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Giant enhancement of electric field between two
close metallic grains due to plasmonic resonance
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We theoretically examine plasmonic resonance between two close metallic grains separated by a gap of
width much less than the length of the incident electromagnetic wave. Resonance conditions are established
and the electric field enhancement is found. Our general arguments are confirmed by analytic solution of the
problem for simplest geometries. We discuss an extension of our results to more complex cases.
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Interaction of electromagnetic field with metallic
dimers recently became a focus of intensive research
due to extraordinary potentials for various applica-
tions ranging from nanophotonics to bio/chemical
sensing. A key feature of such nanostructures utilized
in these applications is a significant field enhance-
ment in the dimer’s gap. This enhancement is prima-
rily studied experimentally or using computer model-
ing, which does not allow us to uncover the relation
between the characteristics of the near field enhance-
ment and the physical properties and geometry of the
dimer and host material. In this Letter, we present
an analytical description of the characteristics of the
field enhancement between two metallic nanogran-
ules embedded into the host dielectric.

Resent progress in nanofabrication have led to
thriving activity in the actual design of composite
materials with plasmonic subwavelength dimensions
for applications in photonics and chemical sensing.
They can be realized as surface grain structures on a
dielectric substrate [1]. The giant electric field en-
hancement is observed in narrow gaps between me-
tallic grains. Strongly amplified electromagnetic
fields can be generated both in a broad spectral range
for disordered metal-dielectric composites and at se-
lected frequency ranges for periodically ordered
nanostructures. The literature devoted to the prob-
lem is immense; for introduction to the research
region a reader can use the monograph [2], and for
brief examination of the disordered composites
see [3].

The plasmonic resonances can be excited at propa-
gation of an electromagnetic wave through a compos-
ite material where metal grains are inserted into a
dielectric matrix. It is known [4] that the plasmonic
resonance in a single metallic grain is excited at a
frequency near the plasma one lying in the ultravio-
let spectral region for “good” metals (Ag, Au, etc.). To
reach the resonance in the optical or near-IR diapa-
son, one should use a special geometry where metal-
lic grains are separated by distances much smaller
than their size. Then giant electric field enhancement
occurs in the gap between the grains at resonance

conditions implying, particularly, large negative per-
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mittivity of the grains. Here, we theoretically inves-
tigate the phenomenon. The resonance conditions are
related mainly to the local geometrical characteris-
tics of the gap. The field enhancement, on the con-
trary, is determined by a variety of geometrical fac-
tors controlling the energy flow to the gap. We
present general arguments that enable us to esti-
mate both the resonance frequencies and the electric
field enhancement for grain dimers. The arguments
are confirmed by analytic solution of the problem for
two identical metallic spheres. Then we extend our
consideration to more complicated cases.

We consider the case of a monochromatic electro-
magnetic wave of frequency �, then the electric field
strength is written as Re�E exp�−i�t��. The permit-
tivity of the matrix, �d���, is assumed to be of order
unity, with small imaginary part. We accept a local
relation between the electric field strength and the
electric displacement field D, D=�m���E, in the
metal grains. Here, �m is the permittivity of the
metal. In optical and near-IR spectral regions the
permittivity of a “good” metal can be described by
Drude–Lorentz formula

�m � − ��p/��2�1 − i/�����, �1�

where �p is the plasma frequency and � is the elec-
tron relaxation time. Therefore, in the frequency in-
terval �p����−1, the permittivity �m has negative
real part, large by its absolute value, and relatively
small imaginary part. The same is true for the dielec-
tric contrast �=�m/�d. Thus, we arrive at the condi-
tion necessary for the giant electric field enhance-
ment.

We examine mainly the case where two close me-
tallic grains are surrounded by an unbounded dielec-
tric medium. The grains are assumed to be small that
is their sizes are much less than the wavelength � of
the electromagnetic wave (in the dielectric medium).
We are looking for the electromagnetic field profile
near the grains, especially in the gap between the
grains, where one expects an essential enhancement

of the field. The problem belongs to the so-called
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near-field optics. The electric field near small metal-
lic grains can be examined in quasi-electrostatic ap-
proximation [2].

We are interested in the electric field strength en-
hancement, characterized by the ratio Ec /E0, where
Ec is the electric field strength in the central segment
of the gap between the grains, and E0 is the electric
field strength in the incident electromagnetic wave.
An essential enhancement has to be observed near
resonance frequencies, then there are two principal
contributions to the ratio,

Ec/E0 = G/�� − �res� + Gbg, �2�

that can be called resonance and background terms.
Form of expression (2) follows from the general prop-
erties of Maxwell equations solutions when all mate-
rials have linear electric response. The quantity �res,
as well as the factors G and Gbg, are determined by
geometry of the grains and by the gap thickness. The
resonance frequency can be evaluated now from the
expression (1), �res��p /���res�.

In the case of close grains the electric field of the
resonance mode is localized in the central segment of
the gap between the grains where it can be regarded
as flat [gray region in Fig. 1(a)]. An electromagnetic
wave can propagate along a narrow flat gap between
two metallic bodies separated by a dielectric medium
provided �=−2/ ���� in the case ����1 where � is the
propagation constant [5]. Standing waves are deter-
mined by the conditions �L��n where n is an inte-
ger number and L is the longitudinal size of the gap.
For two close smooth grains L can be estimated as
�a�, where a is characteristic grain curvature radius,
see Fig. 1(a). Thus, we obtain the following estima-
tion for the resonance values of the permittivity

�res � − �a/�/�n + �n�, �3�

where n is an integer number and �n�1. The estima-
tion is valid at n	�a /�.

