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1 1. INTRODUCTION

Stochastic dynamics of scalar fields such as the
temperature or concentration of pollutants in random
(turbulent) flows is of great importance in different
physical contexts, from cosmology to microfluidics. If
the back reaction of the field to the flow is negligible,
then the field is called a passive scalar. We consider the
passive scalar in random flows, where the flow velocity
varies randomly in time. Theoretical examination of
dynamical and statistical properties of the passive sca�
lar in random flows goes back to classical works of
Obukhov [1] and Corrsin [2], where a phenomenology
for the passive scalar statistics in turbulent flows was
developed in the spirit of the Kolmogorov scheme [3].
Modern understanding of the passive scalar statistics
in turbulent flows is reflected in [4–7] (see also [8–
10]). The mixing problem for the passive scalar has
also been investigated for chaotic flows [11]. An inter�
esting example of a random flow is the so�called elastic
turbulence, discovered in polymer solutions in [12].
Observations of the passive scalar statistics in the elas�
tic turbulence were reported in [13].

In the 1990s, a series of theoretical works devoted
to the passive scalar statistics were done in the frame�
work of the so�called Kraichnan model, where the tur�
bulent flow is assumed to be short�correlated in time
and to have a definite scaling. Those works revealed
general features of the passive scalar statistics in turbu�
lent flows including the so�called anomalous scaling
and intermittency [14–16] (see also reviews [17, 18]).

1 The article is published in the original.

However, the approach implies spacial homogeneity
of the flow statistics and is therefore not directly appli�
cable to near�wall regions.

In this paper, we investigate the passive scalar statis�
tics in peripheral regions of a vessel where the devel�
oped (high�Reynolds) turbulence is excited. Speaking
about the peripheral regions of turbulent flows, we
understand a laminar (viscous) sublayer formed near
walls where the velocity field can be considered as
smooth (it varies over distances of the order of the sub�
layer thickness). However, the velocity remains a ran�
dom function of time there. A certain laminar bound�
ary layer is also characteristic of the elastic turbulence
[19]. The passive scalar statistics in the peripheral
region is determined by a complicated interplay of its
diffusion and random advection in the highly anisotro�
pic situation caused by the presence of the walls.

We are interested in advanced stages of the passive
scalar decay under the assumption that the Peclet or
the Schmidt number is large. In this case, the unmixed
fraction of the passive scalar is located mainly in a nar�
row diffusive layer near the wall, thinner than the
thickness of the peripheral region [20]. Then the pas�
sive scalar transport to the bulk goes through the
peripheral region outside the diffusive layer. Just this
peripheral region plays a crucial role in formation of
statistical characteristics of the passive scalar trans�
port. The same reasoning can be applied to a station�
ary case related, e.g., to a permanent heat flow going
from the walls through the periphery region to the
bulk. Moreover, fast chemical reactions can be ana�
lyzed within the same scheme (see [21]). A theoretical
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approach to the problem was developed in [22], and
principal predictions of the theory were confirmed by
experiment in [23].

To check the theoretical predictions in detail, we
conducted extensive numerical simulations of the
problem based on the Lagrangian dynamics of parti�
cles representing the passive scalar. To establish main
qualitative properties of the passive scalar transport in
the peripheral regions, we focused on the two�dimen�
sional case (2d). However, a great advantage of the
Lagrangian scheme is the possibility to extend the
approach to higher dimensions without major prob�
lems. We performed simulations for the space dimen�
sion ranging from 3 to 5 to establish the universality of
the passive scalar statistical behavior in 2d and to
reveal features characteristic of higher dimensions. We
used a scheme with permanent injection of particles
near the wall, which produces a passive scalar statisti�
cally homogeneous in time. But our conclusions are
also valid for the decaying case because of the adiaba�
ticity: events responsible for the passive scalar trans�
port to the bulk occur much faster than the average
passive scalar decay.

The obtained numerical data can be used to com�
pute averages characterizing the passive scalar statis�
tics. First of all, we found moments of the passive sca�
lar at different separations from the wall. The data
show the existence of a well�pronounced diffusive
layer where the passive scalar is mainly concentrated,
in accordance with the theoretical expectations for�
mulated in [22]. Outside the diffusive layer, the passive
scalar moments demonstrate scaling behavior with the
exponents deviating from those proposed in [22],
where the diffusion was assumed to be negligible out�
side the diffusive layer. We verified that the deviations
are indeed related to diffusion. The situation resem�
bles the passive scalar statistics in the Batchelor veloc�
ity field on scales larger than the pumping length
where diffusion appears to be relevant [24], which cor�
rects the diffusionless behavior examined in [25].
Next, we introduced the passive scalar integrated
along a surface parallel to the wall. The diffusion along
the wall drops out from the equation for the object. We
demonstrated numerically that as functions of the sep�
aration from the wall, the moments of the integral pas�
sive scalar have a well�pronounced scaling behavior
outside the diffusive layer. We found the corresponding
scaling exponents for the moments with degrees n =
1–6 in space dimension d = 2–5. The moments
exhibit an anomalous scaling signalling a strong inter�
mittency of the passive scalar statistics.

