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Abstract—We theoretically study a single disclination motion in a thin free-standing liquid crystalline film.
Backflow effects and the own dynamics of the orientational degree of freedom (bond or director angle) are taken
into account. We find the orientation field and the hydrodynamic velocity distribution around the moving dis-
clination, which allows us to relate the disclination velocity to the angle gradient far from the disclination. Dif-
ferent cases are examined depending on the ratio of the rotational and shear viscosity coefficients. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The physics of thin liquid-crystalline films has been
a recurrent hot topic during the past decade because of
their intriguing physical properties and a wide range of
applications in display devices, sensors, and for many
other purposes. Hexatic, nematic, and smectic-C liq-
uid-crystalline films belong to two-dimensional sys-
tems with a spontaneously broken continuous rota-
tional symmetry. An essential role in the behavior of the
films is therefore played by vortexlike excitations (dis-
clinations). Defects are almost necessarily present in
liquid crystals, and their dynamics plays a crucial role
in the overall pattern organization. Early studies of
defects focused on classifying the static properties of
the defects and their interactions [1, 2]. More recently,
the focus has shifted to examining the dynamics of
defects (see, e.g., [3] and references therein). We note
that, although defects are undesirable in most practical
applications of liquid crystals, such as traditional dis-
play devices, because they destroy an optical adjust-
ment, there are novel display designs (bistable, multi-
domain liquid-crystalline structures) exploiting defect
properties.

Although experimental dynamic studies are likely to
be more fruitful than static ones, theoretical research of
the film dynamics is in a rather primitive stage. This is
largely accounted for by a complexity of dynamic phe-
nomena in films, and a complete and unifying descrip-
tion of the problem is still unavailable. Moreover, some
papers devoted to this problem (dynamics of defects)
claim contradicting results. These contradictions come
mainly from the fact that different authors take different

¶This article was submitted by the authors in English.
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microscopic dissipation mechanisms into account, but
partially the source of controversy is related to seman-
tics, because different definitions of the forces acting on
defects are used (see, e.g., the discussion in [4]). We
believe that such problems are irrelevant if the macro-
scopic (phenomenological) approach to the film
dynamics is used.

In this paper, we theoretically examine the disclina-
tion dynamics in free-standing liquid-crystalline films
at scales that are much larger than the film thickness,
where the films can be treated as 2D objects. Our inves-
tigation is devoted to the first (but compulsory) step of
defect dynamics studies: a single point disclination in a
liquid-crystalline film. A number of theoretical efforts
[5–9] deal with similar problems. Our justification for
adding one more paper to the subject is the fact that, in
the literature, we did not see a full investigation of the
problem with the hydrodynamic backflow effects taken
into account. Evidently, these effects can drastically
modify the dynamics of defects. The goal of this work
is to study the disclination motion in free-standing liq-
uid crystalline films on the basis of hydrodynamic
equations containing some phenomenological parame-
ters (the elasticity modulus and shear and rotational vis-
cosity coefficients).

In our approach, the disclination is assumed to be
driven by a large-scale inhomogeneity in the bond or
director angle, which leads to a motion of the disclina-
tion with a nonzero velocity relative to the film. As a
physical realization of such a nonuniform angle field, a
system of disclinations distributed with a finite density
can be imagined. The inhomogeneity in the vicinity of
a given disclination is then produced by fields of other
disclinations. We can also think about a pair of discli-
002 MAIK “Nauka/Interperiodica”
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nations of the opposite topological charges, in which
case the inhomogeneity is related to the mutual orienta-
tional distortion fields created by each disclination at
the point of its counterpart. In fact, the majority of
experimental and numerical studies of disclination
motions in liquid crystals [10–18] is devoted to the
investigation of the dynamics of two oppositely
charged defects. We solve the hydrodynamic equations
and find the bond (director) angle and the flow velocity
distributions around the moving disclination. The
results enable us to relate the disclination velocity and
the gradient of the angle far from the disclination.

An obvious context where our results can be applied
is the film dynamics near the Berezinskii–Kosterlitz–
Thouless phase transition. The static properties of the
films near the transition have been investigated in a
great number of papers starting from the famous papers
by Berezinskii [19] and Kosterlitz and Thouless [20].
There are several works discussing the theory of
dynamic phenomena associated with vortexlike excita-
tions in condensed matter physics: vortices in type-II
superconductors (see, e.g., [21]), vortices in superfluid
4He and 3He (see, e.g., [22, 23]), dislocations in 2D
crystals, and disclinations (and other topological
defects) in liquid crystals (see [10–14, 24–27]). But
most of the theoretical works on the subject start from
phenomenological equations of motion of the defects,
and our aim is to derive the equations and to verify their
validity.

The structure of our paper is as follows. Section 2
contains basic hydrodynamic equations for liquid-crys-
talline films necessary for our investigation. In Section 3,
we find the bond (director) angle and the flow velocity
around the uniformly moving disclination, which
allows us to relate the disclination velocity to the angle
gradient far from the disclination. Different cases,
depending on the ratio of the rotational and shear vis-
cosity coefficients, are examined in Section 4. Section 5
contains a summary and discussion. The appendices are
devoted to the details of calculations of the velocity and
bond angle fields around the moving disclination.
Those readers who are not very interested in mathemat-
ical derivations can skip these appendices, finding all
the essential physical results in the main text of the
paper.

2. BASIC RELATIONS
FOR LIQUID-CRYSTALLINE FILMS

We formulate the basic relations needed to describe
a disclination motion in thin liquid-crystalline films.
Here, we investigate freely suspended hexatic, nematic,
and smectic-C films that can be pulled from 3D (bulk)
smectics [3]. We examine scales larger than the film
thickness, where the films can be treated as two-dimen-
sional objects and can be described in terms of a mac-
roscopic approach containing some phenomenological
parameters.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Liquid crystalline films with the in-plane orienta-
tional ordering of different types (hexatic, nematic, and
smectic-C) are observed experimentally. In these films,
as in 3D nematic liquid crystals, the rotational symme-
try is spontaneously broken. The general analysis of
their symmetry can be found in [28]. The smectic-C
films are characterized by the director that is tilted with
respect to the normal to the film, which defines a pre-
ferred direction in the plane of the film. The ordering of
this type can be described by a vector Qα (the subscripts
denoted by Greek letters take two values, because we
treat the films as 2D objects). The nematic films have
higher symmetry D2, which corresponds to the 2D nem-
atic phase. The order parameter of the nematic phase is
the irreducible (traceless) symmetric tensor of the sec-
ond rank Qαβ. In the hexatic films (pulled from smec-
tics-B), molecules are locally arranged in a triangular
lattice, but the lattice is not an ideal one. The positional
order does not extend over distances larger than several
molecular sizes. Nevertheless, the bond order extends
over macroscopic distances. The phase is therefore
characterized by the D6h point group symmetry, and
hence, the order parameter for the case is the sixth-rank
symmetric irreducible tensor Qαβγδµν. In liquid crystal-
line films of all the types enumerated above, the order
parameter Q has two independent components (e.g., Qxx

and Qxy for the 2D nematics). We note that the order can
be readily observed in the smectic-C or nematic films
by looking for in-plane anisotropies in quantities such
as the dielectric permeability tensor. Because of its
intrinsic sixfold rotational symmetry, the hexatic orien-
tational order is hardly observable. But it can be
detected, e.g., as a sixfold pattern of spots in the in-
plane monodomain X-ray structure factor, proportional
to Qαβγδµν(see, e.g., [3] and references therein).

