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We investigate effects of long-wavelength dynamic fluctuations in free-standing crystalline membranes by
means of the renormalization group method. Thermal fluctuations lead to power dispersion laws for two
acoustic in-plane sound modes (longitudinal and transversal) and one out-of-plane bending mode governed
by the renormalized static elastic and bending modules. There is no logarithmic contribution to the attenuation of
the modes in the marginal membrane dimension D = 4; therefore, in the dimensionality D − ε, the attenuations
are slave, following the same scaling laws as the dispersion laws. We anticipate that our results can be relevant
for a better understanding of the graphene (and other crystalline films) dynamics.
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I. INTRODUCTION

It is well known that physics of solid bodies depends on
their effective dimensionality. Accordingly, low-dimensional
structures have always attracted a great deal of interest,
and many quasi-two-dimensional systems (including various
electronic heterostructures and also membranes, Langmuir
monolayers, smectic liquid-crystalline films, and so on) have
been investigated during the last decades. Particularly, an
impressive technological progress in the graphene film’s
preparation1–7 gives recently possibilities for experimental
investigations of free-standing crystalline sheets of atomic
thickness. In fact, similar technology8,9 can be used to produce
free-standing crystalline films from many other materials (both
conducting like graphene or insulating like boron nitride)
possessing layer structure in bulk. Quite differently, another
class of crystalline membrane surfaces (red blood cell is a
famous example) is possible in fixed connectivity (tethered
or polymerized) lipid membranes when covalent cross links
are replaced by weaker Van der Waals forces, tending to
crystallize the lipid bilayers at diminishing temperature.10

This experimental emergence of stable truly two-dimensional
systems makes theoretical investigations of their vibrational
properties an important direction of researches not driven
by pure curiosity. Indeed, beyond the graphene, remarkable
electronic transport, and optic properties, it becomes clear
that graphene mechanical features are also remarkable [e.g.,
thermal conductivity of a graphene sheet is much higher than
that even for a few layers of graphite11 (see, also, Ref. 12)].
This and other nonelectronic graphene properties make it a
promising candidate for various nanoelectromechanical device
applications, e.g., vibrational mass detectors.13

Theoretical studies of thermodynamic (static) properties
of crystalline membranes started actually long before the
“graphene era”14–18 and are still an active area of research
nowadays19–27 (these papers will be partially commented
in what follows, and much more publications could be
added to this list). Surprisingly, to our knowledge, no work
was devoted to dynamics of crystalline membranes. The
main purpose of our paper is to fill this gap and to study
theoretically fluctuational dynamics of a freely suspended
crystalline membrane. Having in mind elastic properties of the
membranes, we will not touch here their electronic properties

and the electron-phonon interaction. Note, however, that our
findings can be applied for the conducting graphene sheets.
First of all, graphene is semimetal, and the gap vanishes
only at the K points, where the two massless bands cross.
Therefore, electronic excitations can often be neglected,
and phonon dispersions provide all the information that is
needed to calculate various thermodynamic and dynamic
properties.28 Furthermore, a characteristic time scale of the
electrons is determined by the Fermi velocity vF � 108 cm/s,
whereas elastic deformations are changed on a longer time
scale dictated by the speed of sound vs � (105–106) cm/s.
Thus, to treat the graphene mechanical properties, one can
use the adiabatic approach integrating out fast electronic
degrees of freedom. However, certainly vibrational modes
due to electron-phonon coupling affect essentially electronic
properties, e.g., temperature-dependent resistivity. It is worth
to note works19,20 where anomalous temperature dependence
of resistivity has been rationalized in terms of one-loop
renormalization of the flexural phonon mode in free-standing
graphene. Resistivity due to flexural modes in bilayer graphene
has been investigated in Ref. 21, and, very recently, molecular
dynamics simulations have been applied to compute frequency
and lifetime of all phonon modes in graphene and nanotubes.22

