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(PDF) of the cost functional at some large fixed value. Another option suggests
minimizing the expectation value of the cost functional under a constraint on the
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The solutions are illustrated using the examples of scalar and 1D chain (string)
systems. The large deviation self-similar asymptotic of the cost functional PDF
is analyzed.
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1. Introduction

Stochastic differential equations are used both in control [1]–[7] and in statistical
physics [8]–[12] to state the problems. The two fields also use similar mathematical
methods to analyze these equations. However, and in spite of the commonalities, there
has been relatively little overlap between the disciplines in the past, even though the
communications between the two communities have improved in recent years. Some new
areas in control, for example stochastic path integral control [13]–[16], have emerged
influenced by analogies, intuition and advances in statistical/theoretical physics. Vice
versa, many practical experimental problems in physics, chemistry and biology dealing
with relatively small systems (polymers, membranes, etc), which are driven and experience
significant thermal fluctuations, can now be analyzed and manipulated/controlled with
accuracy and quality unheard of in the past; see for example [17, 18]. Also, approaches
from both control theory and statistical physics have started to be applied to large natural
and engineered networks, like chemical, biochemical and queuing networks [19]–[22].
The dynamics over these networks is described by stochastic differential equations; the
networks have enough control knobs, and they function under significant fluctuations
which need to be controlled to prevent rare but potentially devastating failures. The
related setting of stochastic optimization, i.e. optimization posed under uncertainty, has
also came recently into the spotlight as regards statistical physics inspired algorithms and
approaches [23]. The convergence of these and related ideas motivated this paper, where
we discuss the analysis and control of rare events in the simplest possible, but practically
rather widespread, universal and general, linear setting. We realize that the general topic
of linear control is well studied and many (if not all) possible questions, e.g. related to
the proper way of accounting for risk (rare events), have been discussed in the field in
the past. In spite of that, we still hope that this paper may also be useful not only to
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physicists, who may wish to explore new and largely unusual (in physics) formulations,
but also to control theorists.

Consider the first-order (in time derivatives) stochastic linear dynamics of a vector
x = (xi|i = 1, . . . , N) over a time interval t′ ∈ [t;T ]:

d

dt′
x = Ax+Bu+ ξ(t′), (1.1)

where: A and B are constant matrices; u(t′) is the control vector applied at the moment
of time t′; and {ξ} = (ξ(t′)|t′ ∈ [t;T ]) is the zero-mean, short-range-correlated noise with
covariance V :

〈ξi(t′)〉 = 0, 〈ξi(t′)ξj(t′′)〉 = δ(t′ − t′′)Vij, i, j = 1, . . . , N (1.2)

where one utilizes ‘statistical physics’ notation for the expectation value (average) over
noise, 〈· · ·〉. Here in equation (1.2) and below, the averages are over multiple possible
realizations of the noise, each generating a new trajectory of the system, {x} = (x(t′)|t′ ∈
[t;T ]), under a given control {u} = (u(t′)|t′ ∈ [t;T ]). equation (1.1) is causal, thus
assuming retarded (Stratonovich) regularization of the noise on the right-hand side of
the discrete version of equation (1.1). The physical meaning of the vectors and matrices
in equation (1.1) is as follows. A is the matrix explaining the stretching, shearing and
rotation of the system trajectory in the N -dimensional space if control and external noise
were not applied. Matrix B describes possible limitations on the degrees of freedom in
the system that one can control. To simplify the notation we consider signal, control and
noise vectors having the same dimension, N , where thus B is quadratic. The setting of
equations (1.1) and (1.2) is the classic one in control theory. It describes the so-called
linear–quadratic (LQ) stochastic control problem, which was introduced in [2, 3, 5, 6] and
became foundational for control theory as a field; see e.g. [24, 25] and references therein.
In the classical formulation one seeks to solve the following optimization, for t ∈ [0;T ]:

min
{u}
〈J(t;T ; {u}, {x})〉,

J(t;T ; {u}, {x}) ≡ 1
2
x∗(T )Fx(T ) + 1

2

∫ T

t

dt′ (x∗(t′)Qx(t′) + u∗(t′)Ru(t′)) ,
(1.3)

