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1 1. INTRODUCTION

The subject of the paper is the magnetic dynamo,
that is, the magnetic field generation by hydrodynamic
motions in a conducting medium. We theoretically
investigate the effect in a conducting fluid (plasma,
electrolyte) where a random hydrodynamic flow is
excited. The principal example of such a flow is hydro�
dynamic turbulence (see, e.g., [1, 2]) responsible for
the magnetic field generation in different geophysical
and astrophysical phenomena [3–10]. We consider the
case where the magnetic field grows from small initial
fluctuations and examine the evolution stage of a suf�
ficiently weak magnetic field, which allows neglecting
the feedback from the magnetic field to the flow. The
stage where the flow is independent of the magnetic
field is called kinematic. The kinematic approach
becomes invalid when the increasing magnetic field
begins to affect the fluid motion essentially. In this
case, the velocity field is strongly influenced by the
Lorentz force, and hence the induction dynamics is no
longer linear. In most cases, this leads to saturation of
the magnetic field fluctuations maintained by the
hydrodynamic flow. Although the magnetic field can�
not be described by a linear equation in this regime,
the kinematic stage produces magnetic structures sim�
ilar to those occurring at the saturation state (see, e.g.,
[11]). A possible explanation of this fact is related to
strong intermittency of the magnetic field, which
implies that the feedback is concentrated in restricted
space regions where the magnetic field is anomalously
strong.

We assume that the random flow exciting the
dynamo is statistically homogeneous in space and

1  The article is published in the original.

time. Usually, it is assumed in addition that the flow is
statistically isotropic. If the velocity field is short�cor�
related in time, then it is possible to derive closed
equations for the magnetic induction correlation
functions [12]. The corresponding pair correlation
function has been analyzed in [13, 14]. The complete
statistical description of the magnetic field for a short�
correlated smooth statistically isotropic flow was given
in [15], where the growth rates and the structure of
spatial correlation functions were found. However, it is
interesting to consider random flows with an average
shear flow, which are widespread in astrophysical
applications. Such flows are statistically anisotropic
and need a special analysis. Here, we examine the case
where a steady shear flow is complemented by a rela�
tively weak random component. We focus on the anal�
ysis of growth rates of moments of the magnetic field
(magnetic induction), the degree of its anisotropy, and
the structure of the magnetic field correlation func�
tions. Our goal is to relate the magnetic statistical
characteristics to those of the flow, thus revealing the
most universal features of the dynamo effect. The gen�
eral assertions are illustrated by a model where the
velocity field is short�correlated in time and can be
solved analytically.

An additional motivation for our research comes
from dynamics of polymer solutions that is in many
respects similar to magnetohydrodynamics [16–18].
In particular, we have in mind the so�called coil�
stretch transition [19] (see also [20, 21]) that is an ana�
log of the dynamo effect in polymer solutions. A
decade ago, the elastic turbulence was discovered [22–
24], which is a chaotic hydrodynamic motion of poly�
mer solutions that can be realized even at small Rey�
nolds numbers, in contrast to the traditional hydrody�
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namic turbulence. Elastic turbulence is a natural
framework for applying an extension of the dynamo
theory to polymer solutions.

The behavior of the magnetic field moments at the
kinematic stage in the presence of a strong shear flow
was established in [25]. But to examine the spatial
structure of the magnetic field, we must know its cor�
relation functions, and these are studied in this paper
in the framework of the general scheme used in [25].
To verify our general predictions, we examine the
dynamo effect in the framework of an analytically
solvable model where random flow a short�correlated
in time is excited on the background of a strong sta�
tionary shear flow.

The structure of this paper is as follows. In Section 2,
we introduce basic relations needed to analyze the
magnetic field correlations and dynamics. We present
the general dynamic equation, give its formally exact
solution, and discuss statistical properties of the quan�
tities entering this solution. In Section 3, moments
and correlation functions of the magnetic field are
investigated. We relate its growth rates to the growth
rates of the separation between two close fluid particles
and establish the principal spatial structure of the cor�
relation functions. Section 4 is devoted to the model
where the fluctuating component of the flow is short�
correlated in time. We establish the growth rates for the
model and analyze the pair correlation function in
detail. The obtained results are in agreement with our
general assertions. In Section 5, we outline our main
results and discuss their possible applications and
extensions.

2. BASIC RELATIONS

We consider the magnetic field evolution in a con�
ducting fluid (plasma or electrolyte) where hydrody�
namic motions are excited. Then the magnetic field
dynamics is governed by the equation [26]

(2.1)

where B is the magnetic induction, v is the flow veloc�
ity, and κ is the magnetodiffusion coefficient, inversely
proportional to the electrical conductivity of the
medium. The flow is assumed to be incompressible,
∇ ⋅ v = 0. We also assume that the magnetodiffusion
term in Eq. (2.1) is small in comparison with those
related to the flow. We consider the case where the mag�
netic field is relatively weak and therefore its feedback to
the flow is negligible. Then relation (2.1) is a linear
equation determining the magnetic field evolution in a
prescribed velocity field; this regime is called kinematic.

The hydrodynamic motion excited in the fluid is
assumed to be random (turbulent) and the velocity sta�
tistics is assumed to be homogeneous in space and
time. We examine the magnetic field growth from ini�
tial weak fluctuations distributed statistically homoge�
neously in space at the initial instant t = 0. The corre�
lation length of the initial fluctuations l is assumed to

∂tB B ∇⋅( )v v ∇⋅( )B– κ∇2B,+=

be smaller than the velocity correlation length η. If we
consider hydrodynamic turbulence, then the role of
the velocity correlation length is played by the Kol�
mogorov scale. At scales less than η, the velocity field,
v can be considered smooth. The magnetic growth
(dynamo) can be characterized by moments of the
magnetic induction that exponentially increase with
time t:

(2.2)

Here, angular brackets denote averaging over space.
Exponential laws (2.2) are characteristic of the kine�
matic dynamo because Eq. (2.1) is linear in the mag�
netic induction B in this case.

One of our goals is to express the growth rates γn in
Eq. (2.2) via statistical characteristics of the flow. The
natural measure for the growth rates γn is the so�called
Lyapunov exponent of the flow, λ, equal to the average
logarithmic divergence rate of close fluid particles. A
special question concerns the n dependence of γn.
If the magnetic induction statistics is Gaussian, then
γn ∝ n. Deviations from the linear law signal the inter�
mittency of the magnetic field. The intermittency
implies that high moments of the magnetic field are
determined by rare strong fluctuations.