In accordance with the Goldstone theorem, in films
of all types with a broken rotational symmetry, the only
degree of freedom of the order parameter that is rele-
vant at large scales is an angle ϕ (like the phase of the
order parameter for the superfluid 4He). In hexatics, it
is the bond angle, whereas, in 2D nematics and in smec-
tic-C films, it is an angle related to the director. It is
convenient to express a variation of the order parameter
in terms of a variation of the angle ϕ. For the smectic-
C films, the relation is

(2.1)

where eαµ is the two-dimensional antisymmetric tensor.
For an orientational order with a higher symmetry, the
relation has a similar form. For example, for hexatic
films,

(2.2)

where the dots represent the sum of all other possible
combinations of the same structure. Therefore, for films
of all types, the order parameter can be characterized by
its absolute value |Q | and the phase ϕ, which are tradi-
tionally represented as a complex quantity Ψ (see, e.g.,

δQα δϕeαµQµ,–=

δQαβγδµν δϕeαρQρβγδµν …,+–=
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[24]). The quantity is written as Ψ = |Q |exp(6iϕ) for
hexatic films, as Ψ = |Q |exp(2iϕ) for 2D nematic films,
and as Ψ = |Q |exp(iϕ) for smectic-C films.

The angle ϕ should be included in the set of macro-
scopic variables of the films. A convenient starting
point of the consideration is the energy density (per unit
area) ρv 2/2 + ε, where ρ is the 2D mass density, v is the
film velocity, and ε is the internal energy density. The
latter is a function of the mass density ρ, the specific
entropy σ, and the angle ϕ. In fact, ε depends on ∇ϕ ,
because any homogeneous shift of the angle ϕ does not
affect the energy. For hexatic films, the leading terms of
the energy expansion over gradients of ϕ are

(2.3)

where K is the only (because of the hexagonal symme-
try) orientational elastic module of the film. For low-
symmetry films (2D nematic or smectic-C films), two
orientational elastic modules are introduced, the longi-
tudinal and transversal ones with respect to the specific
in-plane direction (characterized by the so-called c
director). But fluctuations of the director lead to a
renormalization of the modules, and isotropization of
the smectic-C or 2D nematic films [29] occurs at large
scales. The same isotropic expression (2.3) for the elas-
tic energy can therefore be used at large scales.

The complete dynamic equations for the freely sus-
pended liquid-crystalline films, valid at scales larger
than the film thickness, can be found in [30]. We con-
sider a quasistationary motion of the disclination. Then,
hard degrees of freedom are not excited. In other words,
we can accept incompressibility and neglect bending
deformations (which are suppressed by the presence of
the surface tension in freely suspended films). Simi-
larly, the thermodiffusive mode is not excited for the
quasistationary disclination motion, which implies the
isothermal condition. For freely suspended films, such
effects as the substrate friction (relevant, e.g., for Lang-
muir films) are absent. In describing the disclination
motion, we can therefore consider the system of equa-
tions for only the velocity v and the angle ϕ. The equa-
tions have to be formulated under the conditions ρ = const,
T = const (where T is the temperature), and ∇ v = 0.

The equation for the velocity follows from the
momentum density j = ρv conservation law,

(2.4)

where Tαβ is the reactive (nondissipative) stress tensor
and η is the 2D shear viscosity coefficient of the film.
For two-dimensional hexatics, the reactive stress tensor
is (see [30], Chapter 6)

(2.5)

ε ε0 ρ σ,( )
K
2
---- ∇ϕ( )2,+=

∂t jα ∇ β Tαβ η ∇ αv β ∇ βv α+( )–[ ] ,–=

Tαβ ρv βv α ςδαβ K ∇ αϕ∇ βϕ+–=

–
K
2
----eαγ∇ γ∇ βϕ K

2
----eβγ∇ γ∇ αϕ ,–
JOURNAL OF EXPERIMENTAL 
where ς = ε – ρ∂ε/∂ρ is the surface tension. We note that
the ratio Kρ/η2 is a dimensionless parameter that can be
estimated by substituting 3D quantities instead of 2D
ones (because all the 2D quantities can be estimated as
the corresponding 3D quantities times the film thick-
ness, and the latter drops from the ratio). For all known
liquid crystals, the ratio is 10–3–10–4(see, e.g., [1–3,
31]) and can therefore be treated as a small parameter
of the theory.

The second dynamic equation, the equation for the
bond angle, is

(2.6)

where γ is the so-called 2D rotational viscosity coeffi-
cient. We did not find the values of the coefficient γ for
thin liquid-crystalline films in the literature. For bulk
liquid crystals (see, e.g., [1–3, 31]), the 3D rotational
viscosity coefficient is usually several times larger than
the 3D shear viscosity coefficient. We can therefore
expect that γ > η. But in order to span a wide range of
possibilities, we treat the dimensionless ratio Γ = γ/η as
an arbitrary parameter in what follows.

If disclinations are present in the film, it is no longer
possible to define a single-valued continuous bond-
angle variable ϕ. But the order parameter is a well-
defined function of coordinates that goes to zero at the
disclination position. The gradient of ϕ(t, r) is a single-
valued function of r and is analytic everywhere except
at an isolated point, the position of the disclination. The
phase acquires a certain finite increment at each rota-
tion around the disclination,

(2.7)

where the integration contour is a closed counterclock-
wise loop around the disclination position and s is the
topological charge of the disclination: s = (1/6)n for the
hexatic ordering, s = (1/2)n for the 2D nematic symme-
try, and s = n for the smectic-C films, where n is an inte-
ger. We can restrict ourselves to disclinations with the
unitary charge n = ±1 only, because disclinations with
larger |s| possess a higher energy than the set of unitary
disclinations with the same net topological charge, and
defects with larger charges are therefore unstable with
respect to the dissociation to the unitary ones. There-
fore, disclinations with the charges |n| > 1 do not play
an essential role in the physics of films [1–3, 31]. To
write the expressions given below in a compact form,
we keep the notation s for the topological charge, with
the respective values |s| = 1, 1/2, 1/6 for the smectic-C,
nematic, and hexatic films.

The static bond angle is determined by the station-
ary condition δE/δϕ = 0, where

∂tϕ
1
2
---eαβ∇ αv β v α∇ αϕ–

K
γ
---- ∇ 2ϕ ,+=

rα∇ αϕd∫° 2πs,=

E r2 ρ
2
---v 2 ε+ 

 d∫=
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is the energy of the film. For the energy density in
Eq. (2.3), the condition is reduced to the Laplace equa-
tion ∇ 2ϕ = 0. For an isolated static disclination, there is
a symmetric solution to this equation ϕ0 that satisfies
Eq. (2.7) and whose gradient is given by

(2.8)

where R is the position of the disclination. If the origin
of the reference system is placed at this point, we can
write ϕ0 = s , where x and y are coordinates
of the observation point r. In dynamics, distribution
(2.8) is disturbed as ϕ varies in time. It is also perturbed
because of the presence of an angular distortion related
to boundaries or other disclinations.

In what follows, we have in mind a case where a sys-
tem of a large number of disclinations (with an uncom-
pensated topological charge) is created. For 3D nemat-
ics, this can be done rather easily [1–3], because the
energies of positive and negative defects are different
due to the intrinsic elastic anisotropy. We are unaware
of experimental or theoretical studies of defect nucle-
ation mechanisms in free-standing films. Hopefully, the
situation with a finite 2D density of defects can also be
realized for films (for instance, the defects could even
appear spontaneously as a mechanism to relieve frus-
trations in chiral smectic or hexatic films, similarly to
the formation of the Abrikosov vortex lattice in super-
conductors [32]). Examining the motion of a disclina-
tion in this case, we investigate a vicinity of the discli-
nation of the order of the interdisclination distance. Far
from the disclination, the bond angle ϕ can then be
written as const + ur, where u is much larger than the
inverse interdisclination distance (because the number
of disclinations is large). Near the disclination position,
the bond angle ϕ can be approximated by expression
(2.8). Our main problem is to establish a general coor-
dinate dependence of ϕ and v, which, in particular,
allows relating the bond (director) angle gradient u and
the velocity of the disclination.