The simulations enabled us to reveal objects under�
lying the intermittency. These are tongues of the pas�
sive scalar pulled from the diffusive layer towards the
bulk. The tongue cross section diminishes as the sepa�
ration from the wall increases (because the velocity
component perpendicular to the wall increases). That
explains why diffusion can play an essential role even
in the region outside the diffusive layer. The subse�

quent tongue evolution, including tongue folds, pro�
duces long�lived structures of complex shape. Some�
times, the tongues are pulled so strongly that they irre�
versibly push a passive scalar portion away from the
wall. Just this mechanism is responsible for the passive
scalar transport to the bulk, which naturally explains
its strong intermittency.

As an explanation of the passive scalar statistics, we
suggest a theoretical scheme based on the smallness of
the passive scalar correlation length along the wall out�
side the diffusive layer. This scheme allows finding
explicit expressions for the scaling exponents charac�
terizing different objects. A comparison of the theoret�
ical predictions with numerical results shows that they
agree satisfactorily. Some preliminary results of our
work were published in [26].

The structure of this paper is as follows. In Section 2,
we present our theoretical approach to the passive scalar
dynamics and statistics in the peripheral region and
propose a scheme yielding the scaling exponents. In
Section 3, we explain our computational scheme,
present computed moments of the passive scalar and
integral passive scalar, describe the passive scalar
tongues, and compare our numerical results with the�
ory. In Conclusion, we summarize our results and dis�
cuss their possible applications and directions of future
investigations.

2. THEORETICAL DESCIPTION

We consider the passive scalar statistics in periph�
eral regions of a random flow, i.e., regions near bound�
aries (walls). Our principal example is the viscous
(laminar) boundary layer of the developed high�Rey�
nolds hydrodynamic turbulence (see, e.g., book [8]),
but our approach can also be applied to other situa�
tions. For example, we can consider the peripheral
region of elastic turbulence [12]. The only feature rel�
evant for us is the smoothness of the flow in the bound�
ary layer, whereas the velocity varies randomly in time
there.

We let θ denote the passive scalar field. It can rep�
resent both temperature variations or the concentra�
tion of pollutants. The passive scalar evolution (decay)
in an external flow is described by the advection–dif�
fusion equation

(1)

where v is the flow velocity and κ is the diffusion (ther�
modiffusion) coefficient. Below, the fluid is assumed
to be incompressible (that is, the flow is divergence�
less, ∇v = 0). Equation (1) implies that there are no
sources of the passive scalar in the bulk. However, we
do not exclude a passive scalar flux from the vessel
walls.

Equation (1) has to be supplemented by boundary
conditions at the wall. If θ is the density of pollutants
and the wall is impenetrable for the pollutants, then
the gradient of θ in the direction perpendicular to the

∂tθ v∇θ+ κ∇2θ,=
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wall is zero near the wall, which corresponds to zero
pollutant flux to the boundary. In this case, we deal
with the passive scalar decay, leading ultimately to its
homogeneous distribution in space. If θ is the temper�
ature, then its gradient in the direction perpendicular
to the wall can be nonzero, which corresponds to a
finite heat flux through the boundary (from the wall).
If the walls are made of a material that conducts heat
well, then the value of θ (temperature) has to be
regarded as fixed at the boundary.

We assume that the Peclet or Schmidt number is
large (that is, the diffusion coefficient κ is small in
comparison with the fluid kinematic viscosity ν).
Then, as was demonstrated in [22], the passive scalar
dynamics in the peripheral region is slow in compari�
son with the velocity dynamics. Therefore, the passive
scalar is rapidly mixed in the bulk (for a time that can
be estimated as the inverse Lyapunov exponent of the
flow), which leads to a homogeneous spacial distribu�
tion of the passive scalar, θ = const. The subsequent
passive scalar evolution is related mainly to the periph�
eral regions, which supply the bulk by passive scalar
fluctuations. We assume that the bulk can be treated as
a big reservoir; then the bulk homogeneous value of θ,
θb, can be assumed to be independent of time. Below,
we assume that the passive scalar field is shifted by θb,
which leads to the condition θ  0 as we pass from
the periphery to the bulk.