In this work, we investigate effects of long-wavelength
dynamic fluctuations in crystalline membranes. Fluctuations
around the flat phase are analyzed by means of the renor-
malization group (RG) method. A key technical component
of our theoretical study is an evaluation of the dynamic
scaling exponents for the (D = 4 − ε)-dimensional crystalline
membrane embedded into the (d = 5 − ε)-dimensional space
in terms of the dynamic effective action. We show that
thermal fluctuations lead to scaling relations for the dispersion
laws of two acoustic in-plane sound modes (longitudinal and
transversal) and one out-of-plane bending mode. The scaling
is determined by nonlinear terms in the dynamic equations
(mode coupling), and the dynamics of the modes follows
renormalization of the static elastic and bending modules.
The fluctuational mode attenuation (imaginary part of the
dispersion law) has the same order over small hydrody-
namic parameter k as the real part of the dispersion law.
There is no logarithmic contribution to the attenuation of
the modes in the marginal membrane dimension D = 4;
therefore, in the dimensionality D − ε, the attenuations are
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slave, following the same scaling relations as the dispersion
laws.

The structure of our paper is as follows. In Sec. II, we
introduce the basic description of the elasticity of crystalline
membranes to be employed in the rest of the paper. For a nearly
flat membrane, deformations are parametrized by the in-plane
distortion field uα and the out-of-plane height displacement
h. In the harmonic approximation, the in-plane and bending
modes are decoupled, and their interaction renormalizes the
elastic energy. In Sec. III, we describe the elements of the
diagram technique needed to study dynamic effects induced
by thermal fluctuations. This technique is further exploited
in Sec. IV to estimate long-wavelength eigenmode dispersion
laws. In Sec. V, we give a brief summary of our results and
discuss also some possible applications and open questions.

II. BASIC EQUATIONS

It is worth to note that thin free-standing films at scales
larger than the film thickness can be treated as two-dimensional
systems embedded into three-dimensional space. An extra
(with respect to the genuine D = 2 flat films) degree of
freedom (displacement in the direction orthogonal to the film)
leads to the additional (with respect to the in-plane sound
modes) soft long-wavelength mode, the so-called bending
mode. We assume that in equilibrium the membrane is flat
and parallel to the X-Y plane and characterize its bending
deformations by the displacement h(x,y) of the membrane
along the Z axis. Any deviation from the flat shape costs
bending energy, which reads in the main approximation29 as

Eb =
∫

dx dy
κ

2
(∇2h)2, (1)

where κ is the bending modulus [for the graphene film,
κ � 1.1 eV (Ref. 4)].

The elasticity of the crystalline membrane can be described
in terms of the elastic energy30

Eel =
∫

dS

{
λ

2
(w11 + w22)2 + μw2

μν

}
, (2)

where dS =
√

1 + (∇h)2 dx dy, μ and λ are elastic moduli
(Lame coefficients), the integration in Eq. (2) is performed
along the membrane, and dS is an element of its area. The
energy (2) with two elastic moduli is written for the sake
of simplicity for an isotropic crystal (say, for the hexagonal
crystal). For the graphene films, μ � 9 eV/Å2 and λ �
2 eV/Å2.4 It is worth noting that any deformation acting on
graphene leads to wrinkling because of the nearly negligible
threshold for buckling instabilities in thin plates (the bending
rigidity scales with the cube of the thickness so that a thin
membrane can not support even arbitrarily small shear or
compression without wrinkling on scales large compared to
thickness). However, for all its bending softness, graphene
exhibits the largest in-plane Young’s modulus and, although
easy to bend, is extremely hard to stretch.

The distortion tensor wμν characterizes membrane defor-
mations with respect to the equilibrium.30 For relatively small

elastic and bending deformations, the distortion tensor can be
written as31,32

2wμν = ∂μuν + ∂νuμ + ∂μh∂νh, (3)

where u is the membrane in-plane displacement with re-
spect to the equilibrium position. Note that the structure of
the distortion tensor (3) reflects the fact that the bending
deformation inevitably produces some membrane distortion.
Bending energy (1) is invariant under translations (a) along
the z direction and rotations around any axis h → h + c1a +
c2r × θ (where c1 and c2 are constants, and θ is the rotation
angle along a given axis). Furthermore, the distortion tensor
(3) is invariant under transformation δuν = −θνh, δh = θνuν

(θν is a rotation angle) that reflects rotational invariance of the
film.