where Q,R and F are pre-defined stationary (time-independent) symmetric positive
matrices and one uses an asterisk, ∗, to mark transposition. J(t;T ; {u}, {x}) (later
on, and when it is not confusing, we will use the abbreviated notation J) is a scalar
quadratic cost functional of the state vector, {x} = (x(t′)|t′ ∈ [t;T ]), and the control
vector, {u} = (u(t′)|t′ ∈ [t;T ]), evaluated for all intermediate times t′ from the [0;T ]
interval. Here in equation (1.3) (and everywhere below in the paper) the average over
noise {ξ} includes conditioning on equation (1.3), i.e. {x} is dependent on the realization
of the noise, {ξ}, and on the control, {u}, according to equation (1.1). It is assumed
that the stochastic LQ control is evaluated offline, i.e. the optimal solution u∗(t;x(t)) of
equation (1.3) is computed and saved prior to the executing actual experiment for any
initial condition x(t) at any t. Then in the course of the actual experiment (execution of the
dynamics), x(t) is measured at any time t and the respective u∗(t;x(t)) is applied. (When
the observation of x(t) is partial and noisy one needs to generalize the stochastic LQ
control, for example considering the stochastic linear–quadratic–Gaussian (LQG) control;
see e.g. [25] for details.) We also assume (and the details will be clarified below) that the
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optimal control succeeds, i.e. the system stabilizes and J does not grow with T faster than
linearly.

An unfortunate caveat as regards the LQ setting (1.3) is the lack of fluctuation control:
even though the LQ solution is optimal in terms of minimizing the expectation value of
the cost functional, it may generate very significant fluctuations when it comes to analysis
of the J � 〈J〉 tail of the probability distribution function, P(J ), of the cumulative cost
J (T ;x(0)) ≡ J(0;T ; {u∗}, {x}). A stochastic risk-sensitive LQ (RS-LQ) scheme [26]–[28]
was introduced to improve control of the abnormal fluctuations of J . RS-LQ constitutes
the following generalization of the LQ scheme (1.3):

max
{u}
〈exp (−θJ)〉, (1.4)

where θ is a pre-defined parameter. Intuitively one relates the case of positive θ to a risk-
averse optimum. It is assumed within the standard RS-LQ scheme that θ is fine-tuned by
means of some additional considerations. Note that, as shown in [29], the RS-LQ control is
also ultimately related to the so-called H∞-norm robust control. (See also [30] for further
discussion of the relation.)

In this paper we analyze two natural modifications of the stochastic RS-LQ control.
The two schemes can both be interpreted in terms of the RS-LQ approach supplemented
by an additional optimization over θ. Our first, tail-optimum (TO), scheme consists in the
following modification of the LQ (1.3) and RS-LQ (1.4) ones:

min
{u}
P(J = j · (T − t)|{u}). (1.5)

In words, the TO-LQ control minimizes (at any time t and given the current observation
x(t)) the probability of the current value of the cost functional J(t;T ; {u}, {x}) evaluated
at a pre-defined value, j · (T − t), where thus j is the only external parameter left in the
formulation. Another strategy, which we call chance-constrained LQ (CC-LQ), in reference
to similar formulations in optimization theory [31]–[33], consists in minimizing the mean
of the cost functional under the condition that the tail probability evaluated at j · (T − t)
does not exceed the prescribed threshold value ε(t;T ):

min{u}〈J〉 s.t. P(J = j · (T − t)|{u}) ≤ ε(t;T ). (1.6)

The main objectives, and consequently results of this study, are:

• To extend the asymptotic, T →∞, approach developed in the past for LQ (1.3) and
RS-LQ (1.4) optimal controls to the new TO-LQ (1.5) and CC-LQ (1.6) optimal
settings. At T →∞ the optimal control takes the following universal form, linear in
x:

u∗(t;x) = −Kx, (1.7)

where K is a t-independent but model-dependent matrix. The condition of the system
stability, intuitively translating into the expectation that J grows not faster than
linearly with T , naturally requires that all the eigenvalues of the stability matrix,
µ = BK − A, have positive real part. The linearity of the optimal control (1.7)
in x is a direct consequence of the linearity of the initial dynamical system. The
time independence and initial condition independence of the optimal control (1.7) are
asymptotic: they are achieved at T � τ∗, where τ∗ can be estimated as the inverse of
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the absolute value of the eigenvalue of BK − A with the smallest real part. Systems
of algebraic equations defining K implicitly for the TO-LQ and CC-LQ cases are
presented and then juxtaposed against the previously analyzed cases of the LS and
RS-LQ controls. (See equations (4.1), (4.3) and (4.5).) Finding optimal control is
reduced to optimization over time-independent K. The resulting dependences are
homogeneous in time, with t and T always entering in the T − t combination. (This
also simplifies the analysis, allowing us to set t = 0.)