2.1. Correlation Functions

Statistical properties of the passive scalar can be
described in terms of its correlation functions

(2)

where the angular brackets denote averaging over large
times (larger than the velocity correlation time).
Because the velocity tends to zero in approaching the
wall and the molecular diffusion is assumed to be
weak, the passive scalar dynamics, determined by an
interplay of the advection and diffusion, is slower than
the velocity dynamics in the peripheral region. There�
fore, in investigating the passive scalar dynamics, the
velocity can be regarded as short�correlated in time,
and closed equations can be derived for the passive
scalar correlation functions (see, e.g., [18, 22])

(3)

where Dαβ is expressed in terms of the pair velocity
correlation function as

(4)

Fn t r1 … rn, , ,( ) θ t r1,( )…θ t rn,( )〈 〉 ,=

∂tFn κ ∇m
2 Fn

m 1=

n

∑=

+ ∂mα Dαβ rm rk,( )∂kβFn[ ],

αβ

∑
m k, 1=

n

∑

Dαβ r1 r2,( ) t ' vα t t '+ r1,( )vβ 0 r2,( )〈 〉 .d

0

∞

∫=

Here, again, the angular brackets denote averaging
over times larger than the velocity correlation time.

The structure of Eq. (3) is quite transparent: the
evolution of the passive scalar correlation functions is
determined by the molecular diffusion (the first term
in the right�hand side) and by the eddy diffusion (the
second term in the right�hand side). Therefore, the
quantity Dαβ can be called the eddy diffusion tensor,
since it describes diffusion of the passive scalar related
to the random flow. This effect can be compared to the
turbulent diffusion of the passive scalar in turbulent
flows in the bulk on scales larger than the viscous
length. But in our case, the eddy diffusion tensor Dαβ

is associated with a smooth flow, and can be used to
describe the passive scalar dynamics on scales smaller
than the turbulent viscous length.

We assume that the walls of the vessel are smooth
and that the boundary layer width is much less than the
curvature radii of the wall. Then it can be treated as flat
in the leading approximation. We introduce a refer�
ence system with the z axis perpendicular to the wall
and assume that the fluid occupies the region z > 0.
The smoothness of the velocity leads to the propor�
tionality laws vx, vy ∝ z and vz ∝ z2 for the velocity
components along and perpendicular to the wall. The
laws are consequences of the velocity smoothness, of
the nonslipping boundary condition v = 0 at the wall,
and of the incompressibility condition ∇v = 0.

Below, we assume that the velocity statistics is
homogenous in time, and also assume its homogeneity
along the wall. Due to the assumed homogeneity,
velocity correlation functions depend on time differ�
ences and on the differences of the coordinates x
and y. For example, eddy diffusion tensor (4) is inde�
pendent of time and does depend on the differences
x1 – x2 and y1 – y2. However, it depends on both z1 and
z2 due to the strong inhomogeneity of the system in the
direction perpendicular to the wall. The z�dependence
of the eddy diffusion tensor components can be found
directly from the proportionality laws vx, vy ∝ z and
vz ∝ z2. For example,

(5)

where μ is a constant characterizing the strength of the
velocity fluctuations in the peripheral region.

The equation for the first moment of θ (the average
value of the passive scalar field), , is

(6)

as follows from Eqs. (3) and (5). Comparing the ad�
vection and the diffusion terms in Eq. (6), we finds a
characteristic diffusion length rbl defined as

(7)

This quantity determines the thickness of the diffusion
boundary layer formed near the wall. Due to the small�
ness of κ (we recall that the Peclet or the Schmidt
number is assumed to be large), the diffusion length is

Dzz x y z1; x y z2, , , ,( ) μz1
2z2

2
,=

θ〈 〉

∂t θ〈 〉 ∂z μz4∂z θ〈 〉[ ] κ∂z
2 θ〈 〉 ,+=

rbl κ/μ( )1/4
.=
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much less than the thickness of the peripheral region,
where the law vz ∝ z2 holds.

We consider an advanced stage of the passive scalar
decay or a statistically stationary situation caused by a
permanent passive scalar flux through the wall. Then
the passive scalar θ is nonzero primarily in the diffusive
boundary layer, at z � rbl. We recall that we shifted the
field θ  θ – θb, where θb is its value in bulk. After
the shift the field θ could be positive or negative
(depending on boundary conditions) and should tend
to zero in the bulk, that is, as z  ∞. But we are
mainly interested in the passive scalar transport
through the region z � rbl, where the passive scalar is
carrying from the diffusive boundary layer to the bulk.
There, we may neglect the molecular diffusion term in
Eq. (6), which yields the proportionality law

(8)

This gives the decay rate of  as z increases. We note
that the law in (8) corresponds to a constant average
passive scalar flow through the planes z = const, that
is, the flux is independent of z.

It can be anticipated that at z � rbl, the higher pas�
sive scalar moments have some scaling behavior as 
has. We introduce the corresponding scaling expo�
nents

(9)

If the molecular diffusion is irrelevant outside the dif�
fusion boundary layer, then ηn = 3 [22]. However, our
numerical data imply that the molecular diffusion is
relevant even at z � rbl (we give an explanation of this
phenomenon in what follows). Therefore, the expo�
nents ηn are not equal to 3 and their values are a subject
of special investigation.