3. FLOW AND ANGULAR FIELDS 
AROUND A UNIFORMLY MOVING 

DISCLINATION

Here, we proceed to the main subject of our study, a
single disclination driven by a large-scale inhomogene-
ity in the bond (director) angle ϕ. The disclination
velocity is determined by an interplay of the hydrody-
namic back-flow and the intrinsic dynamics of the
angle ϕ. To find the disclination velocity, one has to
solve the system of equations (2.4), (2.5), and (2.6)
with constraint (2.7) ensuring a suitable asymptotic
behavior. As we explained in the previous section, the
angle ϕ is supposed to behave as const + ur at large dis-
tances from the disclination. We work in the reference

∇ αϕ0 seαβ
rβ Rβ–

r R–( )2
-------------------,–=

y/x( )arctan
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
system where the film as a whole is at rest. This means
that the flow velocity excited by the disclination must
tend to zero far from the disclination.

We consider the situation where the disclination
moves with a constant velocity V. The angle ϕ and the
flow velocity are then functions of r – Vt (where R = Vt
is the disclination position). Equation (2.4) for the
velocity can then be written as

(3.1)

We can omit the first (inertial) term on the left-hand
side of (3.1), which is small because of the smallness of
the parameter Kρ/η2. It then follows from Eqs. (2.4)
and (2.5) that

(3.2)

where ϖ = η–1[ς – (K/2)(∇ϕ )2]. Under the same condi-
tions, the equation for the angle ϕ following from
Eq. (2.6) is

(3.3)

We seek a solution characterized by the asymptotic
behavior that the velocity v vanishes and ∇ϕ  tends to a
constant vector u as r  ∞. It is clear from the sym-
metry of the problem that the gradient u of the bond
angle is directed along the Y axis if the velocity is
directed along the X axis. Therefore, ϕ  uy as r  ∞.
Our problem is to find a relation between V and u, that
is, between the disclination velocity and the bond angle
gradient far from the disclination. There are two differ-
ent regions: the region of large distances r @ u–1 and the
region near the disclination r ! u–1. At large distances,
corrections to the leading behavior ϕ ≈ uy are small and
the problem can be treated in the linear approximation
with respect to these corrections. In the region near the
disclination, ϕ is close to static value (2.8) and the flow
velocity v is close to the disclination velocity V (the
special case where the ratio γ/η is extremely small is
discussed in Subsection 4C). In what follows, these two
regions are examined separately. The relation between
u and V can be found by matching the asymptotics at
r ~ u–1. As a result, we obtain

(3.4)

where C is a dimensionless factor depending on the
dimensionless ratio Γ = γ/η. This factor C is on the
order of unity if Γ ~ 1. We are interested in the asymp-
totic behavior of C at small and large Γ.

ρ Vβ v β–( )∇ βv α η∇ 2v α
K
2
----eαβ∇ β∇ 2ϕ+ +

– K ∇ αϕ∇ 2ϕ ∇ α ς K
2
---- ∇ϕ( )2–+ 0.=

∇ 2v α
K
2η
------eαβ∇ β∇ 2ϕ K

η
---- ∇ αϕ∇ 2ϕ– ∇ αϖ+ + 0,=

∇ 2ϕ γ
K
----Vα∇ αϕ+

γ
K
----v α∇ αϕ γ

2K
-------eαβ∇ αv β.–=

V
K
η
----Cu,=
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A. The region near the disclination

We consider the region r ! u–1. Here, we can write

(3.5)

where R = Vt is the disclination position, ϕ0 is the static
bond (director) angle with gradient (2.8), and ϕ1 is a
small correction to ϕ0. The gradients of ϕ0 are deter-
mined by Eq. (2.8).

Linearizing Eqs. (3.2) and (3.3) with respect to ϕ1,
we obtain

(3.6)

(3.7)

Introducing a new variable χ = (K/η)∇ 2ϕ1, we rewrite
Eqs. (3.6) and (3.7) as

(3.8)

(3.9)

where Γ = γ/η, as above, and ϖ = η–1[ς – K/2(∇ϕ )2]. It fol-
lows from Eq. (3.8) and ∇ αvα = 0 that ∇ 2ϖ = ∇ αϕ0∇ αχ. A
solution of the system in Eqs. (3.8) and (3.9) can be
written as

(3.10)

where Vα is the obvious (because of the Galilean invari-
ance) forced solution and the stream function Ω
describes a zero mode of system (3.8) and (3.9). The
system is homogeneous in r, and Ω is therefore a sum
of contributions that are powerlike functions of r.

Taking the curl of Eq. (3.8), we obtain

(3.11)

Substituting χ expressed in terms of v from Eq. (3.9)
into Eq. (3.11) and using explicit expressions (2.8) for
the derivatives of ϕ0, we obtain

(3.12)

in the polar coordinates (r, φ). Solutions to Eq. (3.12)
are superpositions of the terms ∝ r α + 1exp(imφ). Substi-

ϕ ϕ 0 r R–( ) ϕ1 r R–( ),+=

η∇ 2v α
K
2
----eαβ∇ β∇ 2ϕ1 K ∇ αϕ0∇

2ϕ1–+

+ ∇ α ς K
2
---- ∇ϕ( )2– 0,=

∇ 2ϕ1
γ
K
----v α∇ αϕ0–

γ
2K
-------eαβ∇ αv β+

γ
K
----Vα∇ αϕ0.–=

∇ 2v α
1
2
---eαβ∇ βχ ∇ αϕ0χ– ∇ αϖ+ + 0,=

χ Γ v α∇ αϕ0–
Γ
2
---eαβ∇ αv β+ ΓVα∇ αϕ0,–=

v α Vα eαβ∇ βΩ,+=

∇ 4Ω–
1
2
--- ∇ 2χ– eγα∇ αϕ0∇ γχ– 0.=

1 Γ
4
---+ 

  ∇ 4Ω

+ sΓ 2

r2
----∂r

2Ω 1

r2
---- ∇ 2Ω– s

1

r2
----∂r

2Ω– s
1

r3
----∂rΩ+ 

  0=
JOURNAL OF EXPERIMENTAL 
tuting this r, φ dependence into Eq. (3.12), we obtain an
equation for α that has the roots

(3.13)

where  = Γ(1 + Γ/4)–1. Hence, 0 <  < 4 for any γ and
η. Evidently, all the roots in Eq. (3.13) are real. We
emphasize that there is no solution α = 0 (correspond-
ing to a logarithmic behavior of the velocity in r)
among the set (3.13). The first angular harmonic with
|m | = 1 is of particular interest because ϕ1 = ursinφ and
Ω = –Vrsinφ far from the disclination. If Γ is small,
there is a pair of small solutions among (3.13),

(3.14)

for m = ±1. Otherwise, for any other relevant m, solu-
tions (3.13) have no special smallness (terms with m =
0 are forbidden because of the symmetry).

We established that Ω is a superposition of the terms
∝ r α + 1exp(imφ) with the exponents α determined by
Eq. (3.13). The velocity can then be found from
Eq. (3.10). To avoid a singularity in the velocity at
small r, one should keep contributions with positive α
only. In other words, the velocity field contains contri-
butions with all powers α given by (3.13), but the fac-
tors at the terms with negative α are formed at r ~ a
(where a is the disclination core radius), and the corre-
sponding contributions to the velocity are therefore
negligible at r @ a (this statement must be clarified and
refined for small negative exponents –α1 in the limit of
small Γ; see Subsection 4C). We conclude that the cor-
rection to V in the flow velocity v related to Ω in
Eq. (3.10) is negligible at r ~ a. We thus arrive at the
nonslipping condition for the disclination motion: the
disclination velocity V coincides with the flow velocity
v at the disclination position.