Let us consider the first resonance corresponding
to n=1. The electric field inside the gap is approxi-
mately homogeneous at distances 
��a� from the
gap center where the gap can be regarded as flat.
Outside the region, at distances a�
��a� from the
gap center, the gap thickness is estimated as 
2 /a; it
is much larger than in the center. The potential dif-
ference ��Ec� between the grain boundaries is 


Fig. 1. Narrow gaps between (a) two metallic grains, (b)
two parallel elongated grains, (c) two coaxial elongated

grains.
independent in the main approximation at the dis-
tances, since � is effectively infinite at the scales.
Thus, we arrive at E��a /
2�Eca� /
2. The field
strength determines the charge density at the grain
boundaries that scales �
−2 as well. Therefore the di-
pole moment d of the grains is determined by the dis-
tances �a and can be estimated as d�E�a�a3

�Ec�a2.
The geometrical factor G in Eq. (2) can be evalu-

ated from the balance between the Ohmic dissipation
rate Q and the energy flux to the system from the in-
cident wave. At the resonance frequency, Q is esti-
mated as

Q � ����Ec/���2�a��3/2, �4�

where the last factor represents the metal volume
where the dissipation occurs and Ec /�� is the esti-
mate for the electric field amplitude in this volume.
The energy flux is determined by the work per unit
time done by the external field on the system and is
estimated as �dE0��Eca2�E0. Comparing the ex-
pressions one finds G��a /��3/2, that is G�1 at our
conditions. One can also evaluate the dipole radiation
intensity

I � �Ec
2�2a4/�3. �5�

The radiation leads to additional energy losses, our
scheme is correct provided I	Q.

The presented qualitative picture is confirmed by
rigorous analytical calculations for the case where
the metallic grains are close identical spheres of radii
a separated by a distance �	a. Our problem can be
solved analytically by passing to the so-called bi-
spherical reference system [6]. Here, we do not dis-
cuss details of the calculations (they will be pub-
lished elsewhere) and present final results only. With
logarithmic accuracy, one finds for the incident wave
polarization parallel to the symmetry axis

�res = −
�a/�

n − 1/2
, �6�

where n=1,2, . . .. For n=1 the parameters in Eq. (2)
are

G =
8�2

3

�a/��3/2

ln�a/��
, Gbg = − 2�a/�. �7�

The expressions are in accordance with our general
reasoning.

One can test more sophisticated grain geometries
that are characterized by a number of scales. We ex-
amine strongly prolate grains of length l, their mu-
tual arrangement can be either parallel or coaxial,
Figs. 1(b) and 1(c) with a narrow gap � between
them. The resonance condition is determined by the
smallest longitudinal gap dimension. Hence, one can
use the same relation (3), where a is the smallest cur-
vature radius of the grains characterizing the gap. It
is the cylinder radius in the parallel case and curva-
ture radius of the grain tips in the coaxial case. The

field enhancement G in Eq. (2) should be found, as
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above, from the energy balance: in the case of parallel
cylinders G�a /�, and in the case of elongated grains
G� la1/2�−3/2.

In our analysis, we used the quasistatic approxi-
mation that implies that all the characteristic sizes of
the grains are much less than � /����. Besides, we es-
tablished that the resonance mode is localized be-
tween the grains, at distances 
��a� from the gap
center. And just the vicinity determines the reso-
nance condition (3). Therefore the resonance condi-
tion survives if � /������a�, which leads to the condi-
tion �2�a3/2�1/2, justifying Eq. (3) even for large
grains. However, the amplification factor in this case
should be determined using complete geometry of the
system and Maxwell equations.

Since the resonance mode is localized between the
grains, a principal role in giant electric field enhance-
ment for a random distribution of the grains is
played by grain dimers with suitable separations,
satisfying the resonance condition. Thus a number of
sharp peaks in the space distribution of the electric
field has to be observed in the disordered metal—
dielectric composite in the external electromagnetic
wave. Experimental data [7,8] qualitatively proves
the conclusion, see, e.g., [9,10]. To determine the
number of peaks at a given frequency one has to
know a probability distribution of small separations �
(in comparison with the grain sizes) in grain dimers.

Recently considerable efforts are applied in design-
ing periodic metal-dielectric composites, see, e.g.,
[11]. One could imagine a periodic structure of metal-
lic grains separated by small distances. In this case
resonance modes can be excited where the electric
field has sharp maxima in central segments of the
gaps between the grains. However, due to overlap-
ping of the modes localized near the gaps, the reso-
nance has to be transformed into a band of delocal-
ized modes, like it occurs for electrons in a periodic
potential (crystalline lattice). As our analysis shows,
the structure of the electric field in the gap between
the grains at distances smaller than the grain size is
fixed by boundary conditions at the metal-dielectric
interface. Therefore the resonance frequency has to
be determined by matching conditions in the regions
between the grains instead of the condition at infinity
for two grains immersed in an unrestricted dielectric
medium. Thus, we expect that the bandwidth is of
the order of the separation between the resonance
frequencies. Thus, relying on a power-like depen-
dence like in Eq. (1), we conclude that for grains
characterized by a single size a the bandwidth is of
the order of the resonance frequency itself.

One of our assumptions was smoothness of the
grain boundaries. If the boundaries are rough then a
problem appears concerning an enhancement of en-
ergy losses observed in [12]. The giant electrical field
enhancement lead to increasing nonlinear effects.
The problems need a special investigation and are
out of the scope of this work.
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