There are two different regimes of the kinematic
magnetic field growth. The first regime is realized if all
characteristic scales of the magnetic field are much

larger than the magnetic diffusion length rd = .
The assumed smallness of the diffusion coefficient
implies the inequality η � rd. We also assume that l �
rd; then the diffusion term in Eq. (2.1) is negligible at
the first stage of the magnetic evolution, which we call
diffusionless. The magnetic field lines are deformed by
the flow without reconnections in this regime. But dis�
tortions of the magnetic field by the flow inevitably
lead to producing order�rd scales in the field. After
that, the magnetic diffusion is switched on and recon�
nections can occur. This second (diffusion) stage is
characterized by the growth rates different from those
describing the diffusionless regime.

We present a qualitative picture explaining the
magnetic field evolution at the kinematic stage. The
initial magnetic field distribution in space can be
regarded as an ensemble of blobs of sizes of the order
of l. Then the blobs are distorted by the flow, being
stretched in one direction and compressed in another
direction. In the isotropic case, the stretching and
compression directions vary chaotically in space and
time, but in our case, they are attached to the shear
flow: the blobs are stretched mainly along the shear
velocity and are compressed in the direction of the
shear velocity gradient. At the first (diffusionless)
stage, the blobs are deformed without intersections
and the magnetic field induction grows as the separa�
tion between close fluid particles because Eq. (2.1) at
κ = 0 coincides with the equation for the separations.

B t( ) 2n〈 〉 γnt( ).exp∝

κ/λ
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The diffusionless stage terminates when the char�
acteristic blob width decreased to the diffusion length
rd. Then the diffusion is switched on, which leads to
two effects. First, the diffusion prevents further shrink�
ing the blob widths, which therefore remain of the
order of rd, whereas the blobs continue to be stretched
in the direction of the shear velocity. Second, due to
re�connections of the magnetic field lines allowed by
diffusion, the blobs start to overlap. As a result, new
blobs of a characteristic longitudinal size η are formed
(Fig. 1). The magnetic induction in such blobs can be
found by averaging the induction of a large number N
of initial blobs, with the number N increasing expo�
nentially with time. Averaging over a large number of
random variables leads to the appearance of an expo�

nentially small factor about 1/  in the amplitude of
the magnetic induction. In addition, the amplitudes of
the initial blobs continue to increase with time as the
separation between fluid particles. We conclude that at
this second (diffusive) stage, the magnetic field is still
increasing exponentially with time, but slower than at
the first stage.

We consider the case where the steady shear con�
stituent of the flow is much stronger than the random
one. Quantitatively, the condition is written as the ine�
quality s � λ, where s is the shear rate. Indeed, the
Lyapunov exponent in a pure shear flow is zero, and its
nonzero value is associated with the presence of a rel�
atively weak random constituent of the flow. The dis�
torted magnetic blobs are elongated mainly along the
shear velocity. However, they are tilted with respect to
the velocity direction due to presence of the random
velocity component (see Fig. 1). The tilt exhibits the
same dynamics as the direction of the polymer stretch�
ing in the same flow [21]. Therefore, the tilt angle φ
(see Fig. 1) can be estimated as φ ~ λ/s. The tilt angle
determines the typical ratio of the magnetic field com�
ponents By/Bx ~ λ/s � 1, where the x axis is directed
along the shear velocity, which varies along the y axis.
Thus, the ratio s/λ characterizes the anisotropy degree
of the magnetic field.

2.1. Lagrangian Dynamics

To analyze moments and correlation functions of
the magnetic induction, we need a solution of magne�
todynamic Eq. (2.1) for the induction field B(t) in
terms of its initial value �, � = B(0). We here use a
generalization of the scheme proposed in [27] and
elaborated in [25], which uses the Lagrangian
approach to fluid dynamics.

First, instead of solving Eq. (2.1) with the second�
order Laplace operator, it is convenient to pass to the
first�order equation

(2.3)

N

∂tB B ∇⋅( )v v ∇⋅( )B– ξ ∇⋅( )B,+=

where ξ(t) are white noises (Langevin forces) mimick�
ing the magnetic diffusion. The means of the ξ are zero
and their pair correlation function is

(2.4)

where “ ” mean averaging over the ξ statistics and
κ is the same diffusion coefficient as in Eq. (2.1). The
solution of evolution Eq. (2.1) is given by the solution
of Eq. (2.3) averaged over the ξ statistics for any veloc�
ity field v(t, r).

To prove the assertion, we find the increment of the
magnetic field induction during a small time interval �.
A formal solution of Eq. (2.3) is

where Texp is the chronologically ordered exponential

and  is the matrix of the velocity gradients, Σji = ∂ivj.
Expanding the exponent and averaging the result over
the ξ statistics in accordance with Eq. (2.4), we find
the increment

in the first order in �. We note that cross terms are
absent in this approximation because the averages of ξ
are zero. The above increment is equivalent to the one
obtained directly from Eq. (2.1).

Second, we solve Eq. (2.3) by the method of char�
acteristics. The equation for the characteristic R is

(2.5)

This equation describes a Lagrangian trajectory dis�
turbed by Langevin forces. If the magnetic induction is
written as B(t, r) = b(t, R), then the quantity b satisfies

the equation ∂tbj = Σjibi, where (t) is the velocity gra�
dients matrix, Σji = ∂ivj, taken at the time t and at the
spatial point R(t). A solution of the equation can be

ξi t1( )ξj t2( ) 2κδijδ t1 t2–( ),=

…

B t( ) T t ' Σ̂ v∇– ξ t '( )∇+[ ]d

t �–

t

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

B t �–( ),exp=

Σ̂

B t( ) B t �–( )– � B ∇⋅( )v � v ∇⋅( )B– �κ∇2B+=

∂tR v t R,( ) ξ.+=

Σ̂

η

rd

φ

Fig. 1. Sketch of typical magnetic blobs during the diffusive
kinematic stage.
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written as b(t) = (t)b(0), where the matrix (t) is
the chronologically ordered exponential

(2.6)

The matrix , which we call the evolution matrix, can

be treated as a solution of the equation ∂t  = 

with the initial condition (0) = 1.
Finally, we find the formally exact solution of

Eq. (2.1),

(2.7)

where, again, “ ” mean averaging over the ξ sta�
tistics determined by Eq. (2.4). To find R(0), we must
solve Eq. (2.5) on the time interval (0, t) with the
boundary condition R(t) = r is posed at the final time.
In other words, we should track the magnetic field
back in time along the disturbed Lagrangian trajecto�

ries and include the factor  accumulated along the
trajectory.