We turn to passive scalar correlation functions (2).
At z � rbl, their dependence on the coordinates along
the wall are characterized by a correlation length l that
can be found from the balance of the molecular and
the eddy diffusion along the wall. The eddy diffusivity
term in Eq. (3) can be estimated as μz2 (see Eq. (5); the
z2 law follows from the z�dependence of the velocity
components). Comparing the molecular diffusion
term ~κ/l2 and the eddy diffusion term in Eq. (3), we
find

(10)

The quantity is of the order of rbl at z ~ rbl and decreases
as z–1 as z increases.

2.2. Integral Passive Scalar

To exclude the effects of molecular diffusion, we
introduce an integral of the passive scalar field along a
surface parallel to the wall,

(11)

θ〈 〉 z 3–
.∝

θ〈 〉

θ〈 〉

θn〈 〉 z
ηn–

.∝

l κ/μz 1–
.∼

Θ t z,( ) A 1– x yθ t x y z, , ,( ),dd∫=

where A is the area of the surface and z is its separation
from the wall. We let

(12)

denote the corresponding correlation functions. Inte�
grating Eq. (3) over xk and yk, we obtain

(13)

where Dzz = Dzz(rm, rk). In deriving Eq. (13), we took
some integrals by part and used the constraint

which is a consequence of the incompressibility con�
dition ∇v = 0.

We expect a scaling behavior of correlation func�
tions (12) at z � rbl. Then the last term in Eq. (13) can

be estimated as μz4 Φ. Consequently, the term with
the molecular diffusion κ, in Eq. (13) can be neglected
in the region. The argument is the same as the one
used for the moment , where the law (8) was
derived from Eq. (6). We also note that in the decaying
case, the time derivative in Eq. (13) can be estimated

as κ/  = , a term that is much less than μz4  ~

μz2 at z � rbl. Therefore, the term with the time deriv�
ative can be neglected in the region as well, and we
obtain quasistationary equations for Φn. This reflects
the adiabaticity of the passive scalar statistics.

It is reasonable to assume that the correlation func�
tion Fn(t, r1, …, rn) is correlated along the xy plane on
distances of the order of the correlation length l in
(10), which is much smaller than the characteristic
velocity length (the width of the peripheral region).

Then Dzz in Eq. (13) can be replaced by μ , and we
obtain closed equations for the correlation functions

(14)

where we omitted the molecular diffusion term (see
the above argumentation).

Φn t z1 … zn, , ,( ) Θ t z1,( )…Θ t zn,( )〈 〉=

∂tΦn κ ∂mz
2 Φn x1… xn y1… yndddd∫+

m 1=

n

∑=

× ∂mz Dzz∂kzFn[ ]
m k, 1=

n

∑
⎩
⎨
⎧

+ ∂mz ∂kzDzz( )Fn[ ]
m k≠

∑
⎭
⎬
⎫

,

∂
∂xk

������Dxx rm rk,( ) ∂
∂yk

������Dzy rm rk,( )+

+ ∂
∂zk

������Dzz rm rk,( ) 0,=

∂z
2

θ〈 〉

rbl
2 κμ ∂z

2

zm
2 zk

2

∂tΦn t z1 … zn, , ,( ) μ ∂
∂zm

������� zm
2 zk

2 ∂
∂zk

������Φn⎝ ⎠
⎛ ⎞

m k, 1=

n

∑=

+ 2μ ∂
∂zm

������� zm
2 zkΦn( ),

m k≠

∑
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Equations (14) lead to the following closed equa�
tions for the moments of the integral passive scalar:

(15)

In the stationary (or quasistationary) case (where

∂t  is negligible), we obtain a homogeneous differ�
ential equation for the nth moment, which admits a
power solution

(16)
The exponents ζn can be easily found from Eq. (15) as

(17)

We have chosen the positive sign of the square root
leading to the reference value ζ1 = 3, as it should be in
accordance with Eq. (8). We observe an anomalous
scaling, that is, a nonlinear dependence of ζn on n,
which can be compared to the anomalous scaling of
the passive scalar in the Kraichnan model [14–16].

A natural conjecture that allows relating the
moments of the passive scalar θ and those of the inte�
gral passive scalar Θ is that the passive scalar correla�
tion length l can be used as a recalculation factor. We
then obtain the estimate

(18)

where d is the space dimension, which is equal to 3 in
real flows but can be arbitrary in numerical simula�
tions. Estimate (18) and Eq. (10) lead to the relation

(19)

between the exponents introduced in Eqs. (9) and
(16).

