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 In the realm of liquid crystals one of the most excit�
ing and relatively recent result is discovery of a new
type of equilibrium nematic structure, see the papers
[1–5]. Especially surprising is the fact that the
observed new phases (termed twist�bend nematics,
NTB) exhibit helical (chiral) orientational ordering
despite being formed from achiral molecules. The
molecules of the substances possessing NTB phases
have a specific “banana”�like shape. For comparison,
known more than a century conventional nematic liq�
uid crystals (N) are formed from rod�like or disk�like
molecules. There exist also chiral cholesteric phases
locally equivalent to nematics but possessing simple
(orthogonal) helical structures with pitches in a few
micron range. The cholesteric structure appears as a
result of relatively weak molecular chirality (that is
why it has a relatively large pitch), and the swirl direc�
tion of the spiral (left or right) is determined by the
sign of the molecular chirality. Unlike this situation,
the NTB nematics are formed as a result of spontaneous
chirality breaking, they have nanoscale pitches.

Scanning the literature one can find a number of
theoretical works devoted to the twist�bend nematics
[6–12]. Majority of the works, starting from the influ�
ential paper [6], discuss the question how modulated
orientational structures can be formed in achiral sys�
tems. One can easily understand that the description
of the twist�bend nematics in terms of an orientational
elastic energy requires a pathological (not positively
defined) Frank elastic energy. An analysis in the
framework of such Frank energy can rationalize some
experimental observations made for the NTB liquid
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crystals, e.g., anomalously large flexoelectric coeffi�
cients [10], or non�monotonous temperature depen�
dence of the orientational elastic moduli [7]. Note the
paper [13] (which almost gone unnoticed for liquid
crystal community), where the negative twist elasticity
yielding to the spontaneous chiral symmetry breaking,
has been suggested based on the Van der Waals contri�
bution into the Frank elastic moduli. We note also the
work [12], where NTB phase elasticity with two director
fields have been discussed within the positively defined
conventional Frank energy. In the recent preprint [14]
the authors consider how flexoelectricity combined
with spontaneous polar order (ferroelectricity) could
stabilize conic spiral orientational ordering. However,
under natural Landau theory assumptions the theory
[14] yields to strongly biaxial and polar features of the
NTB phase, apparently not supported by experimental
observations.

From our point of view, a description of the twist�
bend nematics in terms of an orientational elastic
energy needs a modification related to relatively short
pitch of the helicoidal structure. In the case the Frank
moduli for the short�scale component of the director
field are different from those for the long�scale com�
ponent of the director. Therefore the components
should be treated in terms of different elastic energies.
In the paper we realize the program keeping the nota�
tion n for the long�scale component of the director
and introducing its short�scale component ϕ. The
components have to be orthogonal, n · ϕ = 0. Thus the
vector ϕ has two independent components.

The quantity ϕ plays a role of the order parameter
for the phase transition N–NTB. To analyze the system
behavior in the vicinity of the transition, one should
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introduce the Landau functional in terms of ϕ includ�
ing all relevant terms. The vector character of ϕ leads
to absence of odd terms in the Landau functional.
Therefore in the mean field approximation the N–NTB

transition is a continuous (second order) phase transi�
tion. Roughly, experimental data [2, 3, 5] and numeric
simulations [7, 9] can be positively confronted with
the mean�field theory predictions. However, certain
experiments [3, 5] clearly indicate that the N–NTB

transition is not a continuous one: there exists a two�
phase coexistence region where hysteresis phenomena
are observed. The experimental data, which we aware,
suggest: (i) a relatively weak first order N–NTB phase
transition with barely visible fluctuation effects from
the NTB side [3, 5]; (ii) practically regular and smooth
temperature dependence of Frank elastic moduli [7,
8]. To explain the features one has to go beyond the
mean field approximation and analyze fluctuation
effects.

Experimentally, in the NTB phase the director n + ϕ
has the helical conic structure in space. By other
words, the short�scale component ϕ rotates around n
at moving along the n�direction. Therefore the abso�
lute value of the vector ϕ gives the tilt angle for the
conical spiral. Because the conical helical structure
has a certain short pitch periodicity (we characterize it
by the wave vector q0), the order parameter ϕ is con�
densed at passing to the NTB phase at a finite wave vec�
tor q0 (experimentally on the order of a few inverse
molecular lengths). Thus the N–NTB phase transition
is similar to weak crystallization phase transitions [15]
where the mass density modulation appears at finite
wave vectors. Besides, the vector nature of the order
parameter leads to some peculiarities. Say, odd terms
are absent in the Landau functional and some addi�
tional terms should be introduced there in comparison
with the theory of weak crystallization.

For the vector order parameter the Landau func�
tional contains second�order and fourth�order terms.
Taking into account the nature of the short�scale vec�
tor field ϕ, one obtains the following functional

(1)

where  = δij – ninj. As usual, a ∝ T – Tc, where Tc is
the mean field transition temperature. The quantities b
are analogs of the Frank moduli for the order parame�
ter ϕ. The free energy (1) represents the minimal Lan�
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dau model for the N–NTB phase transition, catching
all observable features of the NTB phase.