The evolution matrix  has some general proper�
ties that follow from definition (2.6). The determinant

of  is equal to unity because the velocity gradient

matrix  is traceless, tr  = 0, which is in turn a con�
sequence of the incompressibility condition ∇ ⋅ v = 0.

We introduce the symmetric matrix  (where the
superscript “T” denotes transposition) and denote its

eigenvalues as , , , where all the quantities
W1, W2, W3 are positive. Because the determinant of

 is equal to unity, we have W1W2W3 = 1. We order
the eigenvalues as W1 > W2 > W3, then W1 > 1 and
W3 < 1. At times t � λ–1 we are interested in, typical
values of lnW1 and lnW3 can be estimated as ±λt, and
therefore W1 is exponentially large and W3 is exponen�
tially small. The estimation for W2 depends on the
details of the flow statistics. In any case, W1 � W2 �
W3 at times t � λ–1.

In the framework of the proposed formalism, cor�
relation functions of the magnetic field B are to be cal�
culated by averaging products of factors (2.7) taken at
the respective points over the statistics of the noise ξ,
in addition to averaging over space. Thus, say, the one�
time correlation function

(2.8)

has to be calculated in two steps. First, we substitute
expression (2.7) in the right�hand side of (2.8) and
then average the resulting product over the ξ statistics
determined by Eq. (2.4); this averaging catches the
magnetic diffusion. We emphasize that the fields ξ
have to be treated as independent for all the 2n factors
in the product. Second, we average the result over

Ŵ Ŵ

Ŵ t( ) T t 'Σ̂ t '( )d

0

t

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

.exp=

Ŵ

Ŵ Σ̂Ŵ

Ŵ

B t r,( ) Ŵ t( )� R 0( )[ ] ,=

…

Ŵ

Ŵ

Ŵ

Σ̂ Σ̂

ŴŴ
T

W1
2 W2

2 W3
2

Ŵ

F2n i… j, r1 … r2n, ,( ) Bi r1( )…Bj r2n( )〈 〉 ,=

space. Averaging over scales less than or of the order of
η (traced back to the initial time) gives statistics of the
initial magnetic field fluctuations, and averaging over
scales more than or of the order of η counts different

realizations of . Therefore, the latter is equivalent to
averaging over the velocity statistics. This logic was
realized for the isotropic random flow in [15].

In the diffusionless regime, realized at t �
λ⎯1ln(l/rd), we can neglect the diffusion effects. Then

in calculating the moment , we can take the
product of identical factors (2.7), where R is simply a
Lagrangian trajectory terminated at the point r at time
t. Then

where � is taken at the origin of the Lagrangian trajec�

tory. Here, just the factor  is responsible for the
exponential growth of the moments, and therefore we
can restrict ourselves to the estimation

where �0 is the characteristic value of the initial mag�
netic field fluctuations. In the diffusion regime, real�
ized at t � λ–1ln(l/rd), the situation is somewhat more
complicated.

We first consider the second moment. Then we deal
with two trajectories, R and R', terminating at the
same point r at time t, but characterized by indepen�
dent noises ξ and ξ'. The second moment can be writ�
ten as the average,

(2.9)

An appreciable contribution to the second moment is
associated with the trajectories with  � l.
Because  � η and  = 0,
the difference ΔR = R – R' remains much less than η
at any time from the interval (0, t) for such an event.
From Eq. (2.5), expanding the velocity up to terms
linear in ΔR, we then obtain

(2.10)

where  can be taken at any of the points R or R'. The
solution of Eq. (2.10) that is equal to zero at t ' = t is
written as

(2.11)

To calculate the second moment, we should know
the ΔR(0) statistics. Because the separation ΔR(0) is a
linear combination of ξ and ξ', it should be treated as a
Gaussian variable in averaging over the ξ statistics, and

Σ̂

B 2n〈 〉

B r( ) 2n W1
2n � 2n

,≈

W1
2n

B r( ) 2n W1
2n�0

2n
,∼

B( )2〈 〉 �T
R 0( )[ ]Ŵ

T
Ŵ '� R ' 0( )[ ] .=

R 0( ) R ' 0( )–
R 0( ) R ' 0( )– R t( ) R ' t( )–

∂tΔR Σ̂ΔR ξ ξ ',–+=

Σ̂

ΔR t '( ) Ŵ t '( ) t1Ŵ
1–

t1( ) ξ t1( ) ξ ' t1( )–[ ].d

t '

t

∫–=
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then its probability distribution function is completely

determined by the matrix :

(2.12)

The expression for  is derived from Eqs. (2.4) and

(2.11). The matrix  is symmetric, and its eigenvalues

are positive. We let the eigenvalues be denoted by ,

,  and order the m as m1 > m2 > m3; the inequal�
ities become strong, m1 � m2 � m3, if λt � 1. We

emphasize that the directions of the eigenvectors of 
are “frozen” at λt � 1 [28–31]. Then the integral
determining m1 is dominated by t – t1 ~ λ–1, and we

arrive at the estimation m1 ~ rd . The integral deter�

mining m3 is deminated by t1 ~ λ–1, and therefore m3 ~
rd. An estimation for m2 depends on the time depen�
dence of W2. If W2 increases, then m2 remains of the

order of rd, but it grows like m2 ~ rd  if W2 decreases.

We now find the probability that ΔR(0) is less than
l in the diffusion regime, when t � λ–1ln(l/rd). We can
think in terms of the components of ΔR(0) in the basis

attached to the eigenvectors of . Because m1 � l, the
probability that the first component of ΔR(0) is less
than l is estimated as l/m1 ~ (l/rd)W3. If W2 increases
with time, then both m2 and m3 are of the order of rd

and therefore the probability that the second and the
third components of ΔR(0) are less than l is close to
unity. From Eq. (2.9), we then find

(2.13)

where we used the relation W1W2W3 = 1.

The situation with a decreasing W2 is slightly differ�
ent. In this case, m2 � l at the diffusive stage, and there
appears an additional small probability that the second
component ΔR(0) is less than l. This probability can be

estimated as l/m2 ~ (l/rd)W2. We then obtain  ~

W1(l/rd)2 instead of Eq. (2.13). But the integration
over space (at the next step of averaging) kills the lead�
ing term due to the solenoidal nature of the magnetic
field B. Therefore, we have to take the next term in the
probability distribution of ΔR2(0) into account, which
contributes an extra small factor (l/m2)

2 to the proba�
bility. Thus, we arrive at

(2.14)

We note that expressions (2.13) and (2.14) are
equivalent to those obtained in the Fourier representa�
tion for the statistically isotropic case in [15]. But
expressions (2.13) and (2.14), written for real space,
are also correct for the anisotropic problem (which we

M̂

Mij ΔRi 0( )ΔRj 0( ) 4κ t1Wik
1– Wjk

1–
.d

0

t

∫= =

M̂

M̂

m1
2

m2
2 m3

2

M̂

W3
1–

W2
1–

M̂

B 2 �0
2

l/rd( )W1W2
1–
,∼

B 2〈 〉

�0
2

B 2 �0
2

l/rd( )4W1W2
2
.∼

are investigating), and are in fact more suitable for the
problem.