• To analyze the statistics of the optimal cost functional, J , in the large deviation (LD)
regime, i.e. at large but finite T . We show that in the stable regime the PDF of J
attains the following universal LD form:

logP(J ) ∼ −TS(J /T ), (1.8)

where the LD function, S(j), is a convex function of its argument found implicitly (in
a closed algebraic form, which may or may not yield an efficient algorithm) for the
four cases (of LS, RS-LQ, TO-LQ and CC-LQ controls) considered. The LD function
shows a universal, S(j)→ aj, tail at large (i.e. larger than typical) j, where the value
of positive a depends on the model. This suggests, in particular, that it is natural to
choose in the CC optimization (1.6) ε(t;T ) = exp(−c(T − t)), for the threshold, with
c being a constant. To derive compact algebraic expressions for the LD function we,
first, analyze the generating function of J evaluated at linear u parameterized by K
as in equation (1.7),

Z(θ;K) ≡ 〈exp (−θJ )〉∗, (1.9)

and then express the optimization/control objective as a convolution of the integral or
differential operator/kernel in θ (the choice will depend on the model) and Z(θ;K),
and finally evaluate the optimization over K in the asymptotic LD approximation.
Here in equation (1.9), the subscript asterisk sign ∗ in the expectation/average (over
noise and constrained to equation (1.1) indicates that the control vector is taken in
the form of the linear ansatz u→ −Kx, where K is left as yet undetermined.

The remainder of the paper is organized as follows. We start by discussing the
deterministic case (of zero noise) in section 2. This regime is of interest for two reasons.
First, in the asymptotics for zero noise the four, generally different, control schemes
become equivalent. Besides, and as is well known from the classical papers [2, 24, 25],
optimal control in the bare LQ case (corresponding to minimization of the cost function
average) is not sensitive (and thus independent of) the level of the noise. Section 3 is
devoted to analysis of the generating function (1.9)), the average value of the cost function
and the tail of the cost function distribution restricted to an as yet unspecified value of K.
Optimization over K, resulting in the known RS-LQ optimal relations and also derivation
of the new optimal relations for K in the TO-LQ and CC-LQ cases, is discussed in
section 4. We describe and compare asymptotic large deviation forms of the cost function
PDF, P(J ), in the optimal regimes. In this part and section 2 we also discuss many times
the illustrative ‘scalar’ example where x and u are scalars. An infinite system example,
of a ‘string’ formed from a linear 1D chain, is discussed in section 5. We conclude and
discuss related future challenges in section 6.
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2. The deterministic case and LQ optimal control

We start this section with a disclaimer: all results reported here are classical, described
in [2], [24]–[29] and later papers and books; see e.g. [34]–[36]. We present them here only
to make the whole story of the paper self-explanatory and coherent.

When the noise is ignored, equation (1.1) should be considered as a deterministic
constraint, reducing any of the optimal control schemes (1.3), (1.4), (1.5) and (1.6) to
a simple variation of the cost functional (1.3) over u. Using the standard variational
technique with a time-dependent Lagrangian multiplier for the constraint, and then
excluding the multiplier, one derives the equation

d

dt′
u∗ + u∗RB−1ABR−1 = x∗QBR−1, (2.1)

which should be supplied by the boundary condition (also following from the variation),
u∗(T ) + x∗(T )FBR−1 = 0. (Let us recall that we choose the notation where the
dimensionality of u coincides with the dimensionality of x. We also assume that the
inverses of all the matrices involved in the formulation are well defined. This assumption
is not critical and is made here only to simplify the notation. In the general case when some
of the matrices, and in particular R, are not full rank, one can generalize the formulas
properly, using a proper notion of a pseudo-inverse.) Substituting u = −R−1B∗Πx in
equation (2.1) one arrives at the following equation for Π:

d

dt′
Π + ΠA+ A∗Π− ΠBR−1B∗Π +Q = 0. (2.2)

with the boundary condition Π(T ) = F . equation (2.2), solved backwards in time, results
in Π(t) and, then, u∗(t;x) = −R−1B∗Π(t)x = −Kx.

To gain a qualitative understanding of the backwards in time dynamics of Π, let us
briefly discuss the simplest possible case with all the matrices entering equation (2.2)
replaced by scalars, then yielding the following analytic solution for the optimal K:

K =
A−

√
A2 +QB2/R

(
tanh

(√
A2 +QB2/R(t− T0)

))±1

B
, (2.3)

where T0 and ±1 are chosen to satisfy the boundary condition, K(T ) = BF/R. When
T � τ = 1/

√
A2 +QB2/R, the backwards in time dynamics saturates (after a short ∼ τ

transient) to an F -independent constant, resulting from replacing tanh in equation (2.3)
by −1. Therefore, in the stationary regime, T → ∞, the optimal control is with the
constant in time, frozen K. One also finds that the optimal control in the one-dimensional
deterministic case is always stable, µ = KB − A > 0.