We first neglect fluctuations of the long�scale direc�
tor n and assume that it is a homogeneous field n0,
determining a preferred direction, n0 = (0, 0, 1). Then
the Landau functional (1) can be represented in a more
compact form by replacing the order parameter ϕ by its
complex counterpart ψ

. (2)

Unlike ϕ the complex field ψ is long�scale. It is per�
pendicular to n0, ψ = (ψx, ψy, 0). In terms of the field ψ,
the Landau functional (1) is rewritten as

(3)

If λ1 > 0 then below the phase transition (at a < 0) min�
imization of the last term in Eq. (3) gives ψx = iψy or
ψx = –iψy (in both cases ψ2 = 0). That corresponds just
to the observed conical helical structure since then

(4)

where φ is the phase of ψx and signs “±” correspond to
two possible rotation directions of the conical struc�
ture.

It is worth noting one additional soft (Goldstone)
mode in the NTB phase related to long�scale variations
of the phase φ in the expression (4). Since the bulk
energy is independent of a homogeneous phase shift,
the elastic energy related to variations of φ depends on
its gradient

. (5)

The energy (5) defined at scales larger than the corre�
lation length is analogous to the energy of the super�
fluid component in a superfluid helium. Unlike the
helium, the energy (5) is anisotropic.

The mean�field (i.e., ignoring fluctuations) predic�
tions following from minimizing the energy (3) are
standard. Namely, at T < Tc (in the low�temperature

phase) . The specific heat has the stan�
dard Landau jump at the transition point, and the cor�
relation length diverges as (Tc – T)–1/2. In the mean
field approximation the moduli in Eq. (5) can be
obtained from the functional (3), they are B⊥ =
2(2b⊥ + b1)|ψx|2, B|| = 4b3|ψx|2. Therefore both, B⊥ and
B||, are proportional to Tc – T.
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To proceed further we pass to an analysis of fluctu�
ations. In our case, fluctuations of both components of
the director, n and ϕ, has to be taken into account. The
long�scale director will be written as n = n0 + δn,
where δn is a relatively weak deviation of n from its
average value. Next, it is convenient for us to keep the
field ψ as representing components of the order
parameter ϕ perpendicular to n0. Then in the linear
over δn approximation the constraint n · ϕ = 0 leads to

(6)

instead of Eq. (2). Here the subscripts “||” and “⊥”
mark the order parameter components parallel and
perpendicular to n0.

Substituting the expressions (6) into the gradient
terms of the Landau functional (1) and expanding over
δn, we find in the main approximation the interaction
terms

(7)

(8)

Note that terms (7) and (8) can be obtained from the
second order term (3) by passing to the “covariant”
derivative ∂iψ  (∂i + iq0δni)ψ. This is a consequence
of the rotational invariance of the system. The interac�
tion terms have to be added to the Landau functional (3)
and to the Frank energy

(9)

The above contributions to the Landau functional
given by Eqs. (3), (7)–(9) constitute the complete set
of relevant terms, that determine the fluctuation
effects. The region of developed fluctuations (realized
near the phase transition) can be analyzed, say, in the
framework of the so�called ��expansion [16] based on
the renormalization group (RG) procedure. There is
the common belief that the RG�flow draws the system
towards a symmetric state, in our case realized at b1 = 0.
Then our model becomes almost identical to the de
Gennes model [17] describing the N–SmA phase
transition, apart from the number of components of
the order parameter: the order parameter in our case is
the two�component vector ψ, whereas the order
parameter in the de Gennes model is scalar. Fluctua�
tion effects in the de Gennes model were analyzed in
the framework of the RG�procedure first in [18] and
then (for an arbitrary number of components of the
order parameter) in [19]. It was stated in the work that
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the zero�charge fix point is stable only for very large
number of components of the order parameter. Thus,
one expects that the fluctuations destroy the zero�
charge fix point that physically means converting the
phase transition to the first order.

Thus, we expect that fluctuations of the director
turn the N–SmA phase transition to the first order
class that is in agreement with experimental data. In
the situation fluctuation effects can be observed only
in a narrow vicinity of the phase transition and not to
be strongly exhibited. Therefore the mean�field pre�
dictions can cover the majority of the temperature
interval near the phase transition. This looks to be true
for the experimental data [2, 3, 5, 7, 9]. Especially
important are X�ray small�angle diffraction studies [4]
directly manifesting short�scale periodicity. The tem�
perature dependence of the diffraction peak width at
T < Tc found in [4] corresponds to the mean�field pre�
diction ∝ (Tc – T)1/2. The cusp in the quantity
observed near the phase transition probably signals
about fluctuation effects.

At the moment of writing this manuscript we are
not aware about any observation of the additional
Goldstone mode in the NTB phase related to long�scale
variations of the cone phase. Although optical scatter�
ing methods could identify the mode, in practice, real�
ization of such experiment is not a simple issue. First,
it requires a very accurate selection of polarizations for
the incident and scattered beams polarized to exclude
presumably much larger scattering by conventional
director modes. Second, since the optical wave vector
is smaller than the inverse pitch period q0, the only
second order scattering (proportional to the square of
the NTB order parameter fluctuations) contributes to
the light scattering intensity. To the point, an external
magnetic field which suppresses the conventional
long�scale director fluctuations can be very useful for
the observation of the mode.
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