We turn to higher moments. It can be seen that the

principal contribution to the average  is pro�
duced by configurations where the 2n points Rα(0) are
divided into n pairs with separations less than or of the
order of l in each pair. Because of the independence of
the white noises ξα, the probability of this event can be
estimated as the product of probabilities for the second
moment, that is,

(2.15)

where the second moment is given by Eq. (2.13) or
Eq. (2.14). We have ignored a combinatorial factor in
Eq. (2.15) because we are interested in the time depen�
dence of the moments.

2.2. Evolution Matrix

The next step in finding the magnetic field
moments is averaging over the velocity statistics.
Before doing this, we should establish statistical prop�
erties of evolution matrix (2.6). Some universal prop�
erties of such matrices, which can be treated as prod�
ucts of a large number of random matrices, are well
established [28–31]; the properties are revealed at t �
λ–1. But we examine a strongly anisotropic case, with
the steady shear flow dominating. This requires modi�
fying the consideration in [15], where the isotropic
case (statistically isotropic flow) was investigated.

For the anisotropic problem, it is convenient to use
the Gaussian decomposition of the evolution matrix

 = , where  and  are the triangle matri�
ces

(2.16)

and  is a diagonal matrix. Because both triangle

matrices,  and , have unit determinants, the

determinant of  is also equal to unity.

The matrices are written in the reference frame
attached to the shear flow: the axis x is directed along
the shear velocity and the axis y is directed along the
shear velocity gradient. Therefore, the shear velocity is
written as vx = sy, where s is the shear rate. For our
flow, which is composed of a steady shear flow and a
random component, the matrix of the velocity gradi�

B 2n

B 2n B 2 n
,∼

Ŵ T̂LΔ̂T̂R T̂L T̂R

T̂L

1 χ χ1

0 1 χ2

0 0 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

T̂R

1 0 0

ζ1 1 0

ζ2 ζ3 1⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

=

Δ̂

T̂L T̂R

Δ̂
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ents Σji = ∂ivj is a sum of two terms related to the shear
and the random components of the flow:

(2.17)

The random matrix σji is zero on average and should be
characterized in terms of its correlation functions. The
trace of the matrix is zero, tr  = 0 (due to the flow
incompressibility). We recall that the Lyapunov expo�
nent λ of a purely shear flow is equal to zero. Therefore
λ is sensitive to , although the random flow is weaker
than the steady one.

Substituting the decomposition  =  in the

evolution equation ∂t  = , we find

(2.18)

The respective terms in the right�hand side of
Eq. (2.18) are a left off�diagonal matrix, a diagonal
matrix, and a right off�diagonal matrix. Therefore, we

obtain a closed (nonlinear) equation for the matrix 
that leads to a homogeneous�in�time statistics of the
matrix. Next, for components of the diagonal matrix

∂t , we obtain expressions that are random vari�
ables with statistics homogeneous in time. Therefore,
the central limit theorem applies to lnΔ1, lnΔ2, and

lnΔ3 (where Δi are eigenvalues of ). Typically, the
variables are linear in time t with the coefficients of the

order of λ. The situation with the matrix  is slightly
more complicated because of the exponential factors
in the last term in Eq. (2.18). Therefore, some compo�

nents of  behave exponentially with time like the
factors.

From Eq. (2.18) for , based on the leading role
of the shear term in expression (2.17), we obtain a
hierarchy χ � χ1 � χ2. Therefore, in the leading
approximation in λ/s, the only component σyx is rele�

vant and the equation for the matrix  is reduced to
a single equation for the component χ,

(2.19)

where σ ≡ σyx. We conclude that the variable χ has a
statistics homogeneous in time, in accordance with
our general expectations. We note that χ ~ s/γ � 1, as
follows from Eq. (2.19). Keeping the leading�in�χ
contributions to the diagonal terms in Eq. (2.18), we

obtain diag(∂t ) = (–χσ, χσ, 0). Therefore, in this
approximation,

(2.20)

If t � λ–1, then typically ρ ~ λt � 1.
We conclude from the equations for ζ1, ζ2, and ζ3

following from Eq. (2.18) that at λt � 1, the variable ζ1

Σj i t( ) sδjxδiy σj i t( ).+=

σ̂

σ̂

Ŵ T̂LΔ̂T̂R

Ŵ Σ̂Ŵ

T̂L
1–
Σ̂T̂L T̂L

1–
∂tT̂L ∂tΔ̂Δ̂

1–
+=

+ Δ̂∂tT̂RT̂R
1–
Δ̂

1–
.

T̂L

Δ̂Δ̂
1–

Δ̂

T̂R

T̂R

T̂L

T̂L

∂tχ s χ2σ,–=

Δ̂Δ̂
1–

diagΔ e ρ– eρ 1, ,( ), ∂tρ χσ.= =

is “frozen” at an order�of�unity level, whereas the
variables ζ2 and ζ3 increase exponentially and can be
estimated as eρ. However, the combination ζ1ζ3 – ζ2,

entering , is “frozen” at an order�of�unity level as
well as ζ1.

Based on the results obtained for the matrices , ,

and  we find eigenvalues of the matrix . In the
leading approximation in λ/s, we obtain W1 ~ eρ, W2 ~ 1,
and W3 ~ e–ρ. These expressions, together with
Eq. (2.20), lead to the relation

(2.21)

where averaging is performed over the velocity statis�
tics.

Because ρ is given by an integral over time of a ran�
dom quantity whose statistics is homogeneous in time
(see Eqs. (2.19) and (2.20)), the ρ statistics has some
universal features at λt � 1. Namely, the probability
distribution function (PDF) of ρ can be written in a
self�similar form [32]

(2.22)
where S is the so�called Kramer function (or entropy
function). Expression (2.22) is a manifestation of
PDFs for the so�called intensive variables (see, e.g.,
[33]). Expression (2.22) implies that relative fluctua�
tions of ρ decrease as t increases.