The expression (3) being substituted into Eq. (2) leads to
the following harmonic (of the second order) and anharmonic
(of the third and fourth orders) contributions into the elastic
energy:

E
(2)
el =

∫
d2r

[
μ + λ

2
(∂αuα)2 + μ

2
∂αuβ∂αuβ

]
, (4)

E
(3)
el =

∫
d2r

[
λ

2
∂αuα(∇h)2 + μ∂αuβ∂αh∂βh

]
, (5)

E
(4)
el =

∫
d2r

λ + 2μ

8
(∇h)4. (6)

The energies [Eqs. (1) and (4)–(6)] govern thermal fluc-
tuations of a crystalline membrane that lead to logarithmic
renormalization of the modules κ , μ, λ in the marginal (upper
critical dimension) D = 4 (which is a dimensionality of the
membrane). One can derive by straightforward calculations
the following one-loop RG equations14–17 (cf. also with the
results of more involved calculations based on the so-called
self-consistent screening approximation, which is exact in the
limit d → ∞, presented in Refs. 18, 23, and 24 or on the
nonperturbative RG approach25):

dμ

dξ
= − T μ2

96π2κ2
,

dλ

dξ
= − T

16π2κ2
(λ2 + μλ + μ2/6), (7)

dκ

dξ
= T

16π2κ

4μ2 + 5μλ

2μ + λ
.

Here, ξ = ln(r) is the RG logarithmic factor and  is the
ultraviolet (microscopic) cutoff wave vector of the order of
inverse membrane thickness. A stable fixed point of the RG
equations in D = 4 [Eq. (7)] is λ = −μ/3. In fact, the RG
flow equations have four fixed points found quite some time
ago in Ref. 15. For D = 4 membranes, only the fixed point
λ = −μ/3 describes stable solid membranes [for instance,
another fixed point of the Eqs. (7), λ = −μ/2, would lead in
D = 4 to zero bulk elastic modulus B = λ + (2μ/D)]. Since
we are not interested in calculating the values of the exponents
extrapolating D = 4 results to D = 2 physical membranes,
we restrict ourselves to only this stable in D = 4 fixed point
λ = −μ/3. Universal scaling relations for static and dynamic
correlation functions hold for any stable fixed point. In the
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point λ = −μ/3, the RG equations are reduced to a single
equation ∂ξg = −g2 for the invariant charge

g = 89

480π2

T μ

κ2
. (8)

Then, one finds that both elastic moduli have for D = 4 the
same scaling

μ,λ ∝ ξ−5/89, (9)

whereas the bending module κ increases at large scales as

κ ∝ ξ 42/89. (10)

One can extend the equations for the membrane dimen-
sionality D = 4 − ε and to estimate the λ, μ, and κ scalings
for the physical dimensionality D = 2 (as it has been done
in Refs. 14–18 and 23–25). Unfortunately, such a wild
extrapolation to ε = 2 of the results obtained at ε � 1 is not
a very reliable procedure. The actual values of the exponents
can not be found by such an approach. One has to rely on
numerical simulations26 or experimental electromechanical
resonator data.33,35 The RG results may be used for qualitative
predictions only, and Eqs. (9) and (10) tell us that due to
thermal fluctuations, elastic moduli μ and λ decrease in
the long-wavelength limit, while the bending modulus κ

increases in this limit as some powers. Moreover, the scaling
is characterized by a single scaling exponent. It is usually
introduced for the bending module κ ∝ k−ζ , then

μ,λ ∝ κ2kε → k2−2ζ (11)

for the physical value ε = 2. The above scaling arguments are
quite robust. With all said in mind, we stop here reproducing
known14–18,23–25 static results and will follow the same strategy
to investigate dynamic fluctuation effects.

III. MEMBRANE DYNAMICS

To examine the membrane dynamics, one has to take into
account its kinetic energy

K =
∫

dx dy
j2

2ρ
. (12)

In Eq. (12), ρ is the mass density of the membrane (for
graphene, ρ = 7.6 × 10−8 g/cm2), and in what follows, we
use units with ρ = 1. We assume that the membrane environ-
ment is tenuous and neglect its influence to the membrane. In
dynamics (like in statics), all physical characteristics [includ-
ing kinetic energy (12)] are defined for physical dimension
D = 2 in d = 3, and only the RG procedure is realized for a
marginal dimension D = 4 in d = 5.