3. SIMULATIONS

We conducted Lagrangian simulations where the
dynamics of a large number of particles subjected to
flow advection and Langevin forces (producing diffu�
sion) was examined. A set of particles was used instead

∂t Θn〈 〉 μ z4∂z
2

4nz3∂z 4n n 1–( )z2+ +[ ] Θn〈 〉 .=

Θn〈 〉

Θn〈 〉 z
ζn–

.∝

ζn 2n 1/2– 2n 1/4+ .+=

Θn〈 〉 l d 1–( ) n 1–( )

An 1–
������������������� θn〈 〉 ,∼

ηn ζn n 1–( ) d 1–( ),–=

of the passive scalar field θ, which can be interpreted
as the density of the particles. A major advantage of
our approach is its applicability to different space
dimensions d. Indeed, the number of variables (coor�
dinates of particles) in the scheme grows not exponen�
tially but as a power of d (at a fixed number of the par�
ticles).

To establish principal qualitative features of the
passive scalar transport, we mainly performed 2d sim�
ulations. The setup is periodic in x (the coordinate
along the wall) with a period L. In the majority of sim�
ulations, the velocity field was chosen to be

(20)

(21)

where ξ1 and ξ2 are independent random functions of
time. We emphasize that the velocity field in (20) and
(21) satisfies the incompressibility condition ∂xvx +
∂zvz = 0 for any functions ξ1(t) and ξ2(t). If these are
chosen to have identical Gaussian probability distribu�
tions, then the statistics of velocity field (20) and (21)
is homogeneous in x (along the wall). In our simula�
tions, we have chosen L = 10.

In reality, the proportionality laws vx ∝ z and vx ∝
z2 are satisfied inside the laminar boundary layer, but in
our setup, the expressions for the velocity components
like (20) and (21) are formally used at all z, which
means that the bulk corresponds to z = ∞. However,
the law vz ∝ z2 implies that the particles may reach the
z�infinity in a finite time. This ensures a finite particle
flux to the bulk since a finite number of particles some�
times pass there. Hence, the passive scalar transport to
the bulk is well defined in our setup.

Because the velocity correlation time in the periph�
eral region is much less than the passive scalar mixing
time, we should regard ξ1(t) and ξ2(t) as white noises.
But zero correlation time cannot be realized in com�
puter simulations. We model the functions by tele�
graph processes, where both ξ1 and ξ2 remain con�
stants inside time slots of a small duration τ, and the
values of ξ1 and ξ2 inside the slots are chosen to be ran�
dom variables with identical normal distributions. An
example of such a telegraph process is plotted in

Fig. 1. In our simulations, the averages were  =

 = 1 and different slot sizes were used, τ = 0.001,
0.002, and 0.004. Then, in accordance with defini�
tion (5), μ = τ/2.

In our scheme, a particle trajectory ρ(t) obeys the
equation

(22)

where the first term represents the particle advection
and the second term represents the Langevin force. We
emphasize that the variables ζ pertaining to different

vx z ξ1
2πx

L
�������cos ξ2

2πx
L

�������sin+⎝ ⎠
⎛ ⎞ L

π
���,=

vz z2 ξ1
2πx

L
�������sin ξ2

2πx
L

�������cos–⎝ ⎠
⎛ ⎞ ,=

ξ1
2〈 〉

ξ2
2〈 〉

∂tρ v t ρ,( ) ζ t( ),+=

2

t
0

ξi

1

−1

−2

Fig. 1. An example of the telegraph process.
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particles are independent, whereas the variables ξ1 and
ξ2 are identical for all particles, according to the phys�
ical meaning of the variables. The Langevin force ζ is
also modeled by a telegraph process with the same
time slot duration τ and with normal distributions of
the values in the slots. To ensure a given value of the
diffusion coefficient κ, we choose

(23)

In a majority of simulations, we chose κ = τ/2, and
therefore the diffusive length was rbl = 1, in accordance
with definition (7).

Inside a time slot, all the variables ξ1, ξ2, and ζ are
time�independent constants and Eq. (22) becomes an
autonomous ordinary differential equation. It was
solved as follows. A time slot was divided into a num�
ber of time intervals and the equation was solved
(without the Langevin force) using the second�order
Runge–Kutta method. The number of intervals is
z�dependent, being proportional to z at z > 2.5. For z >
12, we solved equations for 1/ρz instead of ρz. Both
features are motivated by the strong dependence of the
velocity on z, vz ∝ z2. After solving the equation inside
a slot, a term produced by the Langevin force was
added. To examine the role of diffusion outside the
diffusive boundary layer, we switched off the diffusion
(the Langevin forces) in some simulations at distances
z > zd (with zd chosen differently in different cases).