Next, to find ϕ, one should solve the equation
(K/η)∇ 2ϕ = χ, where χ is determined from Eq. (3.9). In
addition to the part determined by the velocity, ϕ1 can
then involve zero modes of the Laplacian. The most
dangerous zero mode is Uy, because it produces a non-
zero momentum flux to the disclination core (and the
Magnus force associated to it),

(3.15)

But because of the condition α ≠ 0, all the contributions
to the velocity correspond to zero viscous momentum
flux to the origin. Consequently, it is impossible to
compensate the Magnus force by other terms. The
above reasoning leads us to the conclusion that the fac-
tor U (and therefore, the Magnus force) must be zero.
Thus, ϕ1 contains only terms proportional to rα + 1 with

α 1

2
------- 2 2m2 s 1 s–( )Γ̃–+[±=

± 2 2m2 s 1 s–( )Γ̃–+( )2{

– 4sΓ̃ m2 1– s+( ) 4 m2 1–( )2
– }

1/2
]

1/2
,

Γ̃ Γ̃

α α 1, α1± s Γ /2,= =

rαeαβTβγd∫° KU .∼
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α > 0. This conclusion is related to the fact that, for
free-standing liquid-crystalline films, any distortion of
the bond angle unavoidably produces hydrodynamic
backflow motions (i.e., v ≠ 0). For liquid-crystalline
films on substrates (Langmuir films), in contrast to
free-standing films, hydrodynamic motions (back-
flows) are strongly suppressed by the substrate, and the
situation where the backflow is irrelevant for the discli-
nation motion can be realized.

B. The remote region

Let us consider the region r @ u–1, where we can
write ϕ = uy + and linearize the system of equations
(3.2) and (3.3) with respect to . We then obtain the
system of linear equations for v and ,

(3.16)

where p = Vγ/2K. Taking the curl of the first equation
and eliminating the Laplacian, we obtain

(3.17)

where Φ is a harmonic function. In terms of Φ, system
(3.16) is reduced to

(3.18)

Equation (3.18) can be written as

(3.19)

(3.20)

The quantities k1 and k2 have the meaning of character-
istic wave vectors. We conclude from Eq. (3.19) that
zero modes of the operator on the left-hand side of the
equation are proportional to

that is, they are exponentially small everywhere outside
narrow angular regions near the X axis. The behavior of
the zero modes inside the regions is powerlike in r. In
addition, there is a contribution to  related to the har-
monic function Φ. It contains a part that decays as a
power of r (the leading term is ∝ r–1) at r @ u–1. This
solution is examined in more detail in Appendix A.

ϕ̃
ϕ̃

ϕ̃

∇ 2v α
K
2η
------ eαβ∇ β∇ 2ϕ̃ 2uα∇ 2ϕ̃–( ) ∇ αϖ+ + 0,=

∇ 2 2 p∂x+( )ϕ̃ γ
2K
------- eαβ∇ αv β 2uv y–( )+ 0,=

eβα∇ βv α
K
2η
------ ∇ 2 2u∂x+( )ϕ̃ Φ+[ ] ,=

1 Γ
4
---+ 

  ∇ 4 2 p∇ 2∂x Γu2∂x
2–+ ϕ̃ Γ

2
---u∂xΦ.=

∇ 2 2k1∂x+( ) ∇ 2 2k2∂x–( )ϕ̃ Γ̃
2
---u∂xΦ,=

k1 2,
1

2 1 Γ /4+( )
-------------------------- p2 Γ 1 Γ

4
---+ 

  u2+ p± 
  .=

–k1r k1x–( )exp , –k2r k2x+( ),exp

ϕ̃
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4. DIFFERENT REGIMES GOVERNED BY Γ
The behavior of the velocity and the bond (director)

angle fields around the moving disclination is sensitive
to the ratio of the rotational and the shear viscosity
coefficients Γ = γ/η. In this section, we examine differ-
ent cases depending on the Γ value.

A. The case where Γ * 1
We start analyzing different mobility regimes with

the most probable case where Γ * 1. If Γ ~ 1, then the
factor C in Eq. (3.4) is on the order of 1 and u ~ p. It
then follows from Eqs. (3.20) that k1, k2 ~ u. This is a
manifestation of the fact that there is a unique charac-
teristic scale in this case, given by u–1. We can then esti-
mate  by matching the solutions in the regions near
the disclination and far from it at r ~ u–1. We conclude
that it is a function of the dimensionless parameter ur;
the function is on the order of unity when its argument
ur is on the order of unity.

For large Γ, there remains a unique characteristic
scale u–1, and consequently, C ~ 1 in this case. To prove
this statement, we first treat small distances r ! u–1. As
shown in Section 3A, the respective corrections ϕ1 and
δv to ϕ0 and V are expanded in a series over the zero
modes characterized by exponents (3.13). In particular,
for m = 1, we can write ϕ1 ~ uy(ur)α. In the large-Γ
limit, the exponents α given by (3.13) are regular

because   4. From (3.13), we have α1 ~ 1, and in
this case,

Comparing Eqs. (3.8) and (3.9), we conclude that, for
large Γ, the term involving χ can be omitted in
Eq. (3.9), and the equation therefore becomes a con-
straint imposed on the velocity. Equation (3.8) then
gives

The disclination velocity can now be found from the
relation V ~ |δv | at the scale u–1, that is, p ~ Γu, or C ~ 1.
The complete analysis also covers the remote region.
With the condition p ~ Γu, it follows that k1, 2 ~ u–1.
Using the procedure given in Appendix A, we can then
prove that the solutions in the two regions can be
matched at r ~ u–1, and therefore, there are no new char-
acteristic scales, indeed. We also note that the rotational
viscosity γ drops from the hydrodynamic equations at
large Γ. Although this is not true inside the disclination
core (see Appendix D), the boundary conditions for v
and ϕ on the core boundary reveal no dramatic changes
in behavior. Consequently, it is the shear viscosity
alone that determines the disclination mobility, which
implies that C ~ 1.

ϕ̃

Γ̃

χ K

ηr2
--------uy ur( )

α1.∼

δv
K
ηr
------uy ur( )

α1.∼
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We can therefore say that, in the limit as Γ  ∞,
no additional features appear compared to Γ ~ 1. But
this is not the case for small Γ, because u @ p for Γ ! 1.
We study this case in the next subsection.

B. Small G
Here, we consider the case where Γ ! 1. This limit

is physically attained at anomalously large η, with
Kρ/η2 still treated as the smallest dimensionless param-
eter. This justifies the use of the same equations (3.2)
and (3.3) as in the previous subsections.

For r ! u–1, the analysis in Section A is correct. As
we noted, the contributions to v and ϕ1 related to the
modes with negative α should not be taken into account
there. For Γ ! 1, the leading role is played by the mode

with the smallest exponent (α1 = s /2), because the
presence of modes with positive exponents α ~ 1 would
contradict the condition of smooth matching at r ~ u–1.
Strictly speaking, neglecting a small negative exponent
–α1 is correct under the condition α1|ln(ua) | @ 1, where
a is the core radius of the disclination. This is what is
considered in this subsection. The opposite case, which
we call the extremely small-Γ limit, is analyzed in Sec-
tion 4C. At r ! u–1, we can therefore write

(4.1)

with the coefficient at y  determined from match-
ing at r ~ u–1, where ∇ϕ  ~ 1/r. Similarly, matching V –
v x ~ V at r ~ u–1 gives V ~ α1uK/γ. The relation can be
rewritten as p ~ α1u ! u, and we therefore conclude that

C ~ 1/ .