The reactive (nondissipative) membrane dynamic equations
can be derived on the basis of the Poisson bracket method.31,32

Since we are interested in only in-plane sound and out-of-plane
bending modes, we need only the Poisson brackets for the
momentum densities jα , jz (jα are the momentum density
components projected into the membrane plane, and the Z

axis is orthogonal to that plane) and the variables uμ and
h. The explicit formulas for Poisson brackets, involving
membrane hydrodynamic variables (momentum density jα ,
in-plane crystalline lattice displacements uβ , and membrane

displacement h along the normal), can be found in chapter 6 of
Ref. 32 (see also original papers, Refs. 31 and 36). Applying
these formulas for the crystalline membrane, we end up with
only two nonzero Poisson brackets

{jα(x1,y1),uμ(x2,y2)} = δαμ δ(r1 − r2), (13)

{jz(x1,y1),h(x2,y2)} = δ(r1 − r2). (14)

The Poisson brackets together with the energy contribu-
tions (1), (2), and (12) lead to the following dissipationless
dynamic equations for the elastic (sound) and bending modes:

∂2
t h + κ∇4h − ∂α(σαβ∂βh) = 0, (15)

∂2
t uα − ∂βσαβ = 0, (16)

where all nonlinear effects are lumped into the stress tensor

σαβ = δEel

δwαβ

= λδαβwμμ + 2μwαβ, (17)

where Eel is defined in Eq. (2). Fluctuation effects in the
long-wavelength dynamics can be described in terms of a
diagrammatic technique first developed by Wyld,37 who has
considered hydrodynamic turbulence. Further, the technique
was generalized and formulated in terms of functional integrals
in Refs. 38–40. Here, we follow the version of this technique
described in Ref. 32.

Correlation functions of our membrane can be obtained
as functional integrals with the weight exp(iJ ), where the
effective action J is constructed in accordance with Eqs. (15)
and (16):

J =
∫

dt d r
(
p∂2

t h + κp∇4h + ∂αpσαβ∂βh

+pα∂2
t uα + ∂βpασαβ

)
. (18)

Here, the auxiliary fields p and pα are conjugated to h and uα ,
respectively. We examine pair correlation functions

〈h(t,r)h(0,0)〉 =
∫

dω dq
(2π )d+1

exp(−iωt + iqr)�(ω,q),

〈uα(t,r)uβ(0,0)〉 =
∫

dω dq
(2π )d+1

exp(−iωt + iqr)Fαβ(ω,q),

(19)

as well as the corresponding pair response functions
〈h(t,r)p(0,0)〉 = �(t,r) and 〈uα(t,r)pβ(0,0)〉 = Gαβ(t,r).
They are related by the fluctuation-dissipation theorem, which
reads as

�(ω,q) = −2T

ω
Im �(ω,q),

(20)

Fαβ(ω,q) = −2T

ω
Im Gαβ(ω,q).

It is worth noting that similar to Eq. (20), expressions can be
derived for higher-order correlation and response functions.
All these relations based on the fluctuation-dissipation theorem
are exact and independent of an approximation used for the
calculation of the response and correlation functions.
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Similarly to the energy, the effective action (18) can be
separated into the harmonic (quadratic in p,h,pα,uα) part and
third- and fourth-order interaction terms

J (2) =
∫

dt d r
[
p∂2

t h + κp∇4h + pα∂2
t uα

+ (μ + λ)∂αpα∂βuβ + μ∂βpα∂βuα

]
, (21)

J (3) =
∫

dt d r
[

1

2
(λ∇ pδαβ +μ∂αpβ +μ∂βpα)∂αh∂βh

+ ∂αp∂βh(λδαβ∇u + μ∂αuβ + μ∂βuα)

]
, (22)

J (4) = 1

2

∫
dt d r (2μ + λ)(∇p∇h)(∇h)2. (23)

The expressions (21)–(23) can be used as a starting point for the
perturbation theory. Bare correlation and response functions
can be found easily by the Gaussian integration with the
quadratic part (21) of the effective action:

� = 2πT√
κ q2

δ(ω2 − κq4), (24)

Fαβ = 2πT√
2μ + λ q

δ[ω2 − (2μ + λ)q2]
qαqβ

q2

+ 2πT√
μ q

δ(ω2 − μq2)