We consider moments of the divergence of close
Lagrangian trajectories in our random flow. The equa�
tion governing the separation ΔR between the trajecto�
ries is ∂tΔRj = ΣjiΔRi; it can be obtained from Eq. (2.10)
by letting ξ  0. A solution of the equation is ΔR(t) =

ΔR(0). Therefore, at t � λ–1, we arrive at the esti�
mation ΔR(t) ~ ΔR(0)eρ. Then the moments of ΔR can
be calculated in the saddle�point approximation (jus�
tified by the inequality λt � 1):

(2.23)

(2.24)

Thus, the exponents λn are determined by statistical
properties of the Lagrangian trajectories. We note that
the Lyapunov exponent λ can be formally expressed
via λn as λ = (dλn/dn)n = 0.

General statistical properties of the separation ΔR
for the random flow with strong average shear were
established in [21], in the context of the single�poly�
mer dynamics in such a flow. A strong intermittency of
ΔR(t) is expected, which is revealed in a large�n growth
of λn that is faster than linear, because the linear law λn
∝ n is characteristic of the Gaussian statistics of ΔR(t).

3. CORRELATION FUNCTIONS

To find the time dependence of the magnetic
field moments, we have to additionally average
expression (2.15) over space, which is equivalent to

T̂R
1–

T̂L Δ̂

T̂R Ŵ

λ ∂tρ〈 〉≡ χσ〈 〉 ,=

P ρ( ) tS ρ/t( )–[ ],exp∝

Ŵ

ΔR n〈 〉 ρP ρ( ) ΔR n λnt( ),exp∝d∫=

λn S ψn( )– nψn, where S ' ψn( )+ n.= =
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averaging over the ρ statistics and the statistics of ini�
tial magnetic fluctuations. The 2nth moment of the
magnetic field induction is then written as

(3.1)

In our approximation, W1 ~ eρ and W2 ~ 1, and there�
fore B(t) ~ eρ�0 in the diffusionless regime, whereas

 ~ (l/rd)eρ in the diffusion regime, as follows
from Eq. (2.13). Substituting the expressions in
Eq. (3.1) and integrating over ρ (in the saddle�point
approximation), we find γn = λ2n for the diffusionless
regime and γn = λn for the diffusion regime. Thus, we
have related the dynamo growth rates introduced in
Eq. (2.2) to the statistical properties of the flow. Our
results can be summarized in terms of the estimations

(3.2)

The main contribution to the moments  is
associated with the component Bx of the magnetic
induction directed along the velocity of the shear flow
(see Fig. 1). We turn to moments of the component By

directed along the gradient of the shear flow, .
The moments are much smaller than the moments

, the smallness being caused by the strong
shear flow. It follows from Eqs. (2.16) and (2.20) that

 = χ2 . Hence, the variable χ is a mea�

sure of the magnetic field anisotropy, χ–1 determines
the tilt angle φ of the magnetic blobs to the shear veloc�
ity (see Fig. 1). Because the variable χ has a statistics
homogeneous in time, the factor χ–2 does not produce
a difference in the growth rates, and hence both

moments  and  are proportional to the
same exponential exp(γnt). But the prefactors at the
exponentials are different. To find the difference in the
prefactors, is not enough to know statistical properties
of ρ that determine the exponentials. Generally, the
mutual probability distribution of ρ(t) and χ(t) must be
known, which is quite a complicated object depending
on the details of the flow dynamics. However, we can
establish an estimation for typical fluctuations χ ~ s/λ
that follows from Eqs. (2.19) and (2.21). Therefore,

e.g.,  = (s2/λ2) .

There is a question concerning moments of the

third component of the magnetic induction, .
Analyzing their behavior requires taking the compo�

nents of the matrix  into account, which we ignored

B2n t( )〈 〉 ρP ρ( ) B2n t( ) .d∫=

B 2 �0
2

B t( ) 2n〈 〉

∼

λ2nt( )�0
2n

, texp λ 1– l
rd

���ln<

l
rd

���⎝ ⎠
⎛ ⎞ n

λnt( )�0
2n

, texp λ 1– l
rd

���.ln>
⎩
⎪
⎪
⎨
⎪
⎪
⎧

B2n t( )〈 〉

By
2n〈 〉

B2n t( )〈 〉

Bx
2 t( ) By

2 t( )

Bx
2n〈 〉 By

2n〈 〉

Bx
2 t( ) By

2 t( )

Bz
2n〈 〉

T̂L

in investigating Bx and By. We then conclude that the

time dependence of  is characterized by the
same exponentials exp(γnt) both at the diffusionless
and diffusion stages. As regards the prefactors, they
depend on the details of the flow statistics.

3.1. Pair Correlations

We consider the one�time magnetic field pair cor�
relation function

(3.3)

Here, as previously, angular brackets mean averaging
over space (that is, integration over r1 with the inverse
volume as a factor). We assume statistical homogeneity
in space of both the velocity and the initial magnetic
field fluctuations; that is why spatial average (3.3)
characterizes the magnetic field correlations in the
whole volume. We consider the case r � η, which
allows using the smooth flow approximation.

Again, we start from representation (2.7). Then,
analogously to the second moment, pair correlation
function (3.3) can be written as

where the trajectories R and R' terminate at the
respective points r1 + r and r1, at a time t. We then
obtain

(3.4)

where �ij is the initial (at t = 0) pair correlation func�
tion of the magnetic field fluctuations and ΔR = R –
R'. The correlation length l of � is smaller than η, and
we can therefore consider  < η. Then both evolu�
tion matrices in (3.4) can be taken at the same point R.
Averaging in Eq. (3.4) can be treated as averaging over
the velocity statistics.

The difference ΔR satisfies the same equation (2.10)
if  � η. However, we are now interested in the
solution with the final condition ΔR = r. This solution
is written as

(3.5)

instead of Eq. (2.11). We immediately conclude from
Eq. (3.5) that the pair correlation function coincides
with the second moment if r � rd. In what follows, we
therefore examine the case r � rd, where the second
term in Eq. (3.5) is negligible and we find

(3.6)
To be more precise, expression (3.6) is correct if y ~
r � rd, that is understood below.

There are two different regimes for the pair corre�
lation function. If t < λ–1ln(l/r), then  is typi�

Bz
2n〈 〉

Fij t r,( ) Bi t r1 r+,( )Bj t r1,( )〈 〉 .=

Fij t( ) Wik�k R 0( )[ ]Wji' �l R ' 0( )[ ]〈 〉 ,=

Fij t( ) Wik t( )Wjl t( )�kl ΔR 0( )[ ]〈 〉 ,=

ΔR

ΔR

ΔR t '( ) Ŵ t '( )Ŵ
1–

t( )r=

– Ŵ t '( ) t 'Ŵ
1–

t1( ) ξ t1( ) ξ ' t1( )–[ ]d

t '

t

∫

ΔR 0( ) Ŵ
1–

t( )r.=

ΔR 0( )
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cally less than l; this regime exists if r � l. In this case,
two Lagrangian trajectories R and R' remains typically
within the correlation radius l at t = 0 and the behavior
of expression (3.4) is insensitive to the separation r.
Therefore, the pair correlation function Fij virtually
coincides with the single�point average  in this
regime and, consequently, its time dependence is
determined by the growth rate γ = λ2.

