For the scalar ϑ coarse-grained
over a scale R less than the pumping length L, the asymptotic
behavior of the single-point PDF in a smooth random flow
is given by the following reasoning. Large values of ϑ are
achieved when there is no stretching for a time much longer
than the mean stretching time λ−1 ln(L/R), where λ is the
Lyapunov exponent. During that time, the passive scalar is
pumped by a random forcing (i.e., it has Gaussian statistics
with the linearly growing variance):

P(ϑ) ∼
∫

dt Q(t) exp(−ϑ2/P t), (14)

where Q(t) is the probability of no stretching during time t .
Stretching is correlated on the velocity timescale λ−1, which
is independent of ϑ . For every stretching event, the scalar blob
is stretched by order e and we ask for the probability that
there were less than the number ln Pe such events during t .
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For t � λ−1
0 , this is the probability of the Poisson process:

lnQ(t) ∼ −λt + O[ln(L/r)]. Saddle-point integration over t

in (14) gives the exponential tail (first suggested in [19,20] and
derived by the instanton formalism in [17,21]): ln[P(ϑ)] ∼
−ϑ

√
λ/P + O[ln(L/R)]. For the vorticity cascade, we use

similar reasoning with the knowledge added from [13] that
the stretching correlation time is the mean total stretch-
ing time from R to L, which is H−1/3 ln2/3(L/R). That
gives

P(� ) ∼
∫

dt exp[−� 2/Ht − tH 1/3 ln−2/3(L/R)].

Saddle-point t ∼ � ln1/3(L/R)H−2/3 coincides with t∗ from
the instanton solution, and the integration reproduces (1). We
see that vorticity is indeed like passive scalar: The stronger the
fluctuation the longer it lives, which gives sub-Gaussian PDF
tails.

Our analytic result (1) is supported by two different sets
of simulations, which both show that the vorticity PDF tails
are approximately exponential [22,23]. In addition, Fig. 5
from [23] supports our conclusion that the PDF is getting
self-similar in the inertial interval. Data with different pumping

statistics and better resolution are needed for a quantitative
comparison. The broader significance of our work is that it
shows one how to describe the statistics of strong fluctuations
that take a long time to build up: obtain an effective action
for the slowest variable by integrating over faster degrees
of freedom, then apply the saddle-point approximation. Such
an approach is unlikely to be applicable to direct cascades
with power-law temporal acceleration (like three-dimensional
energy cascade) where strong fluctuations are expected to
be fast not only for vorticity but even for velocity [24]. It
may work, however, for decelerating cascades, both direct
and inverse. Plenty of such cascades can be found in wave
turbulence [25]; another task is to apply this approach to the
PDF tail of � in the inverse cascade of 2D turbulence, where
one may expect relevance of slow events.
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