In accordance with Eq. (3.20), the relation p ~ u
leads to k1, 2 ~ p ! u. In other words, a new scale p–1

(different from u–1) appears in the problem. A detailed
investigation of the remote region r @ u–1 is therefore
needed to establish the r dependences of the both angle
ϕ and the velocity field v there. This investigation can
be based on the equations formulated in Section 3B,
which are correct irrespective of the value of pr.

Explicit expressions describing the velocity and the
angle are presented in Appendix A. They contain three
dimensionless functions ζ1(∇ /u), c1(∇ /u), and c2(∇ /u).
At ur @ 1, only zero terms of the expansions of these
functions in the Taylor series can be kept. Only one of
these three coefficients is independent (see Eq. (A.10)).
The general solution can therefore be expressed in
terms of a single parameter, which we choose as ζ ≡
ζ1(0). The procedure corresponds to the following con-
struction of the solutions to equations of motion (3.16)
in the region ur @ 1. We have to match the solutions in
the outer and the inner regions (far from and close to the
disclination respectively) at ur ~ 1. Technically, the
matching is equivalent to the appropriate boundary

Γ

ϕ1 uy ur( )
α1, V v x α1u

K
γ
---- ur( )

α1,∼–∼

ur( )
α1

Γ

Γ
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conditions for the outer problem at ur ~ 1, and these
boundary conditions can be formally replaced by the
local source terms in the equations, acting at ur ~ 1. We
can expand these sources in the standard multipolar
series. We thus arrive at the expansion with respect to
the gradients of the δ function. The gradients scale as u,
and therefore, ζ, c1, and c2 are dimensionless functions
of the dimensionless ratio ∇ /u.

To find the asymptotic behavior of the angle ϕ and
of the velocity v, we first consider the region u–1 ! r !
p–1. From Eqs. (A.4), (A.5), and (A.10), we then derive

(4.2)

where we keep only the leading logarithmic contribu-
tion of the zero harmonic in v x. Matching the velocity
derivatives determined by Eqs. (4.1) and (4.2) at r ~ u–1,
we find that ζ ~ 1 (we imply that s ~ 1). Using
Exps. (A.2), (A.5), and (A. 10), we obtain

(4.3)

in the region u–1 ! r ! p–1. We see that there is only a
small correction to the simple expression ϕ0 + uy in that
region, because p ! u.

In the region pr @ 1, the expressions for the angle ϕ
and the velocity v are more complicated. Using
Eqs. (A.2)–(A.5), we obtain

(4.4)

(4.5)

(4.6)

(4.7)

where c1 ~ 1 and c2 ~ 1 are determined by Eq. (A.10)
(we omitted the argument 0 to simplify the notation).
Expressions (4.4)–(4.7) contain terms of two types, iso-

v x
K 2s ζ–( )

γu
------------------------k1k2 pr( ),ln=

ϕ ϕ 0 uy spy pr( )ln+ +=

∂xϕ s
π
2
--- c1 k1 –k1r k1x–( )exp[–=

+ c2 k2 –k2r k2x+( )exp ] y

r3/2
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2
--- y

r2
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∂yϕ u 2s
π
2
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– c2 k2 –k2r k2x+( )exp ] y
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2
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v y
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v x
K
γu
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–=
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----------- –k2r k2x+( )exp pζ x
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tropic and anisotropic ones. The anisotropic contribu-
tions are essential only in the narrow angular regions
near the X axis, where they dominate. It is worth noting
a very nontrivial structure of the flow, in which the iso-
tropic flux to the origin is compensated by the anisotro-
pic terms.

The expressions found in this subsection generalize
the famous Lamb solution for the hydrodynamic flow
around a hard cylinder (see, e.g., [33–35]), where the
velocity field is exponentially small everywhere far
from the cylinder except for the wake of the corps, i.e.,
in a very narrow angular sector (“tail”). Disclination
motion in liquid-crystalline films can be regarded as the
motion of a cylinder framed by a “soft” (i.e., deform-
able) orientational field ϕ. Because of the additional
degree of freedom (compared to the classical Lamb
problem), our solution has two tails around the moving
disclination: a wake beyond the disclination and a pre-
cursor in front of it. In fact, both degrees of freedom
(the flow velocity and the bond angle) are relevant.

C. Extremely small G

In the above analysis, we implied the condition

α1|ln(ua) | @ 1 (we recall that α1 = s /2 at small Γ),
imposing a restriction from below on Γ at a given u. If
α1|ln(ua) | ! 1, the terms with both α = ±α1 determined
by Eq. (3.14) must be taken into account near the dis-
clination, which leads to a logarithmic behavior of the
correction ϕ1 to ϕ0 in that region,

(4.8)

instead of Eq. (4.1). Matching the derivatives of expres-
sions (4.3) and (4.8) at r ~ u–1 gives p ~ u|ln(au) |–1. In
other words, C ~ [Γ ln(au)]–1. This case formally corre-
sponds to the limit η  ∞ in our equations, where we
can drop the backflow hydrodynamic velocity in the
equation for the bond angle. The situation was exam-
ined in [6–9]. We present the simple analysis of the case
in Appendix B. We also note that there is no crossover
at r ~ u–1 in the bond angle behavior in this situation.

We now clarify the question regarding the Magnus
force in this case. In accordance with Eq. (4.8), the
reactive momentum flux to the disclination core is

The flux is therefore r-dependent, tending to zero as
r  a. This reactive momentum flux is compensated
by the viscous momentum flux (related to derivatives of
the flow velocity v), which is nonzero in this case
because of the logarithmic behavior of the flow velocity

Γ

ϕ1 uy
r
a
--- 

  au( )ln 1– ,ln∼

drαeαβTβγ∫° Ku
r
a
--- 

  au( )ln 1– .ln∼
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in r near the disclination. The flow velocity can be
found from Eqs. (3.6) and (4.8) as

which is a generalization of the Stokes–Lamb solution
[33, 34]. But unlike in the Lamb problem (a hard cylin-
der moving in a viscous liquid), |V – v(r = a) | ~ V in our
case; i.e., we have a slipping of the core of the moving
disclination. This slipping seems natural in the limit of
extremely small values of Γ, corresponding to the limit
η  ∞, that is, to a strongly suppressed hydrody-
namic flow. Physically, this property implies that the
disclination cannot be understood as a hard impenetra-
ble object. It is also worth noting that the logarithmic
behavior found above is similar to the general feature of
two-dimensional hydrodynamic motion that comes
from the well-known fact (see, e.g., [33–35]) that non-
linear terms cannot be neglected in a two-dimensional
laminar flow even for a small Reynolds number; these
terms become relevant for sufficiently large distances.
But in our case, these nonlinear terms do not come from
the convective hydrodynamic nonlinearity; they come
from the terms in stress tensor (2.4) that are nonlinear
in ϕ.

An explicit expression for ϕ and its asymptotic
forms corresponding to the considered case are given in
Appendix B. An expression for the flow velocity field
induced by the disclination motion at extremely small
Γ is derived in Appendix C.

5. CONCLUSIONS

We now summarize the results of our paper. To
understand the physics underlying the freely suspended
film dynamics, we studied the ground case—a single
disclination motion in a thin hexatic, smectic-C, or
nematic liquid-crystalline film, driven by an inhomoge-
neity in the bond (or director) angle. We investigated
the uniform motion (the one with a constant velocity).
In this case, we derived and solved the equations of
motion and found the bond angle and hydrodynamic
velocity distributions around the disclination. This
allows us to relate the velocity of the disclination V to
the bond angle gradient u = |∇ϕ|  in the region far from
the disclination. So much effort is needed because the
full set of equations must be solved everywhere, not
only locally. We established the proportionality coeffi-
cient C (see Eq. (3.4)) in this nonlocal relationship; it
has the meaning of an effective mobility coefficient.
The coefficient C depends on the dimensionless ratio Γ
of rotational (γ) and shear viscosity (η) coefficients.