The particles are permanently injected near the
wall in random positions at the beginning of each time
slot. The simulations were performed in the stripe 0 <
z < 100; the particles crossing the lines z = 0 and z =
100 were excluded from the set. The number of parti�
cles leaving the region 0 < z < 100 through the wall is
much larger than the number of particles escaping
through the line z = 100. Those last ones correspond to
the passive scalar transport to the bulk. A balance
between the particle injection and losses leads to a sta�
tistical equilibrium achieved gradually in the simula�
tion. Hence, our simulations cover the statistically sta�
tionary passive scalar transport. It corresponds both to
a steady temperature distribution supported by a con�
stant heat flux from the wall and to a decay of the con�
centration of pollutants that can be treated adiabati�
cally.

An extension of our scheme to higher dimensions,
d > 2, is straightforward. We use the same Eq. (22)
where all quantities have d components. The Langevin
forces ζ are determined by the same relations (23) and
a generalization of expressions (20) and (21) is as fol�
lows. The velocity v is determined by a set of 2(d – 1)2

random variables ξ1ij and ξ2ij:

(24)

(25)

ζx
2〈 〉 ζz

2〈 〉 2κ/τ.= =

vi z ξ1i j
2πxj

L
��������cos ξ2ij

2πxj

L
��������sin+⎝ ⎠

⎛ ⎞ L
π
���,

j 1=

n 1–

∑=

vz z2 ξ1 j j
2πxj

L
��������sin ξ2 j j

2πxj

L
��������cos–⎝ ⎠

⎛ ⎞ ,

j 1=

n 1–

∑=

where the subscripts i, j label the first d – 1 space coor�
dinates and the last dth coordinate is z. Here, all ζ, ξ1ij,
and ξ2ij are again telegraph processes with the same
statistical properties as above, and we use the second�
order Runge–Kutta scheme inside a time slot.

In terms of the particles, the passive scalar field θ is
defined as the number of particles per unit volume.
The correspondence is correct if θ is positive. If θ is
negative, then the particle density represents –θ,
which satisfies the same Eq. (1) as θ does. Thus, in our
simulations, we should treat θ as the number of parti�
cles inside a box divided by the box volume. Of course,
the definition works well if the box is small (in compar�
ison with all characteristic scales of the problem) and
the number of particles inside the box is large. To sat�
isfy these contradictory conditions, we must deal with
a sufficiently large total number of particles. That is
why the injection rate in our simulations is chosen to
produce a large number of particles, 105–106, in statis�
tical equilibrium.

3.1. Tongues

Our simulations show that the passive scalar trans�
port to the bulk is related to specific structures of the
passive scalar. The passive scalar is concentrated
mainly in the narrow diffusive layer near the wall.
However, a fluid jet is sometimes generated that carries
the passive scalar from the wall towards the bulk and
produces a passive scalar tongue with the width (cross
section) decreasing as z increases. This property is a
consequence of the law vz ∝ z2 implying that the
z�component of the tongue velocity increases as
z increases. We thus come to a geometric interpreta�
tion of the passive scalar correlation length l: it is the
characteristic size of the tongue cross section (taken
along the wall). The cross section behavior corre�
sponds to the expected decrease of the correlation
length as z increases. We stress that in accordance with
Eq. (10), the characteristic tongue cross section
depends on the diffusion coefficient κ.

A tongue is typically pulled from a “bump” of the
passive scalar distribution. After some time, the tongue
is tilted and then pressed back to the diffusive layer.
Then next tongue is pulled, usually from the bump
remaining at the bottom of the previous tongue, and is
in turn pressed back to the diffusive layer. As a result, a
complicated multifold structure is formed, an example
of which is shown in Fig. 2, which represents a snap�
shot generated in our simulations.

Sometimes the tongue is pulled up to the z�infinity,
and then a portion of the passive scalar (a number of
particles) is pushed to the bulk. After that, the tongue
is tilted and the passive scalar current to the bulk stops.

This implies that the passive scalar flux,  in 2d,

is a highly intermittent quantity at z > rbl. This conclu�
sion is confirmed by the flux histograms drawn in
Fig. 3 for different z. In the simulations, the passive

xθvzd∫
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scalar flux was measured as the number of particles
crossing the plain z = const in a time interval τ. At z =
0, the flux probability distribution is practically Gaus�
sian, being formed by a balance between the random
injection of the particles and their leaving the wall. But
the distribution becomes less and less Gaussian as z
increases. The histograms in Fig. 3 are practically
symmetric. The property is because only a small
amount of particles in the tongue are pulled to the
bulk, the majority of the particles returns, producing

practically equal fluxes to the bulk and towards the
wall. This explains why the root�mean�square fluctua�
tion of the flux at z � rbl is much larger than its average
value.

3.2. Moments

Based on numerical data, we can compute
moments and correlation functions of different quan�
tities characterizing the passive scalar statistics. We can
consider both local functions and integral objects. All
the quantities are computed as time averages.