If t > λ–1ln(l/r), then  is typically larger
than l and only rare events where  < l contrib�
ute to the correlation function. Using the representa�

tion  = , we obtain from Eq. (3.6) that
 ≈ eρ(rx – χry), where rx and ry are coordinates

of the separation r. The probability that the quantity is
less than or of the order of l is estimated as e–ρl/r (if rx ~
ry ~ r), which is an interval of values of χ where

ΔR(0) < l. Therefore, BiBj ~ eρl/r and, conse�

quently, F(t) ~ exp(λ1t)l/r.

We collect the obtained results:

(3.7)

where the inequality rd � r � l is assumed. Therefore,
the pair correlation function is governed by the same
exponentials as the second moment. In addition, we
find the r�dependence of the pair correlation function.
We note that expression (3.7) turns into expression (3.2)
for the second moment at r ~ rd, as it should.

Returning to expression (3.4), we conclude that a
difference between the pair correlation function Fij

and the moments  is solely in the behavior of
ΔR. Therefore, relations between the components of
Fij controlled by the evolution matrices in Eq. (3.4) are
the same as for the moments , e.g., Fyy ~

(λ/s)2Fxx.

3.2. Mellin Transform

It is instructive to examine the Mellin transform of
the pair correlation function. This analysis reveals its
scaling properties. We define the Mellin transform as

(3.8)

where the direction of the radius vector r is assumed to
be fixed. Because the velocity field is smooth, different

harmonics (t, k) evolve independently, being repre�
sented as a sum of exponentials characterizing differ�

BiBj〈 〉

ΔR 0( )
ΔR 0( )

Ŵ T̂LΔ̂T̂R

ΔR 0( )

�0
2

�0
2

F t( )
�0

2 λ2t( ), texp 1
λ
�� l

r
�ln<

�0
2 λ1t( ) l

r
�, texp 1

λ
�� l

r
�,ln>⎩

⎪
⎨
⎪
⎧

∼

BiBj〈 〉

BiBj〈 〉

F̃ t k,( ) rd
r

���� r
l
�⎝ ⎠

⎛ ⎞
ik–

F t r,( ),

0

∞

∫=

F̃

ent structures of . At times t � λ–1, only the leading

exponential survives, that is, (k, ϕ) ∝ exp[γ(k)t].
To return to the real space, we should perform the

inverse Mellin transform

(3.9)

The quantity (k) is determined by the initial mag�
netic field fluctuations, correlated on the scale l. That is
why we incorporated this quantity into relations (3.8)
and (3.9).

A remark about analytic properties of (k) is in
order. We assume that at r > l, the initial pair correla�
tion function �(r) rapidly decreases as r increases.
Integral (3.8) then, converges if Imk > 0. Therefore,

(k) is analytic in the upper k�halfplane. Besides, the
integral diverges (at small r) as k  0. Therefore, sin�

gularities of (k) lie in the lower k�halfplane, starting
from the point k = 0. The character of the singularities
depends on analytic properties of the initial function

�(r). If it is analytic in r, then we expect (k) to have
a series of poles along the lower imaginary semi�axis,
with the first one at k = 0. We note that in accordance
with general rules, the integration contour in Eq. (3.9)
should run above the first singular point k = 0.

We can draw some general conclusions taking into
account that γ(k) ~ λ. If ln(l/r) > λt, then integral (3.9)
is determined by a narrow vicinity of the point k = 0.
Then F(t, r) ∝ exp[γ(0)t], and we identify γ(0) and λ2.
If ln(l/r) < λt, then integral (3.9) can be calculated in
the saddle�point approximation. To find the saddle
point, we should shift the integration contour into the
upper halfplane to reach the saddle point k = iq∗,
where q∗ determines the minimal value of γ(iq) for
q > 0. Indeed, the growth rate γ(iq) is real, and there�
fore the point k = iq∗ is a solution of the equation
dγ/dk = 0 giving an extremum of the exponential in
Eq. (3.9). Then

and we identify γ(iq∗) with λ1 (see Eq. (3.7)). We note

that in accordance with asymptotic law (3.7), q∗
should be equal to unity, q∗ = 1.

3.3. Higher�Order Correlations

Here, we consider higher�order correlation func�
tions of magnetic field (2.8). We obtain expressions
like Eq. (3.5) for separations ΔR between the points
R1(0), …, R2n(0), which are needed to calculate F2n in
accordance with Eq. (2.7). If λt < ln(l/ ) for all sep�
arations between the points r1, …, r2n, then all separa�

F̃ij

F̃

F t r,( ) kd
2π
����� ik l

r
�ln– γ k( )t+ �˜ k( ).exp

∞–

∞

∫=

�˜

�˜

�˜

�˜

�˜

F t r,( ) l/r( )
q* γ iq*( )t[ ],exp∝

Δr
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tions ΔR(0) are less than l. In this situation, we arrive

at the same expression F2n ~  as for the 2nth
moment, and we conclude that F2n ∝ exp(λ2nt), see
Eq. (3.2).

We now turn to the case where λt > ln(l/r), with all
separations Δr assumed to be of the same order. We
first consider the geometry where all the points r1, …,
r2n lie on a line, that is, all vectors rα – rβ have the same
directions, and we can write Δr ~ r, where r is one of
the separations. We then arrive at the estimation

~ eρ(rx – χry), similar to that for the pair correla�
tion function. We thus obtain the same probability
~e⎯ρl/r that the separations  � l. Then F2n ~

l/r, where the factor e2nρ originates from

the product of the matrices , appearing in accor�
dance with expression (2.7). Averaging this expression,

we obtain F2n(t) ~ exp(λ2n – 1t)l/r. We stress that
the growth rates are here different from those of the
corresponding moments.