There is little experimental knowledge of the values
of the coefficients γ and η in liquid-crystalline films. It
is generally believed that the corresponding values in a
film (normalized by its thickness) and in a bulk material
are not very different [31, 3], in which case we are in
the regime of Γ ~ 1, where the coefficient C is on the

v α
Ku

η au( )ln
-----------------------eαβ∇ β y

r
a
--- 

 ln
2

,∼
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order of 1. But the case where Γ ! 1 is not excluded
from both theoretical and materials science stand-

points. We found the coefficient C ~ 1/  in the small-
Γ limit. We established a highly nontrivial behavior of
the flow velocity and of the bond angle, which is pow-
erlike in r near the disclination and extremely anisotro-
pic far from it. Only for extremely small Γ, Γ !
1/ln2(ua) (where a is the disclination core radius), did
we find a logarithmic behavior C ~ [Γ ln(ua)]–1. The
main message of our study is that the hydrodynamic
motion (that is, the backflow), unavoidably accompa-
nying any defect motion in liquid crystals, plays a sig-
nificant role in the disclination mobility. Experimental
evidence (see, e.g., the recent publication [36]) shows
that this is indeed the case.

Our analysis can be applied to the motion of a dis-
clination pair with the opposite topological charges. In
this case, the role of the scale u–1 is played by the dis-
tance R between the disclinations. In accordance with
Eq. (3.4), we then find that ∂tR ∝  R–1 without a loga-
rithm (provided the rotational viscosity coefficient γ is
not anomalously small; see Section 4C for the quantita-
tive criterion). This conclusion is confirmed by the
results of numerical simulations for 2D nematics [15–
18]. The authors of [15–18] consider the equations of
motion in terms of the tensor order parameter, consis-
tently taking the coupling between the disclination
motion and the hydrodynamic flow into account. They
simulated dynamics of the disclination pair annihilation
and found that the distance R between the disclinations
scales depends on time t as t1/2, without logarithmic cor-
rections (as follows from our theoretical analysis) for
all values of the parameter Γ except extremely small
ones. Unfortunately, we did not find in [16–18] the
magnitudes of the shear viscosity that were used in the
simulations. Lacking sufficient data on the values of γ
and η, we can presently discuss only the general fea-
tures of the disclination dynamics. For instance, the
authors of [18] numerically found an asymmetry of
the disclination dynamics with respect to the sign of the
topological charge (s = ±1/2) in the one-constant
approximation. In our approach, the asymmetry natu-
rally appears from nonlinear terms in stress tensor (2.5)
and from the first term on the right-hand side of
Eq. (2.6) responsible for the different couplings of ori-
entational and hydrodynamic flow patterns for positive
and negative disclinations. This results in the fact that,
for each m, the smaller positive exponents in Eq. (3.13)
(corresponding to the minus in the brackets) are larger
for s = 1/2 than for s = –1/2. The disclination with s =
1/2 therefore exerts a stronger influence on the flow
velocity; this conclusion was qualitatively obtained in
[18].

Although the theory presented in this paper is valid
for free-standing liquid-crystalline films, the general
scheme can be applied to liquid-crystalline films on
solid or liquid substrates. Because such a film is
arranged on the substrate surface, any of its hydrody-

Γ
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namic motions are accompanied by the substrate
motion. For solid substrates, the situation where the
hydrodynamic backflow is irrelevant for the disclina-
tion dynamics can therefore be realistic. In Section 4C
(also see Appendix B), we examine this limit and repro-
duce the results in [6–9], where the hydrodynamic
backflow was neglected from the very beginning. The
case of the films on a liquid substrate requires a special
investigation, but the approach and the main ideas of
our paper could be useful there as well.

Our results can be directly tested by comparing with
the experimental data for smectic-C or nematic films.
The hexatic order parameter, which has a sixfold local
symmetry, is not coupled to the light in any simple way
(and, therefore, ideal hexatic disclinations are hardly
observed in optics). But it is possible to observe the
core splitting of the disclinations in tilted hexatic smec-
tic films [26]. Indeed, because of discontinuity of the
tilt direction (which is locked to the bond direction), the
hexatic order and hexatic disclinations can be observed
indirectly. The second possibility of detecting the
defects of hexatic ordering and verifying our theoretical
results is classical light scattering (where the wave vec-
tors are q = 102–104 cm–1 and the frequency is ω &

108 s–1 in typical experiments). For a reasonably thick
film, the power spectrum of light scattering can have
some additional structure revealing the disclination
properties (e.g., defects are thought to be relevant to the
very low frequency noise observed in thin films).
Experimental studies of this type are highly desirable.
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APPENDIX A

Distances Far from the Disclination

Here, we derive some results for the region far from
the disclination. These results are used in the case of
small Γ considered in Section 4B.

We examine the harmonic function Φ in Eq. (3.17).
Because the function is analytic in the region r > u–1, it
can be expanded in the derivatives of lnr there. Next,
because of the symmetry of the problem, Φ is an anti-
symmetric function of y. At least one derivative ∂y must
therefore be present in each term of the expansion, that
is,

(A.1)Φ uζ̂1∂y r,ln=
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where  = ζ1(∇ /u) and ζ1(z) is a series in z converging
in a circle with the radius on the order of 1. The expan-
sion coefficients in the series ζ1(∇ /u) are determined by
matching with the inner problem at r ~ u–1.

Because of the symmetry, the angle  can be repre-
sented as

(A.2)

The latter equation is the condition eαβ∇ α∇ β  = 0. We
note that ∇ 2  = –∂yH. In the region far from the discli-
nation, we can use Eqs. (3.16) and (3.17). The incom-
pressibility condition ∇ αvα = 0 must also be taken into
account. We thus obtain expressions for the velocity in
terms of B and H,

(A.3)

(A.4)

Solutions to Eq. (3.18) imply that

(A.5)

Here, the particular representation in Eq. (A.1) is used
and an arbitrary function of y that can contribute to H is
chosen to be zero because ∇   0 (and, hence,
H  0) as r  ∞. In (A.5),  and  are dimen-
sionless differential operators that can be represented as
Taylor series in ∇ /u, i.e., c1(∇ /u) and c2(∇ /u). These
functions must scale with u because the functions must
be found from matching at r ~ u–1.

Additionally, there are two conditions for the vari-
ables in the region ur @ 1. First, the correct circulation
around the origin leads to the effective δ-functional
term in Eq. (A.2),

(A.6)

ζ̂1

ϕ̃

∂xϕ̃ ∂yB, ∂yϕ̃ H ∂xB+( ),–= =
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ϕ̃
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K
2η
------∂y H– 2uB uζ̂1 pr( )ln+ +[ ] ,=

v y
K
γu
-----∂y=

× –H 2 pB
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4
--- –H 2uB uζ̂1 pr( )ln+ +[ ]+ +
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v x
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γu
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× –H 2 pB
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4
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k2x
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k2ĉ2K0 k2r( )e
k2x

–[ ] .=

ϕ̃
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∇ 2B ∂xH+ 2πsδ r( ).–=
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The second condition is the absence of the flux to the
origin,

(A.7)

Relations (A.6) and (A.7) lead to the conditions

(A.8)

(A.9)

At small Γ, the solution to Eqs. (A.8) and (A.9) is

(A.10)

We also assumed that ζ & 1, which is justified in Sub-
section 4B.

APPENDIX B

Suppressed Flow

Here, we demonstrate how the disclination velocity
V can be found if the hydrodynamic velocity v is negli-
gible (e.g., because of substrate friction). We reproduce
the results in [6–9].