Returning to the general (finite vector) case one concludes that when T is sufficiently
large the optimal control is of the form described by equation (1.7), i.e. it is linear in x
and asymptotically time independent, with K = R−1B∗Π0 where Π0 solves equation (2.2)
with the first term replaced by zero. It is well known in control theory that (under some
standard common-sense assumptions on B and R matrices) the stable solution of the
system of the algebraic Riccati equations is unique and moreover it can be found efficiently.
(See e.g. chapter 12 of [37] and references therein.)

Let us now discuss the bare LQ control, now in the presence of noise. Since
equation (1.1) is linear, one can naturally split the full solution into a sum, x = x1 + x2,
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where x1 satisfies equation (1.1) without noise and it is equivalent to the noiseless solution,
just discussed in this section. Then, the second term satisfies dx2/dt

′ = Ax2 + ξ, with
x2(t) = 0. However, since the noise is zero mean, 〈ξ〉 = 0, x2 is zero mean too, i.e. 〈x2〉 = 0.
Next, let us analyze the splitting of the term in 〈J〉, which is the optimization objective
of the LQ scheme. Since x1 and x2 are independent (by construction) and because x2 is
zero mean, 〈J〉 splits into two terms, 〈J1〉 + 〈J2〉, each dependent on vectors x1 and x2

only. 〈J1〉 is simply equivalent to J analyzed above in the deterministic case, while 〈J2〉 is
independent of u, thus not contributing to the optimization at all. To summarize, the LQ
optimal control is not sensitive to the noise and it is thus equivalent to the deterministic
(noiseless) case described above.

3. The generating function

Consider the generating function (GF), Z(θ;K), defined by equation (1.9). Z(θ;K) is
of obvious relevance to the RS-LQ scheme, but it is also useful for the analysis of other
schemes as well, because of the following (Laplace transform) relation to the PDF of J :

Z(θ;K) =

∫ ∞
0

dJ exp(−θJ )P∗(J ), (3.1)

where (as before) the subscript asterisk indicates that the PDF was evaluated at u = Kx,
with K being an as yet undefined constant matrix. The inverse of equation (3.1) is

P∗(J ) =

∫ c+i∞

c−i∞

dθ

2πi
exp(θJ )Z(θ;K), (3.2)

where it is assumed that the integration contour, considered in the complex plane of θ,
goes on the right from all the singularities (poles and cuts) of Z(θ;K). In the path integral
representation, GF takes the following form:

Z(θ;K) ∼
∫
Dx Dp exp

(∫ T

0

dt

(
−θ

2
x∗Q̃x+ p∗(∂tx+ µx) +

1

2
p∗V p

))
, (3.3)

Q̃ = Q+K∗RK, µ = BK − A, (3.4)

where p is an auxiliary vector variable (momentum). Here and everywhere below we
assume that, even if the dynamics was not stable before application of the control, control
stabilizes it. Formally, this means that µ, defined by equation (3.4), has no eigenvalues with
negative real values. The ‘boundary’ (F -dependent term) in equation (3.3) was ignored,
assuming that (like in the one-dimensional LQ case discussed above) it may only influence
how the optimum is approached (backwards in time) and remains inessential for describing
asymptotic behavior of the optimal control. This path integral is (most conveniently)
evaluated by changing to the Fourier (frequency) domain, expressing the pair correlation
function as the frequency integral, and then relating it to the derivative of log GF over θ,

〈xixj〉 =

∫ +∞

−∞

dω

2π
(ω2V −1 + µ∗V −1µ+ θQ̃)−1

ij , (3.5)

∂ logZ(θ;K)

∂θ
= −T

2
〈x∗Q̃x〉. (3.6)
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Here in equations (3.5) and (3.6) the averaging is over the path integral measure described
by equation (3.3). Further, evaluating the integral over θ, fixing the normalization,
Z(0;K) = 1, and using the standard formula of matrix calculus, d/dθ log det(θ · 1 +D) =
tr((θ ·1+D)−1), where 1 stands for the unit matrix, one arrives at the following expression:

log(Z(θ;K)) = −T
2

∫ +∞

−∞

dω

2π
log

det(ω2V −1 + µ∗V −1µ+ θQ̃)

det (ω2V −1 + µ∗V −1µ)
, (3.7)

which is asymptotically exact at T →∞. Moreover, one can show that for any (spatially)
finite system, the next order corrections to the rhs of equation (3.7) are O(1). Note
that this representation (3.7) of log GF, as an integral over frequency of the log det, is
similar to the relation discussed in section 3 of [29] in the context of linking the RS-LQG
control to the maximum entropy formulation of the H∞ control. The log det has also
appeared in [38], where statistics of currents were analyzed for a general non-equilibrium
(off-detailed-balance) linear system.