However, the above expression is correct only if
t < λ–1ln(l/rd). For larger t, the diffusion contributions
to the differences ΔRα become relevant (see Eq. (3.5)).
Then, by manipulating with χ, only one difference
among the ΔR(0) can be made less than l. After that,
all the other differences typically acquire values of the
order of rdeρ, and the probability that a difference is
smaller than l is estimated as (l/rd)e–ρ. We therefore
conclude that

The same results (up to combinatorial factors) hold
for the collinear geometry, where the set r1, …, r2n is
separated into n pairs with parallel vectors rα – rβ char�
acterizing the pairs. Then the corresponding differ�
ences ΔR behave as previously and the same argu�
ments apply. We summarize our results for the col�
linear geometry:

(3.10)

It is a generalization of expressions (3.7) for the pair
correlation function. We note that in the collinear
geometry, similarly to the pair correlation function,
the estimate By ~ (l/s)Bx determines relations between
different components of F2n, whereas the z�compo�
nents require a separate investigation.

�0
2n

e2nρ〈 〉
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If the collinear geometry is destroyed, then it is
impossible to put all the separations  inside
the scale l at any χ, if t > λ–1ln(l/r). In this situation,
the behavior of the correlation function F2n is nonuni�
versal, being sensitive to the details of the initial spatial
distribution of �. In any case, the value of F2n in the
noncollinear geometry is much less than in the col�
linear one. The situation resembles the one realized
for a randomly advective passive scalar on scales larger
than the pumping length [34]. We conclude that at t >
λ–1ln(l/r), correlations of the magnetic field are con�
centrated near collinear geometries, decaying away
from the geometries. The decaying length is estimated
as le–λt at t < λ–1ln(l/rd) and as rd at t > λ–1ln(l/rd).

4. SHORT�CORRELATED FLOW

Here, we consider a strong steady shear flow com�
plemented by a random component short�correlated
in time. This case admits an analytical solution and
can therefore be used to verify our general assertions
and predictions. In addition, the case is naturally real�
ized because the strong shear destroys correlations of
the random component, and we therefore expect that
the short�correlated case is frequently encountered in
real flows.

In the short�correlated case, the matrix of the
velocity gradients  describing the random compo�
nent of the flow has to be treated as white noise, that
is, a variable δ�correlated in time. In the isotropic
case, we obtain the tensorial structure

(4.1)

where the factor D characterizes the random flow
strength and the numerical factor is introduced as in
[35]. But as we have argued, the only relevant compo�
nent of the random velocity gradient matrix in the case
λ � s (which is a manifestation of the random flow
weakness) is σ ≡ σyx. We characterize its statistical
properties by the expression

(4.2)

formally coinciding with Eq. (4.1) for the yx�compo�
nent. Other components of  can have correlation
functions different from (4.1). The random compo�
nent can be considered to be weaker than the steady
shear flow if D � s.

Statistical properties of the separation ΔR(t)
between close Lagrangian trajectories in a random
smooth flow with strong shear component in the
short�correlated case are investigated in [36] (in the
context of polymer dynamics). We here present the
results obtained in that paper without derivation. We
note that our variable χ is related to the tilt angle φ in

[36] as χ = , or χ ≈ φ–1 in the case of small tilt

ΔR 0( )

σ̂

σik t1( )σjn t2( )〈 〉

=  D 4δijδkn δikδjn– δinδjk–( )δ t1 t2–( ),

σ t1( )σ t2( )〈 〉 4Dδ t1 t2–( ),=

σ̂

φcot
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angles in which we are interested. The expression for
the Lyapunov exponent found in [36] is

(4.3)

Therefore, the condition s � D does guarantee the
inequality λ � s. We also note that λ � D and that
λ  0 as D  0. The last property is a natural con�
sequence of the vanishing Lyapunov exponent for a
purely shear flow.

For the short�correlated case, it is possible to find
the exponents λn characterizing the growth rates of the
moments of ΔR(t) (see Eq. (2.23)) if n � 1. Then a
saddle�point (instanton) approximation in the func�
tional space [37] can be used, which leads to [36]

(4.4)

The nonlinear dependence of λn on n, λn ∝ n4/3, signals
a strong intermittency of the flow. We note that in our
anisotropic case, the growth rates λn increase as n
increases slower than in the isotropic case, where λn ∝
n2 for the short�correlated flow (see [15]).

4.1. Pair Correlation Function

We next examine the two�point one�time correla�
tion function (3.3) for the velocity field short�corre�
lated in time. In this case, it is possible to derive a
closed equation for the correlation function (see, e.g.,
[12]). We here study the function at scales much larger
than the diffusion scale rd (but much smaller than the
velocity correlation length η). It is then possible to
neglect diffusion effects, and we omit all terms with
the noise ξ in subsequent relations.

We briefly explain the derivation of the equation.
First, it follows from definition (2.6) that

(4.5)

where τ is an arbitrary time (less than t). We choose τ
to be much smaller than λ–1, but much larger than the
velocity correlation time (this is possible for a short�

correlated flow). Then  is a small factor, although
the two factors in Eq. (4.5) can be treated as statisti�
cally independent. Substituting expression (4.5) in

Eq. (3.4), expanding the result into a series in  (up to
the second order) and averaging the result inside the
time interval (t – τ, t) in accordance with Eq. (4.2), we
obtain a variation of Fij under passing from t – τ to t.
Because the variation is small, it can be rewritten in
terms of a differential equation.

λ 31/3 π
Γ 1/6( )
��������������D1/3s2/3

.=

γn
3

25/3
������n4/3D1/3s2/3 λn4/3

.∼=

Ŵ t( ) T Ξ̂( )Ŵ t τ–( ),exp=

Ξ̂ t 'Σ̂,d

t τ–

t

∫=

Ξ̂

Ξ̂

Assuming the isotropic correlation function of
fluctuations in (4.1), we obtain the equation

(4.6)

In the absence of shear (at s = 0), system of equa�
tions (4.6) leads to a closed equation for the trace of
the correlation function H = Fkk:

The equation coincides with one presented in [14] (for
the scaling exponent ξ = 2 and zero forcing).

We now eliminate irrelevant terms in Eq. (4.6)
using the following properties: s is much larger than D,
the characteristic value of x is much larger than that of
y, and, accordingly, ∂y � ∂x. We can then keep solely
the terms originating from σyx in Eq. (4.6). The result�
ing equation leads to a closed system of equations for
the three components Fxx, Fxy, and Fyy of the pair cor�
relation function:

(4.7)

Further, we use the dimensionless time T = (8Ds2)1/3t
and introduce the notation

We investigate a special case of coinciding points.
At r = 0, all terms with derivatives drop from
Eqs. (4.7), and they take the form

(4.8)

An increasing solution of the equation is

(4.9)

This behavior corresponds to the growth rate γ =
(8Ds2)1/3 of the magnetic field second moment. On the
other hand, the case corresponds to small r, that is, to
the condition ln(l/r) > λt. Therefore, γ = λ2, and we
conclude that λ2 = (8Ds2)1/3 in our case.
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It is convenient to pass to the “polar coordinates”
 and ϕ in the shear plane: x = cosϕ, y =

(D/s)1/3 sinϕ. We then perform the Mellin transform

f, g, h  , ,  in terms of  and derive the equa�

tions for , , and  from system (4.7). In terms of the
quantity q = –ik, the equations are written as

(4.10)

where the prime denotes the derivative over the
angle ϕ.