We introduce an object θδ that is the number of par�
ticles inside a square box of size δ divided by its area δ2

(in 2d). The quantity θδ is close to θ if the number of
particles is large and the size of the box is sufficiently

small. The moments Mn =  of θδ are computed for

n = 1–6 as averages over time intervals 106–107τ with
δ = 0.03125. The results are presented in Fig. 4, where
the moments multiplied by z3 are plotted in log–log
coordinates (solid curves). We see that the prediction
for the first moment in (8) is perfectly supported,
whereas higher moments deviate strongly from the dif�
fusionless law ∝ z–3. We conclude that the diffusion is
indeed relevant at z > rbl.

To verify this conclusion, we repeated the simula�
tions switching the diffusion off at z > 3 and at z > 12.
The results are shown in Fig. 4 with dashed curves. We
see the appearance of plateaus, starting just from z = 3
or z = 12 and corresponding to the law ∝ z–3, in accor�

θδ

n〈 〉

0

z

x

20

15

10

5

8642 10

Fig. 2. An example of a passive scalar structure formed near the wall in a 2d random flow. Different particles are designated by
small crosses.
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15050−50

107

103
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Fig. 3. Histograms of the passive scalar flux at different
separations from the wall. The root�mean�square fluctua�
tions are much larger than the average value and the histo�
grams are practically symmetric. At z = 0, the probability
distribution is Gaussian, whereas at z > rbl, it has exponen�
tial tails.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 113  No. 2  2011

PASSIVE SCALAR TRANSPORT IN PERIPHERAL REGIONS OF RANDOM FLOWS 359

dance with [22]. The plateaus are observed in
restricted regions of separations from the wall z,
slightly diminishing as n increases. An explanation is
that cutoffs of the plateaus are observed where δ
becomes of the order of the passive scalar correlation
length (along the wall). To check this, we repeated the
simulations for larger values of δ and observed that the
plateaus shrink as δ increases. This confirms our
explanation. To be absolutely sure that the diffusion is
relevant, we performed simulations without diffusion
but with a constant velocity V added that carries the
particles away from the wall. The results are presented

in Fig. 5, where the moments  times z3 are plot�
ted. We see the plateaus signalling that outside the
boundary layer, the passive scalar moments behave in
accordance with the diffusionless prediction.

The next object of our investigation is the integral
quantity Θ that is the passive scalar integrated along
the wall (see definition (11)). Numerically, it is deter�
mined by the number of particles in a slice of thickness
δ, parallel to the wall, divided by its volume (area); we
let the ratio be denoted by Θδ. In our 2d setup, the area
is equal to Lδ, where δ is chosen to be much less

than z. The moments  are computed by time

averaging over a long time ~107τ. To check the robust�
ness of the results, we performed computations for dif�
ferent time slots τ = 0.001, 0.002, and 0.004 and for
four different values of the diffusion coefficient κ. Fig�
ure 6 demonstrates that the values of each moment
collapse to a single curve in the logarithmic coordi�

nates ln(z/rbl) and ln( /Cn), where the factors
Cn are the corresponding moments near the wall.

It can be verified that in accordance with our theo�
retical expectations, the moments of Θδ are insensitive

θδ

n〈 〉

Θδ

n〈 〉

Θn〈 〉

to diffusion. In Fig. 7, to illustrate this assertion, we
present the moments of Θδ computed at τ = 0.002 in
two cases: in the first case, the diffusion occurs every�
where and in the second case, it is switched off at z > 3.
We can observe no difference between the data.
An alternative to the velocity field in (20), (21) can
also be used. In Fig. 7, we plot two sets of data: those
corresponding to velocity (20), (21) and to the velocity
with four random factors

(26)
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Fig. 4. Log–log plot of the moments  times z3, for δ =

0.03125 and n = 1–6. The graph reflects simulations where
diffusion occurs everywhere, and is switched off at z = 3 or
z = 12.
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Fig. 5. Log–log plot of the moments  times z3, for δ =

0.03125 and n = 1–6 in the case where diffusion is substi�
tuted by a constant velocity carrying the particles away
from the wall.
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Fig. 6. Moments of Θd in log–log coordinates, n = 1–6. In
the region z > rbl, the results collapse onto single curves for
three times τ = 0.001, 0.002, and 0.004 and four different
values of the diffusion coefficient.
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(27)

Again, there is no visible difference between these sets
of data.

We observe that the moments of Θ are decreasing
functions of z that are power�like in the region z > rbl.
Extracting the scaling exponents ζn (see definition (17))
for n = 1–6 in 2d, we obtain values that are presented
in Fig. 8 as the lower set of points (a smooth curve is

vz

z2
���� ξ1

2πx
L

�������sin ξ2
2πx

L
�������cos–=

+ 2ξ3
4πx

L
������� 2ξ4

4πx
L

�������.cos–sin

drawn through the points to guide the eye). We con�
ducted analogous simulations for higher dimensions,
up to d = 5. The results are also depicted in Fig. 8. We
see that the exponents ζn depend on d, but for d ≥ 3,
they are close to theoretical values (17) represented by
a solid line.