In the absence of the hydrodynamic flow, the equa-
tion for the angle ϕ is purely diffusive,

(B.1)

as follows from Eq. (1.6) with v = 0. We assume that
ϕ  uy as r  ∞. The disclination motion is forced
by the “external field” u. We seek a solution ϕ(t, x, y) =
ϕ(x – Vt, y). From Eq. (B.1), we then obtain

(B.2)

In what follows, we consider the solution correspond-
ing to a single disclination with the circulation

(B.3)

where the integral is taken along a contour encompass-
ing the disclination counterclockwise. The quantity s in
Eq. (B.3) is an arbitrary parameter (which is equal to
±1/6 for hexatic, ±1/2 for nematic, and ±1 for smectic-
C ordering). For a suitable solution to Eq. (B.2) corre-
sponding to Eq. (B.3), we have

(B.4)

This derivative tends to zero as r  ∞, as it should be.

φv r r φ,( )d∫ 0.=

c1 0( ) c2 0( )
ζ1 0( )

2s
------------+ + 1,=

1 Γ
4
---+ 

  k1c1 0( ) k2c2 0( )–[ ] p
Γu
4

------+ 
 –

× c1 0( ) c2 0( )
ζ1 0( )

2s
------------+ +

Γu
8s
------ζ1 0( )+ 0.=

ζ1 0( ) ζ , c1 0( )
k1 ζk2/2s–

k1 k2+
---------------------------,= =

c2 0( )
k2 ζk1/2s–

k1 k2+
---------------------------.=

γ∂tϕ K ∇ 2ϕ ,=

2 p∂xϕ ∇ 2ϕ+ 0, where 2 p γV /K .= =

r∇ϕd∫° 2πs,=

∂xϕ s∂y
q2d

2π
------- 1

q2 2ipqx–
------------------------ iq r⋅( )exp∫=

=  s px–( )∂yK0 pr( ).exp
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Expression (B.4) does not determine ϕ unambigu-
ously because ∂x(uy) = 0, and we can therefore obtain a
new solution by adding a term uy to a given solution.
We note that uy is the zero mode of the Eq. (B.2). The
solution can therefore be written as

(B.5)

where  tends to zero as r  ∞. To relate p and u in
Eq. (B.5), we must know the boundary conditions at
r  0, or, in fact, at r ~ a, where a is the core radius.
At small r, the angle ϕ can be written as a series ϕ =
ϕ0 + ϕ1 + …, where ϕ0 corresponds to the static discli-
nation and ϕ1 is the first correction to ϕ0 related to the
motion. Matching with the inner problem gives

(B.6)

because the solution for the order parameter inside the
core is an analytic function of r/a and the expansion in
p is a regular expansion in pa (see [7] and Appendix D).

Expanding Eq. (B.4) in p, we obtain

at pr ! 1. In accordance with Eq. (B.5), we then obtain
with logarithmic accuracy (i.e., in the main approxima-
tion in |ln(pa)| @ 1) that

(B.7)

Using boundary condition (B.6), we now obtain

(B.8)

with the same logarithmic accuracy. This can be rewrit-
ten as

(B.9)

The same answer (B.9) can be found from the
energy dissipation balance. First of all, we can find the
energy E corresponding to solution (B.5),

(B.10)

where the first term is the energy of the external field,
the second term represents the energy of the disclina-
tion itself, and the third term is the coupling energy.
Obviously, only the last cross-term depends on time.
For |x – Vt | @ p–1,
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----------------------------.=

E r2 K
2
---- ∇ϕ( )2d∫=

=  K r2 1
2
---u2 1

2
--- ∇ϕ˜ L( )2 u∂yϕ̃L+ + ,d∫

y∂yϕ̃Ld

∞–

∞

∫
0 if x Vt,>

2πs if x Vt.<–



=
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It then follows from Eq. (B.10) that

(B.11)

On the other hand, we can use Eq. (B.1) to obtain

(B.12)

Replacing ∇ 2ϕ with 2p∂xϕ here in accordance with
Eq. (B.2), we obtain

The main logarithmic contribution to the integral
comes from the region a < r < p–1, where ∂xϕ ≈ –sy/r2.
We thus obtain

(B.13)

Comparing the expression with Eq. (B.11), we find the
same answer (B.9).

APPENDIX C

Extremely Small Γ
Here, we consider the flow velocity induced by the

moving disclination for extremely small Γ. The veloc-
ity is zero in the zero approximation in Γ (this case is
considered in Appendix B), and we therefore examine
the next, first-order, approximation in Γ. We use the same
formalism and the same notation as in Appendix A.

In accordance with Appendix A, solutions to the
complete set of nonlinear stationary equations can be
represented as

(C.1)

(C.2)

(C.3)

(C.4)

where B, H, and Φ' are to be found from the equations

(C.5)

∂tE 2πsKuV .–=

∂tE
K2

γ
------ r2 ∇ 2ϕ( )2

.d∫–=

∂tE γV2 r2 ∂xϕ( )2.d∫–=

∂tE πs2γV2 1
pa
------ 

  .ln–=

∂xϕ̃ ∂yB, ∂yϕ̃ H ∂xB+( ),–= =

curlv
K
2η
------ –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ,=

v x
K
2η
------∂y∇

2––=

× –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ,

v y
K
2η
------∂x∇

2–=

× –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ,

–∂yH 2 p∂yB
Γ
4
--- ∇ 2– ∇ 2 2u∂x–( )+ +

× –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ]

=  
Γ
2
--- ∂y∇

2– –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ]∂ yB(–

+ ∂x∇
2– –∂yH 2u∂yB 2us∂y r Φ'+ln+ +[ ] ∂ xB H+( ) ),
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(C.6)

(C.7)

If Γ is extremely small, s2Γ ln2(ua) ! 1, the solution
to Eqs. (C.5)–(C.7) can be continued to the vicinity of
the core. In the leading approximation, the solution for

 coincides with the solution for the angle  in the
absence of the backflow. This case, examined in [6–9],
is described in Appendix B. The functions BL and HL

corresponding to  are given by

(C.8)

This solution gives

(C.9)

Neglecting the nonlinear right-hand side of Eq. (C.5),
we can then find

(C.10)

B(r) can be found similarly. Using B and H in
Eqs. (C.3) and (C.4), we calculate the flow velocity v(r)
that vanishes at infinity.

For r @ p–1, this solution coincides with expressions
(A.5), (A.8), and (A.9) with

For pr ! 1, expression (C.10) is reduced to (C.8) and
this region produces the main contribution to Φ' in (C.9).
The following expressions are obtained in the inner region
(pr ! 1) from the solution in Eqs. (C.1)–(C.10):

(C.11)

(C.12)

A relation between p and u is fixed by condition (B.6),
leading to u = spln[1/(pa)], which is equivalent to
Eq. (B.9). The flow velocity at pr ! 1 and ln(r/a) @ 1 is

(C.13)

which corresponds to the stream function

(C.14)

Φ' 2∇ 2– ∂xB H+( )∂x∂yH ∂yB∂y
2H+[ ] ,=

∇ 2B ∂xH+ 2πsδ r( ).–=
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ϕ̃L

2 pBL HL 2spK0 pr( ) px–( ).exp= =

Φ' 2s2 p
y

r2
---- min r p 1–,{ }

a
----------------------------- 

  .ln=

H r( )
4πs

1 Γ /4+
------------------ q2d

2π( )2
------------- iq r⋅( )exp∫=

×
pq2 sΓp/4( ) q2 2iuqx+( ) min qa( ) 1– pa( ) 1–,{ }( )ln–

q2 2ik1qx–( ) q2 2ik2qx+( )
---------------------------------------------------------------------------------------------------------------------------.