To gain intuition, let us first analyze equation (3.7) in the simple scalar case where
the integral on the rhs can be evaluated analytically:

log(Z(θ;K)) =
T

2

(
µ−

√
µ2 + θQ̃V

)
. (3.8)

Substituting this expression into equation (3.2) and estimating the integral over θ
in a saddle-point approximation (justified when T is large) one arrives at the LD
expression (1.8) where

S∗(j) =
V (Q+RK2)

16j
+

(BK − A)2j

V (Q+RK2)
− BK − A

2
. (3.9)

The LD function is obviously convex and it is defined only for positive j. (The asterisk
marks, as before, that the average and the probability are computed conditioned on
an as yet unspecified K.) S∗(j) achieves its minimum at 〈j〉∗ = −T−1∂ logZ/∂θ|θ=0 =
V Q̃/(4µ), and shows a linear asymptotic, S∗(j) ≈ jµ2/(V Q̃), at j � 〈j〉. Note, that the
aforementioned asymptotic is associated with the cut singularity in the complex θ plane
of the GF expression (3.8). Indeed, substituting equation (3.8) into (3.2) and shifting
the integration contour to the left, thus forcing it to surround counter-clockwise the
]−∞; θ∗ = −µ2/(V Q̃)] cut, and then estimating the integral by a small part of the contour
surrounding the vicinity of the cut tip at θ∗, we arrive at the aforementioned j � 〈j〉
asymptotic, S(j) ≈ −jθ∗.

Returning to the analysis of the general formulas (3.7) and (3.2), one observes that
even though reconstructing S∗(j) in its full integrity explicitly as a function of K does not
look feasible, we can still, motivated by the scalar case analysis, make some useful general
statements about both the average, 〈j〉∗, and the j � 〈j〉∗ asymptotic of S∗(j). We will
start from the latter problem.

For analysis of the tail, the key object of interest is the det in equation (3.7) considered
at zero frequency, ω = 0. Specifically, one aims to find the zero of the determinant with
the largest real value:

θ∗ = max
θ

Re (θ)det(µ∗V −1µ+θQ̃)=0 . (3.10)
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Indeed, any zero (there might be many of these in the general matrix case) marks the
tip of the respective cut singularity of Z(θ;K) in the complex θ plane. Then, the tail,
j � 〈j〉∗, asymptotic of the LD function becomes S∗(j) = −jθ∗. Note that this linear
in j estimation is valid only in the case of a finite system, when the set (spectrum) of
zeros (defined by the condition in equation (3.10)) is discrete. In the case of an infinite
system, when the spectrum of zeros becomes quasi-continuous, one needs to account for
the multiple zeros, as illustrated in the ‘string’ example of section 5.

To evaluate 〈j〉∗ (as a function of K) in the general case, one first analyzes it in the
time representation. Substituting the u = −Kx ansatz with constant K in equation (1.1),
expressing x(t) formally as an integral over time (for a given realization of the noise),
substituting the result into equation (1.3), averaging over noise, and then taking the
T →∞ limit, one arrives at

〈j〉∗ = 1
2

∫ ∞
0

tr(V e−µ
∗tQ̃e−µt) dt = 1

2
tr(VΠ)|µ∗Π+Πµ=Q̃, (3.11)

where the latter expression is an implicit (as the condition is a matrix one, and thus
not resolvable explicitly in general) function of K. It is straightforward but tedious to
check (introducing a matrix Lagrangian multiplier for the condition in equation (3.11)
and carrying out a variation over K and Π) that optimization of equation (3.11) over K
results in the algebraic Riccati equation equivalent to equation (2.2) with the first term
ignored. Note that the fact that the optimal control derived from the optimization of the
average cost function in the stochastic case coincides with the result of the deterministic
optimization (ignoring stochasticity) is the fact very well known in control theory3. The
optimal value of the functional in the deterministic case saturates to a constant at T →∞,
while in the stochastic case the average optimal cost grows with time linearly. Asymptotic
convergence of the two seemingly different schemes to the same optimal control is thus an
indication of the asymptotic self-consistency of the linear ansatz (1.7)).

Differentiating equation (3.7) over θ and then setting θ to zero, one derives an
alternative (to equation (3.11)) representation for the average rate of the cost function
conditioned on K:

〈j〉∗ =

∫ +∞

−∞

dω

4π
tr((ω2V −1 + µ∗V −1µ)−1Q̃). (3.12)

Note that comparison of equations (3.7), (3.11) and (3.12) also allows us to derive an
expression for the derivative of log GF as a time integral, and then present it in an
implicit algebraic form:

− T−1∂θ logZ(θ;K) =

∫ +∞

−∞

dω

4π
tr((ω2V −1 + µ∗V −1µ+ θQ̃)−1Q̃)

= 1
2
tr(ṼΠ)µ∗Π+Πµ=Q̃ (3.13)

= 1
2

∫ ∞
0

tr(Ṽ e−µ
∗tQ̃e−µt) dt, (3.14)

where Ṽ = V (1 + θV (µ∗)−1Q̃µ−1)−1.