(
δαβ − qαqβ

q2

)
. (25)

The arguments of the δ functions in Eq. (25) reflect the
well-known bare dispersion laws30 (see, also, more recent
results on the harmonic dispersion laws41 and also with
some perturbative anharmonic corrections included19,20,42). In
metallic systems such as doped graphene, phonon damping
due to electron-phonon coupling43,44 has to be taken into con-
sideration. Therefore, strictly speaking, our work (neglecting
electrons at all) holds only for insulating crystalline mem-
branes. Note, however, that electron-phonon contributions lead
to regular dependences on wave vectors,43 whereas fluctuation
contributions, which we are discussing here, have singular
dependence on wave vectors. Our hope is that small but
singular effects can be disentangled from even larger but
regular effects. Aside from this, electron-phonon coupling is
not expected to change dramatically in multilayer graphene
films, whereas fluctuation effects are suppressed at the scales
on the order of the film thickness. From Eqs. (24) and (25),
we get in the harmonic approximation for the bending mode
ω = ±√

κ q2 and for the longitudinal ω = ±√
2μ + λ q and

the transverse ω = ±√
μ q sound modes (remind that we put

ρ = 1).
Dissipative terms are not included in the above expressions.

The reason is that the fluctuational attenuation resulting from
nonlinear mode coupling appears to be much stronger than
the bare attenuation. In the long-wavelength limit, these
fluctuational dissipative terms are parametrically larger than
the bare dissipative terms. The fluctuational mode attenuation
(imaginary part of the dispersion law) has the same order
over small hydrodynamic parameter k as the real part of
the dispersion law. It is worth remarking that the regular

viscouslike (∝k2) dissipation in the bending mode is strictly
zero due to rotational symmetry of the system (which holds in
the long-wavelength limit for crystalline membranes similarly
as for free-standing liquid-crystalline films36).

IV. RENORMALIZATION

We start with in-plane sound modes. As in statics, we
consider a D = 4 membrane embedded into d = 5 space,
where we deal with a marginal logarithmic renormalizations.
The sound modes’ attenuations occur as a result of the coupling
between sound and bending modes. The coupling governs
both the real and imaginary parts of the dispersion law’s
fluctuational renormalizations.

According to the third-order effective action term J (3)

[Eq. (22)], the dynamic renormalization of the in-plane phonon
modes is determined by the one-loop self-energy function

�αβμν(ω,k) =
∫

dω′ d4q

(2π )5
(qαqβ − kαkβ/4)(qμqν − kμkν/4)

×�(ω′,q − k/2)�(ω′ + ω,q + k/2). (26)

In the main logarithmic approximation, ω � ω′ and k � q.
Then, for ω → 0 and k → 0, the integral (26) is reduced to a
residue in the pole ω′ = 0, and the real part of the self-energy
function �̂ reads as

�αβμν = − T

384π2κ2
(δαβδμν + δαμδβν + δανδβμ)ξ. (27)

As it should be, the expression (27) reproduces the static
renormalization of the Lame coefficients λ and μ [Eq. (9)].

To find the imaginary part of the self-energy function (26),
i.e., fluctuational attenuation for the in-plane sound modes, we
have to keep in that [Eq. (26)] ω �= 0. Since the sound modes
(even after fluctuational renormalization) are still harder than
the renormalized bending mode [cf. Eq. (11)], the wave vector
k in Eq. (26) can be safely neglected. Then, we find

Im �αβμν = − T sign ω

3072πκ2
(δαβδμν + δαμδβν + δανδβμ). (28)

We see that there are no logarithmic factors in the expression.
In fact, it is a general property, and in a spirit of basically
exact fluctuation-dissipation theorem, the imaginary part of
the self-energy function (unlike its real part) does not contain
logarithmic factors in any order of the perturbation theory.
Indeed, each diagram in the perturbation theory for the Im�

[Eq. (26)] contains the lines Re � and Re Gαβ defined accord-
ingly to Eq. (20) (in contrast to the lines Im � and Im Gαβ in the
diagrams for Re �). All other blocks in the diagrams for Im �

can be collected in the statically driven contribution (which
certainly contains the logarithmic factor yielding to nontrivial
scaling). However, the additional integration related to the
lines Re � and Re Gαβ does not produce a new logarithmic
factor. Thus, we anticipate that in 4 − ε dimensionality where
nontrivial scaling has to be observed the imaginary part of
�αβμν (i.e., in-plane sound-mode attenuations) is of the order
of its real part.