It can be assumed that the deviations from theoret�
ical values (17) are related to the existence of addi�
tional passive scalar (relatively long) correlations along
the wall that can be produced by the multifold struc�
tures of the type shown in Fig. 2. The long correlations
should lead to increasing moments of the passive sca�
lar in comparison with the short�correlated case. It is
natural to expect that the fold effect becomes less pro�
nounced in higher dimensions. Indeed, Fig. 8 shows
that the deviations from the values in (17) decrease as
the space dimensionality d increases. This confirms
our explanation.

To check our conjecture, we conducted simula�
tions for the velocity field, similar to expressions (26)
and (27), containing a set of harmonics in terms of the
period L: the 9th, 10th, and 11th ones. In such a veloc�
ity field, correlations related to the multifold tongue
structures must be suppressed, and, consequently, the
exponents ζn must be close to theoretical values (17).
This expectation is confirmed by our simulations; the
results are presented in Fig. 9, where the measured
exponents are plotted. We see a good agreement of the
measured and theoretical exponents.

The exponents ηn of the moments of θδ, see defini�
tion (9), as well as ζn, can be extracted from our
numerical data. It is interesting to check theoretical
prediction (19). For this, we plotted the difference
ζn – ηn as a function of n (see Fig. 10). For compari�
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n〉/Cn)

0

−20

−40

−60
432

Fig. 7. Moments of Θd in logarithmic coordinates, n = 1–6.
The results are obtained for two cases where the diffusion
occurs everywhere and where it is switched off at z > 3, and
also for two different velocity fields: with two and four har�
monics.
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Fig. 8. Exponents of the moments , for n = 1–6 and

space dimensions d = 2–5. For comparison, the theoreti�

cal curve ζn = 2n – 1/2 +  is plotted (solid line).

Θδ

n
〈 〉

2n 1/4+

10

53

14

n

2

ζn

6

2 4 61

4

8

12

16

Fig. 9. Exponents of the moments , for n = 1–6 and

space dimension d = 2 for two different velocity fields:
containing only the first harmonic (dashed line) and three
(9th, 10th, and 11th) harmonics (dotted line). For com�

parison, the theoretical curve ζn = 2n – 1/2 + 
is plotted (solid line).
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son, the theoretical straight line n – 1 (correct in 2d) is
drawn in the same figure. We see a good agreement,
confirming the scaling (10) of the passive scalar corre�
lation length l(z) along the wall.

4. CONCLUSIONS

We performed extensive numerical simulations of
the passive scalar mixing in peripheral regions of ran�
dom flows such as high�Reynolds turbulence. The
simulations confirm earlier theoretical expectations
and reveal numerous new details. At advanced stages
of the passive scalar mixing, passive scalar fluctuations
are concentrated mainly in a narrow diffusive layer
near the boundary if the Peclet or the Schmidt number
is large. We found that the passive scalar transport from
the diffusive boundary layer to the bulk is related to
passive scalar tongues formed by jets directed to the
bulk. The tongues are objects responsible for the
strong intermittency characteristic of the passive sca�
lar transport through the peripheral region.

We examined the passive scalar statistics outside the
diffusive boundary layer and realized that the moments
of both the passive scalar θ and the passive scalar inte�
grated along the wall, Θ, exhibit well�pronounced
scaling in terms of the separation from the wall z. We
compared the corresponding exponents extracted
from our simulations with our theoretical scheme and
established their agreement. However, care must be
taken because our theoretical predictions are correct
for an infinite vessel and can be violated in simulations
where the velocity correlation length along the wall
coincides with the velocity period. We also found an
agreement between the theoretical prediction for the
tongue cross section dependence on z and our simula�
tions. Therefore, the simulations confirm our theoret�
ical predictions.

There remain some problems to be solved in future.
We will extend our consideration to incorporate aver�
age flows (like in pipes) that are shear�like near the
wall. Another natural extension of our approach is
related to chemical reactions in random flows. We also
note polymer solutions, where the polymer elongation
is very sensitive to the character of the flow. The prob�
lem is significant, e.g., for the elastic turbulence.
However, a long�time memory characteristic of the
polymer solutions could modify our results. We con�
sidered smooth walls in our work. There is a set of
questions related to the wall roughness, possible cor�
ners, caverns and peaks. All these may modify our
conclusions, and this is a subject of special investiga�
tion.

Our results agree qualitatively with the data known
from investigations of turbulent plumes in turbulent
flows, where a complicated space structure of the pas�
sive scalar fluctuations is observed [27–31]. We believe
that statistical properties of the structure can be
explained on the basis of our results implying produc�
tion of the passive scalar tongues pushing to the bulk.
The explanation requires generalizing our scheme to
the case where turbulent velocity fluctuations in the
bulk are included.
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