3 This fact is akin to a similar statistical physics statement naturally emerging in the analysis of the linear
stochastic systems driven by white Gaussian noise and characterized by flux/current (see e.g. [38]): the average
flux corresponds to the minimum of a functional quadratic in the flux.
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4. Optimal asymptotic controls

In this section we formulate the RS-LQ, TO-LQ and CC-LQ asymptotic schemes in
the general vector/matrix form as an optimization over K. (Note that the asymptotic
LQ scheme was already stated as a minimization of equation (3.11), or equivalently of
equation (3.12) in section 3.) Then we illustrate these formulations on the scalar example.

KRS, which is asymptotically optimal for the RS-LQ control considered at θ > 0, is
found by maximizing Z(θ;K). Using equation (3.7) one derives

min
K

∫ +∞

−∞
dω log

det (ω2V −1+(BK−A)∗V −1(BK−A) + θ(Q+K∗RK))

det (ω2V −1 + (BK − A)∗V −1(BK − A))

∣∣∣∣
Re(λ(BK−A))>0

,

(4.1)

where Re(λ(BK−A)) > 0 denotes the stability condition ensuring that the real values of
all the eigenvalues of BK −A are positive. Note that constancy of the stationary RS-LQ
optimal control was proven in [26], therefore making our approach self-consistent. An
alternative, but obviously equivalent, formulation of the RS-LQ optimal control consists
in minimizing −T−1∂θ logZ(θ;K). Going along this path and utilizing equation (3.13)
one arrives at

min
K,Π

1
2
tr(V (1 + θV (µ∗)−1Q̃µ−1)−1Π)µ∗Π+Πµ=Q+K∗RK , (4.2)

generalizing the LQ formulation stated in section 3 as the minimization of equation (3.11).
Solving equation (4.2) is reduced to analyzing the respective generalization of the Riccati
equations, which can than be turned into a linear eigenvalue problem described within
the so-called Hamiltonian approach to the RS-LQ problem discussed in [28].

From equation (1.5), and assuming time independence of the control, one can state the
general asymptotic TO-LQ optimum, utilizing equations (3.2) and (3.7) as an optimization
of a double integral over frequency and θ. However, in practice one is interested in
discussing the TO-LQ optimization only at sufficiently large values of the cost, jT . Using
the analysis of section 3 one derives the desired double-asymptotic (valid at large T and
large j) and simpler to state expression describing KTO:

min
K

max
θ

Re (θ)
Re(λ(BK − A)) > 0

det(µ∗V −1µ+ θQ̃) = 0,

(4.3)

where max is over complex θ and the optimal LD value of the PDF tail is exponential,

logPTO(J ) ≈ −Re(θTO)J , (4.4)

with θTO solving equation (3.10). Note that the det = 0 condition in equation (4.3) is
reminiscent of the µ-measure which is the key element of the robust control approach;
see [35, 37] and references therein.
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In the same double-asymptotic (large T and large j) regime the optimal CC-LQ
control (1.6) is given by

min
K

tr (VΠ)

∣∣∣∣ Re(λ(BK − A)) > 0

µ∗Π + Πµ = Q̃,

max
θ

(Re(θ))det(µ∗V −1µ+θQ̃)=0 ≥
log(1/ε)

jT
.

(4.5)

Note that unlike equations (4.1) and (4.3), equation (4.5) does not have valid solutions
for any value of the log(1/ε)/J ratio. In fact, it is clear from equation (4.4) that to have
a nonempty solution of equation (4.5) one needs to require that Re(θTO)jT ≤ log(1/ε).
Once the optimum solution is found, one estimates the LD asymptotic of the cost function
PDF by an expression similar to the one given by equation (4.4), with the TO subscript
replaced by the CC one.