One can say that dynamical fluctuations slave, follow-
ing static (thermodynamic) fluctuations. It is worth not-
ing that such a rather unusual situation (for instance, for
standard second-order phase transitions, critical dynamics
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is totally independent of the thermodynamic fluctuational
renormalization45) is not completely unexpected. Similar
behavior holds for free-standing smectic films36 (although
modes and their couplings in the both cases are very different,
driven by elasticity for crystalline membranes and by surface
tension for smectics).

The attenuation of the bending mode is harder to calculate.
The fact is that the one-loop contribution into the bending-

mode attenuation (corresponding self-energy function) exactly
vanishes. It can be seen by a direct inspection of all one-
loop diagrams constructed according with the effective actions
(21)–(23). Therefore, we have to estimate two-loop terms.
Since the effective action is quadratic over elastic degrees of
freedom uα , they can be integrated out, and we end up with the
following fourth-order term in the integrand of the effective
action for the bending mode:

� = ∂αpσαβ∂βh = ∂αp

{
2μ(μ + λ)

2μ + λ
(∇h)2∂αh + 2μ(μ + λ)

2μ + λ
∂βh

∂α∂β

∇2

∂μ∂ν

∇2
(∂μh∂νh)

− μλ

2μ + λ
∂βh

∂α∂β

∇2
(∇h)2 − μλ

2μ + λ
∂αh

∂μ∂ν

∇2
(∂μh∂νh) −μ∂βh

∂μ∂β

∇2
(∂αh∂μh) − μ∂βh

∂μ∂α

∇2
(∂βh∂μh)

}
, (29)

where the nonlocal (∝1/∇2) terms are the price to pay for
integrating out the sound modes. By counting of ω and q

powers, we estimate that these two-loop contributions yield to
the nonzero bending-mode attenuation ∝g2 with the universal
invariant RG charge g = 89T μ/(480π2κ2), the same as in
statics (8). Thus, for the bending mode, we arrive at the
same conclusion as for the in-plane sound modes. Namely, the
imaginary and real parts of the bending dispersion law have
the same scaling with a single exponent, related universally
with the exponent for the sound modes.

A number of remarks are in order here. First, by a simple
inspection of the integrand � (reshuffling the six terms and
changing the order of derivatives), we check that � → 0 at
k → 0 (as it should be due to rotational symmetry). The main
contributions to � come from the range when all three wave
vectors entering the integral (external k and two independent
internal q1 , q2) are of the same order k � q1 � q2. There is not
any specific symmetry requirement in this case. Therefore, we
do believe that by the definition (29), non-negative quantity �

is not zero for not too small wave vector k and corresponding
bending-mode frequency ω ∝ k2. Second, as a note of caution,
we should mention also another danger. The integral of �

could be in principle divergent for the bare dissipationless
correlation functions. The source of this potential danger is a
resonant denominator occurring from the energy conservation
laws (corresponding δ functions). However, in D = 4, the
quadratic over q denominators may not lead to the integral
divergence.

V. DISCUSSION AND OPEN QUESTIONS

In recent years, the discovery of graphene offers a high
interest from scientists belonging to different communities. At
the beginning of the “graphene era,” much attention has been
devoted to electronic properties. However, suspended two-
dimensional films allow the unique possibility of exploring
other nonelectronic properties. The free-standing films mani-
fest at once features of hard and soft condensed matter physics.
Very little remains known about graphene nonelectronic

properties. The situation is now rapidly changing and this
brings an interesting new direction in graphene (and other
free-standing films) researches.

We present here a calculation of vibrational mode fluctu-
ational renormalization for fixed connectivity or crystalline
membranes. We have formulated a RG approach to study
dynamical fluctuations in atomically thin freely suspended
crystalline films. Our RG analysis clearly illustrates the long-
wavelength scaling behavior of the dispersion laws for all
gapless vibrational modes. In fact, for long-scale dynamics,
it is not essential whether the film is in a crystal or glasslike
state. All the nontrivial scaling features that we have studied
in this paper are based on a coupling between in-plane and
out-of-plane modes related to a nonzero shear modulus μ �= 0.
This made all gapless modes anomalous.