ζ1 0( ) 2s
2s2 p

u
----------- 1

pa
------ 

  .ln+=

ϕ1 u sp
1
pa
------ln– 

  y spy
r
a
---,ln+=

curlv
Ks2 p

η
------------ y

r2
---- r

a
---.ln=

v α
s2Γ
8

--------Veαβ∇ β y
r
a
--- 

 ln
2

,–=

Ω –Vy
Ks2 p
4η

------------y
r
a
--- 

 ln
2

.–=
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The expansion with respect to Γ near the disclination is
regular and can be derived from Eqs. (3.8) and (3.9)
with the condition ∇ϕ 1(a) ~ p:  + uy is the zero term
of the series for ϕ, and expression (C.14) represents the
zero and the first terms for Ω .

We note that, in accordance with Eq. (C.13) in the limit
as Γ  0, the flow velocity tends to zero near the discli-
nation core, v(a)/V = O(Γ), despite the fact that the discli-
nation itself moves with the finite velocity V; thus, there is
a slipping on the disclination core in this limit.

APPENDIX D

Solution with the Complete Order Parameter

Here, we consider the dynamic equations for the
coupled velocity field v and the complete order param-
eter Ψ = Qexp(iϕ/|s|) describing the 2D orientational
order in liquid-crystalline films. These equations are
needed to examine the velocity field close to the discli-
nation position. We assume that the core size a is larger
than characteristic molecular scales and work in the
framework of the mean field theory.

Formally, the equations can be derived using the Pois-
son bracket method [30, 37]. In the mean field approxima-
tion, the energy associated with the order parameter is

its density becomes the K contribution in Eq. (2.3) at
large scales r @ a. The only nontrivial Poisson bracket
that must be added to the standard expressions is [28]

To be specific, we use the expressions for the energy
and the Poisson bracket for hexatic films. The dynamic
equations are given by

(D.1)

ϕ̃L

*Ψ
Ks2

2
--------- r2 ∇Ψ 2 1

2a2
-------- 1 Ψ 2–( )2

+ 
  ,d∫=

jα r1( ) Ψ r2( ),{ } ∇ αΨδ r1 r2–( )–=

+
i

2 s
--------Ψ r2( )eαβ∇ βδ r1 r2–( ).

ρ∂tv α ρv β∇ βv α+ η∇ 2v α
s2K

2
---------–=

× ∇ αΨ∗ ∇ 2Ψ 1

a2
-----Ψ 1 Ψ 2–( )+ 

 




+ ∇ αΨ ∇ 2Ψ∗ 1

a2
-----Ψ∗ 1 Ψ 2–( )+ 

 




–
i s K

4
-----------eαβ∇ β Ψ∗ ∇ 2Ψ Ψ∇ 2Ψ∗–{ } ∇ α ς̃,+

∂tΨ v α∇ αΨ+
i

2 s
--------Ψeαβ∇ αv β=

+
Ks2

2γs

--------- ∇ 2Ψ 1

a2
-----Ψ 1 Ψ 2–( )+ 
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the relation γs = s2γ/2 ensures the reduction to Eq. (2.6)
in the limit |Ψ| = 1, and the kinetic coefficients are
believed to be independent of Q (otherwise, we can
assume, for example, the dependence γs = s2γ|Ψ|2/2).
The slow dynamics of a 2D liquid-crystalline system
with disclinations can be described by Eqs. (D.1) with
the additional incompressibility condition ∇ v = 0 that
allows excluding the passive variable .

If the distance from the disclination to a boundary or
other disclinations is much larger than a (i.e., the per-
turbation of the static solution Ψ0 = Q0exp(iϕ0/ |s|) for a
single defect is small), we can linearize Eqs. (D.1) with
respect to the perturbation expressed in terms of the
respective corrections Q1 and ϕ1 to Q0 and ϕ0,

(D.2)

(D.3)

(D.4)

In terms of the dimensionless quantities L = ηΩ/K,
R = r/a, and Γ = 2γs/(s2η), Eq. (D.2) becomes (as previ-
ously, we consider a disclination with the unitary topo-
logical charge |s | or – |s |)

(D.5)

where  ≡  +  +  and Q0 is found from

ς̃

η∇ 2v α 2γs ∇ αQ0 v β Vβ–( )∇ βQ0
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+
1
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1
2
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+ 2γs
1
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-------eαβ∇ β Q0

2 v µ Vµ–( )∇ µϕ0
1
2
---eµν∇ µv ν– 

 

+ ∇ α ς̃ 0,=
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2γs
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-----------------Q1–
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s2
-----------------------------Q0–
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1
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2

----- 1 3Q0
2–( )Q1





v β Vβ–( )∇ βQ0,=

Ks2

2γs

--------- ∇ 2ϕ1 2Q0
1– ∇ αQ1∇ αϕ0 ∇ αQ0∇ αϕ1+( )+( )

=  
1
2
---eαβ∇ αv β– v β Vβ–( )∇ βϕ0.+

∇ R
4 L

Γ
4
--- 4s2 ∂RQ0( )2

R2
-------------------∂φ

2 L–




+

+ ∇ R
2 2s

R
-----∂R+ 

  Q0
2 ∇ R

2 2s
R
-----∂R– 

  L 
 





0,=

∇ R
2 ∂R

2 1
R
---∂R

1
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-----∂φ
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2 1

R
---∂R
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  Q0 Q0 1 Q0
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If Γ @ 1, as follows from Eq. (D.5), a new scale R ~

1/  ! 1 appears inside the core, the first term in
Eq. (D.5) can be neglected at larger scales, and there is
no crossover at R ~ 1.

If Q0 ≡ 1, Eq. (D.5) is reduced to Eq. (3.12). If R !
1, Q0 = AR (A ≈ 0.58) and Eq. (D.5) can be rewritten as

The solution to the equation is a superposition of the
terms λ(R)sin(mφ) with different m. After imposing the
condition λ(R) = 0, two constants remain in the general
solution of the ordinary differential equation for λ(R);
two partial solutions that are regular near R = 0 are
given by

where 2F1 is the hypergeometric function (2F1(a, b, c, z) =
1 + abz/c + …). Two constants (e.g., the derivatives
λ(|m|)(0) and λ(|m| + 2)(0) are chosen to ensure the slowest
possible growth at R @ 1 in order to eliminate the larg-
est exponent among α in Eq. (3.13).

If Γ @ 1, it is possible to derive a better approxima-
tion in the core region. We can expand Q0(R) in a series,
seek a series solution λ(R), and extract the terms of the
highest order in Γ. For example, for m = 1, the series for
λ(R) begins with l1R + l3R3, which fixes two constants
in the partial solution,

The solutions to Eqs. (D.3) and (D.4) are given by

Q0 0( ) 0, Q0 ∞( ) 1.= =

Γ

∇ R
2 ∇ R

2 L
AΓ
4

------- R2∇ R
2 4s2–( )L+

 
 
 

0.=

R m and R m F2 1
m m2 4s2+–

2
-------------------------------------,



m m2 4s2++
2

-------------------------------------- 1 m+ A2Γ R2

4
----------------–, , 

 ,

λ R( ) l1R 1
1

A2Γs 2 s2–( )
------------------------------- –1

s2A2Γ R2

8
---------------------–

+=

+ F2 1
1 1 4s2+–

2
------------------------------ 1 1 4s2++

2
------------------------------ 2 A2Γ R2

4
----------------–, , , 

 



+ l3
8

A2Γs2
--------------R –1 F2 1

1 1 4s2+–
2

------------------------------,
+

1 1 4s2++
2

------------------------------ 2 A2Γ R2

4
----------------–, , 

 .

Q1 ϑ R( )∂φ mφ( ), ϕ1sin σ R( ) mφ( ),sin= =
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where ϑ  and σ must be found from the equations

that generalize the expressions given in [7].
The dynamic equations with the complex order

parameter demonstrate that, for all Γ, the boundary
conditions for Eqs. (2.4)–(2.6) experience no signifi-
cant changes on the core. The peculiarity of extremely
small Γ leading to the nonslipping condition consists in
a slow growth of ∇Ω  far from the disclination.
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