4.1. The scalar case

In the remainder of this section we illustrate all of the aforementioned formulas on the
scalar example. In this simple case, the integral on the rhs of equation ((4.1)) is equal to

2π

(√
(BK − A)2 + V θ(Q+RK2)− (BK − A)

)
, (4.6)

resulting in the following optimal value:

Kθ =
A/B +

√
A2/B2 +Q/R +QV θ/B2

1 + V Rθ/B2
. (4.7)

The large deviation tail of the PDF of j at a given K can be extracted from
equation (3.9):

j � 〈j〉 : S∗(j) ≈
(BK − A)2

V (Q+RK2)
j + o(j). (4.8)

Optimizing the PDF over K, we find two different cases depending on the sign of A. At
A > 0 the coefficient in front of the linear in j term on the rhs of equation (4.8) grows
monotonically with K from the (A/B,+∞) interval. To find the optimal value of K in
this case one has to consider the o(j) term, thus deriving

A > 0 : KTO =
√

4AjRV, logPTO ≈ −
B2jT

RV
. (4.9)

In the other case of A = −|A| < 0, the linear coefficient in equation (4.8) reaches its
maximum at K = BQ/(R|A|), thus resulting in

A < 0 : logPTO ≈ −
jT

RV Q

(
RA2 +B2Q

)
. (4.10)

Finally, the CC optimal formula (4.5) has no solution if B2j/(RV ) < c in the A > 0
case and if j(RA2 + B2Q)/(RV Q) < c in the A < 0 case. (Here we assume, as above,
that ε(0;T ) = exp(−cT ).) When ε is chosen sufficiently small (i.e. c is sufficiently large),
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the feasibility domain in equation (4.5) is not empty and one distinguishes two regimes
depending on how Kε, defined by

Kε =
1

1− κ

(
A

B
+

√
κ

(
A2

B2
+ (1− κ)

Q

R

))
, κ =

cV R

B2j
, (4.11)

compares with K0, which is the bare LQ optimal value corresponding to Kθ from
equation (4.7) evaluated at θ = 0. One derives

KCC = max (Kε, K0) , (4.12)

where of the two regimes, one is achieved within the interior of the optimization domain
(the tail constraint is not restrictive) while the other one corresponds to the tail imposed
by the boundary of the domain. It is worth noting that (4.11) is valid for both signs of A.

5. The example of a string

In this section we discuss an explicitly solvable example of an infinite system where the set
of zeros (of the determinant in the condition of equation (3.10)) forms a quasi-continuous
spectrum. Consider a string, defined as an overdamped system of multiple beads on a line
connected to each other by elastic springs of strength D, stretched by the linear force of
the strength A and subject to Langevin driving:

∂txj = Axj +D(xj+1 + xj−1 − 2xj) +Buj + ξj, (5.1)

J = 1
2

∫ T

0

dt
∑
j

(Qx2
j +Ru2

j), (5.2)

where j = 1, . . . , N , xj marks the position of the jth bead on the string, and the zero-mean
white Gaussian noise is distributed as in equation (1.2) with Vij = V δij. uj in equation (5.1)
stands for the control. We are looking for a time-independent linear in x control, assuming
that the control acts uniformly on all beads on the string, i.e. uj = −Kxj. Let us also
assume that the string is periodic with the period N . Then, the solution of equation (5.1)
allows expansion in a series over spatial harmonics:

xj =
N∑
j=1

exp(iq(j/N))xq, (5.3)

with the wavevector, q, from the interval −π < q < π, and resulting in the following
separated equations for the individual harmonics:

∂txq = Axq − 2D(1− cos q)xq −BKxq + ξq. (5.4)

Repeating the steps leading to (3.8) one arrives at

logZ =
T

2

∑
q

(BK − A+ 2D(1− cos q)

−
√

(BK − A+ 2D(1− cos q))2 + V (Q+RK2)θ). (5.5)

We choose to analyze only the most interesting regime, D� BK −A, where a nontrivial
collective behavior emerges. Then, in the long wavelength, 1 − cos q → q2/2, and
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continuous,
∑

q → (N/2π)
∫

dq, limits, one derives

logZ = −TN
3π

(BK − A)3/2

D1/2
(1 + s)1/4i

×
(

(1 +
√

1 + s)K
(

1

2
− 1

2
√

1 + s

)
− 2E

(
1

2
− 1

2
√

1 + s

))
, (5.6)

s =
V (Q+RK2)θ

(BK − A)2
, (5.7)

where one utilizes the standard K, E notation for the elliptic functions.
The expression on the rhs of equation (5.6) shows a singularity at s = −1, coinciding

with the singularity (in the complex θ plane) observed in the scalar case at θ∗.
Substituting equation (5.6) into (3.2) and evaluating the integral over θ in the saddle-point
approximation, one arrives at

S∗(j) ≈
√

2 N(BK − A)3/2

3πD1/2
+ θ∗j. (5.8)

Juxtaposing the string expression equation (5.8) to the scalar one equation (3.9), one
notes different behaviors with respect to BK − A. Optimizing equation (5.8) over K at
a given large value J = jT , one obtains the same tail expression, the second formula
in (4.9)—however, with another optimal control,

K
5/2
str =

23/2πAD1/2

RV TNB1/2
J, (5.9)

replacing the first formula in equation (4.9). Note that in the string case the optimal K
scales as J2/5, which should be contrasted with the J1/2 scaling in the scalar case from
equation (4.9).