4.2. Numerics

Next, we study the time evolution of system (4.10)
numerically for different real values of q (with imagi�
nary k = iq) using the implicit difference scheme on
the interval (–π/2, π/2) for ϕ with periodic boundary
conditions. We have chosen as initial conditions for f,
g, and h as the same Gaussian functions centered near
ϕ = 0 and with a width of the order of unity. Then we
extract the leading growth rate γ(iq) = (8Ds2)1/3c(q)
dominating the behavior of the system at T � 1. The
dimensionless quantity c was extracted as

where T0 + T is chosen to be large enough (near 30)
and T0 is introduced to exclude the influence of an ini�
tial transient process (we have chosen T0 = T).

The quantity c is plotted as a function of q in Fig. 2.
It turned out to be positive everywhere, with a mini�
mum at q = 1, c(1) = 0.435. The value q = 1 is in accor�
dance with Eq. (3.7) and the general analysis in Sec�
tion 3. As we argued there, the minimum value of γ(iq)
determines λ1, that is, λ1 = c(q

*
)(8Ds2)1/3. The value of
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c at q = 0 is c = 1, in accordance with Eq. (4.9) and the
general arguments given in Section 3. Therefore, the
obtained results confirm our general assertions.

5. DISCUSSION

We have analyzed the kinematic dynamo stage
when small�scale fluctuations of the magnetic field
grow in a steady shear flow complemented by rela�
tively weak random velocity fluctuations. The weak�
ness is characterized by the inequality s � λ, where s is
the shear rate and λ is the Lyapunov exponent of the
flow. The universal features we have established are
revealed at times t � λ–1. The shear makes the flow
strongly anisotropic, which, paradoxically, simplifies
the analysis of the dynamo phenomenon because a
single component of the random velocity gradient
appears to be relevant. We analyzed the situation
where the correlation length l of the initial magnetic
field fluctuations is less than the velocity correlation
length η (i.e., the Kolmogorov length for developed
turbulence). Probably, the smallness of l is not crucial
for our scheme because small scales of the magnetic
field distribution in space are inevitably produced by
the hydrodynamic motion.

We stress that in the leading approximation in λ/s,
our problem is reduced to a purely two�dimensional
velocity field (with components along the shear veloc�
ity and along its gradient). We have proved the exist�
ence of the dynamo in this case (that is, the exponen�
tial growth of the magnetic field moments). The result
obviously contradicts the statement in [38–40] (Zel�
dovich theorem) that there cannot be a magnetic
dynamo in two�dimensional flows. We assert that this
statement is wrong and the error is in ignoring the
third component B3 of the magnetic induction (per�
pendicular to the velocity plane). The third compo�
nent satisfies the passive scalar equation and, conse�
quently, decays exponentially. But B3 cannot be
ignored in the divergence�free condition ∇B = 0
because the characteristic scale of the magnetic field

1

42

c

30
0

q
1−1

2

3

Fig. 2. Growth rate of the Mellin transform of the pair cor�
relation function on the imaginary axis. 
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along the direction of its growth increases faster than
the magnetic field itself. It can be checked that all the
terms in ∇B = ∂xBx + ∂yBy + ∂zBz decay with the same
exponent, and therefore the condition ∇B = 0 leads to
an effectively divergent in�plane magnetic field. The
dynamo effect is not forbidden for such a field. A
detailed analysis of the discrepancy will be published
elsewhere. The existence of the dynamo effect for two�
dimensional flows is a subject of numerical verifica�
tion.

For our general conclusions, we do not specify sta�
tistical properties of the random flow, exploring only
its smoothness at scales less than the velocity correla�
tion length η. It is then possible to relate the kinematic
growth rates γn of the magnetic field (see Eq. (2.2)) to
intrinsic characteristics of the flow characterizing the
divergence of close Lagrangian trajectories (see
Eq. (2.23)). We find that γn = λ2n in the diffusionless
regime and γn = λn in the diffusion regime. We also
related the anisotropy degree of the magnetic field to
the same intrinsic characteristics of the flow. There�
fore, the main features of the magnetic field statistics
(including its intermittency) are dictated by the flow
statistics. We note that our general scheme can be
applied without essential modifications to the statisti�
cally isotropic flows or to random flows with other
types of anisotropy.

We established the principal features of the mag�
netic field correlation functions. The pair correlation
function behaves like the second moment at small sep�
arations r, and increases with the growth rate charac�
teristic of the diffusion regime; at larger r, it is propor�
tional to 1/r. As regards higher�order correlation func�
tions, the situation is more complicated. At small
times t, they behave like the corresponding moments.
But at larger time t > λ–1ln(l/r), correlations are
peaked near the collinear geometry (where 2n points
are separated into n pairs with parallel separations)
and there is an intermediate asymptotic regime when
the correlation functions grow with the rates that do
not coincide with the growth rates of the moments.
Then, at times t > λ–1ln(l/rd), the correlation function
grows with the same exponent as the corresponding
moment in the diffusion regime. The scaling behavior
of the correlation functions in the collinear regime is
∝1/r. The correlations decay rapidly with the devia�
tion from the collinear geometry. This reflects a com�
plicated spacial structure of the magnetic field that is
strongly correlated for special geometries produced by
affine geometric transformations from the initial mag�
netic fluctuations.

Our general assertions can be verified by solving the
model with the fluctuating component short�corre�
lated in time. This model admits several analytic
results. The nonlinear n�dependence of the growth
rates γn, γn ∝ n4/3, at large n signals a strong intermit�
tency of the magnetic field. Therefore, only rare events
concentrated in a restricted part of space contribute to
high moments of the magnetic field. We analyzed the

pair correlation function of the magnetic field in
detail, and the analysis confirms all our general asser�
tions, including scaling behavior in different regimes.

The ideology and the analytic approach developed
in this paper can be tended to the dynamics of polymer
solutions possessing elasticity that is described simi�
larly to the magnetic field. Along these lines, we hope
to clarify some aspects of the so�called elastic turbu�
lence [22–24] that are still not explained.
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by the RFBR (grant no. 09�02�01346�a) and by the
RF Ministry of Education and Science under the Fed�
eral Target Program “Kadry.”
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