Our main message in this paper is a nontrivial qualitative
statement about unique scaling behavior (with a single expo-
nent) of all dynamical characteristics in the crystalline free-
standing membranes. We have proved it only for D = 4 − ε

membrane embedded into d = 5 − ε space (with ε � 1).
As it is usual in the RG procedure to describe the physical
cases D = 2 and d = 3, we should rely on a rather dangerous
extrapolation of the results. However, the nature is on our side,
and if we are not interested in the values of the exponents, the
fact of universal scaling behavior [single exponent reproducing
in the spirit of fluctuation-dissipation theorem (20) static
behavior, e.g., Eq. (11)] can be checked by rather cumber-
some but straightforward analysis of higher-order diagrams
renormalizing the actions (21)–(23). Static (thermodynamic)
nonlinearity is so strong that it governs dynamical renor-
malizations. This fact is based on the exact fluctuation-
dissipation theorem [see more details in the previous section,
where we have presented the arguments on the validity
of Eq. (28)].

We show that both the reactive (real part of the dispersion
laws) and dissipative (imaginary part of the dispersion laws)
terms are equally renormalized by fluctuations. Therefore,
dynamics fluctuations are governed by the static ones. The fluc-
tuational mode attenuation (imaginary part of the dispersion
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law) has the same order over small hydrodynamic parameter k

as the real part of the dispersion law. For both (longitudinal and
transversal) in-plane sound modes, we predict Re ω ∝ Im ω ∝
k2−ζ , and for the bending mode Re ω ∝ Im ω ∝ k2−ζ/2 [cf.
with the static laws (11)]. To avoid confusion, we should
say that, in the framework of our approach, we are dealing
with the mode broadening (attenuation). It occurs as a result
of nonlinear mode coupling between in-plane sound and
out-of-plane bending modes. We are not interested in entropy
production (dissipation), which holds due to short-scale (large
wave vectors) viscous or hyperviscous microscopic processes.
If external strains are applied to a membrane, anharmonic
effects would be highly suppressed (see Ref. 48) and only
short-scale mode broadening survives.

It seems fair to state that we realized after accomplishing
this work that things have turned out to be considerably
more complicated (and thus more interesting) than expected.
Understanding all of its limitations, we nevertheless hope
that our theory captures the essential physics of crystalline
membrane vibrations. Besides, it is a mandatory first step to
rationalize some remaining (in this field) at least partially unex-
plained (especially for graphene and other carbon allotropes)
phenomena such as, e.g., the following:

(i) Why are graphene free-standing films compressed
under heating? Indeed, the mode Gruneisen parameters are
usually positive since phonon frequencies decrease when
the solid expands. However, some negative-mode Gruneisen
parameters for low-frequency acoustic modes can arise and

sometimes28 compete with positive ones, giving a negative
thermal expansion. But, in “conventional” weakly nonlinear
materials, it could happen only at low temperatures, when
only the lowest acoustic modes can be excited.

(ii) Why can graphene sheets be easily folded and simulta-
neously fractured as a glass (which were usually considered
as contradicting properties)?

(iii) Why are graphene films impenetrable even for very
small noble atoms such as He?

(iv) How do graphene films melt (see discussion in Ref. 49)?
Note finally that our theoretical approach can be generalized
for biologically relevant membranes of fixed connectivity
(such as red blood cell membranes) immersed into a liquid. At
the time of writing, the experimental significance of vibrational
fluctuations investigated in this paper, for various properties
of graphene (or other crystalline or polymerized glasslike)
films, is far from clear. However, it seems certain to neces-
sitate a revision of some of our present concepts regarding
dynamic phenomena in thin free-standing crystalline films.
Our hope is that our paper is provocative enough to stimulate
additional research efforts. Besides, with recent technological
progress in atomic thickness, free-standing crystalline-film
preparation,8 acoustic resonance method investigations,33–35

and efficient atomistic26 or molecular dynamics46 simula-
tions, one might hope to get more favorable conditions
for observation of fluctuational phenomena (all the more
that high-quality scattering measurements have become
available47).
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