6. Conclusions and the path forward

This paper contributes to a subject in control theory—designing control scheme with
some guarantees not only on the average of the cost functions but also on fluctuations,
and specifically extreme fluctuations related to the tail of the cost function PDF. We
consider a linear stochastic system, of first order in time derivatives, of the Langevin
type, subject to the minimization of a quadratic cost function and also with (chance)
constraints imposed on the tail of the cost function PDF. For the stationary regime of
large time, for when the control is sufficient to make the system stable, we reduce a
stochastic dynamic problem of the ‘field theory’ type to static optimization analysis with
objectives and constraints stated in a matrix form. This type of reduction is unusual for a
system lacking a fine-tuned fluctuation-dissipation relation between the relaxational and
stochastic terms. On the other hand, the progress made is linked to the linearity of the
underlying stochastic systems which allowed us, as in some problems relating to passive
scalar turbulence [39]–[41] and driven linear elastic systems [42, 38], to formally express
the solution for the system trajectory as an explicit function of the noise realization.
Besides that, the main technical ingredients which allowed us to derive the results
consisted in making a plausible assumption about the structure of the control (linear
in the state variable and frozen in time), and then performing asymptotic evaluations of
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the cost function statistics conditioned on the value of the cost matrix. Techniques of path
integration, spectral analysis and large deviation estimations were used. We tested results
on the simple scalar case and illustrated the utility of the method on an example system
of high dimension (a 1D chain of particles connected in a string).

We plan to continue exploring the interface between control theory and statistical
physics, addressing the following challenges.

• The computational feasibility of the main formulas of the paper, stating RS, TO
and CC controls in equations (4.1), (4.3) and (4.5) as static optimization problems,
needs to be analyzed for large systems and networks. After all, the main efforts in
applied control theory go into designing efficient algorithms for discovering optimal,
or close to optimal, control, and we do plan to contribute on this important task.
Therefore, further analysis is required to answer an important practical question:
that of whether the static formulations of the newly introduced TO-QG and CC-QG
controls allow computationally favorable exact or approximate expressions in terms
of convex optimizations.

• We also plan to study weakly non-linear stochastic systems through a singular
perturbation stochastic diagrammatic technique of the Martin–Siggia–Rose type [43].
Besides this, some of the methods that we used in the paper, especially those related
to large deviation analysis, are not restricted to linear systems. Our preliminary tests
show that the effects of the non-linearity on the PDF tail are seriously enhanced in
comparison with how the same non-linearity influences the average case control.

• It will be interesting to study TO and CC versions of the path integral non-linear
control problems discussed in [13]–[16]. These problems, in their standard ‘min-cost’
formulations, allow reduction (under some relations like those of the fluctuation-
dissipation theorem among the form of control, the covariance matrix of the noise and
the cost function) from the generally non-linear Hamilton–Jacobi–Bellman equations
for the optimal cost function to a linear equation of a Schrödinger type.

• The effects of partial observability and noise in the observations can be easily
incorporated in both the TO and CC schemes discussed in the paper. In fact this type
of generalization is standard and widespread in control theory, where for example the
LQG (linear–quadratic–Gaussian) control generalizes the LQ control.

• In terms of relevance to an application, this work was motivated by recent interest in
and discussion related to developing new optimization and control paradigms for power
networks, so-called smart grids. In this application, strong fluctuations associated
with loads and renewable generation, electromechanical control of generation, and
the desire to make energy production cheaper while also (and most importantly)
maintaining probabilistic security limitations of the chance-constrained type all make
the theoretical model discussed in this paper an ideal framework for consideration.
In particular, we plan to extend the approaches of [44, 45] and modify and apply the
theory developed in this paper to design a multi-objective chance-constrained optimum
power flow including better control of the generation, loads and storage resources in
power grids.

• We also anticipate that some of the models and results discussed in this paper will be of
interest in relation to problems in statistical microfluidics and biofluidics, focusing on
adjusting characteristics of individual molecules (polymers, membranes, etc) and also
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aimed at modifying properties of the medium (non-Newtonian flows) macroscopically.
The time-independent and linear nature of the control schemes discussed in this
paper make them especially attractive for these applications. Natural constraints,
e.g. associated with the force field (optical or mechanical) as well as with some other
physical limitations, could be incorporated into control as single-objective or multi-
objective cost functions.
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