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We present phenomenology describing the internal structure of a turbulent zone, produced as the result of the
push of a heavy fluid into a light one, for the case of immiscible fluids. One finds that the Kolmogorov cascade
is realized within a range that grows with time, viz., scales between the mixing zone width,L~ t2, and the
viscous scale,h~ t−1/4. Surface-tension effects lead to formation of an emulsionlike state. Density fluctuations
on scales larger than the typical drop size,l, are governed by the Obukhov-Corrsin cascade. Ifl @h, a wave
energy cascade, related to capillary waves propagating along the surfaces of drops, is formed at scales below
l, l ~ t−2/5.
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I. INTRODUCTION

If a heavy fluid lies above a light one, the gravity-driven
Rayleigh-Taylor sRTd instability developsf1–4g. At later
stages, this unstable flow becomes turbulent. The most strik-
ing feature of RT turbulence is the formation of a turbulent
mixing zone of width L that grows quadratically with
time f5g,

L < aAgt2. s1d

Here,A is the Atwood number, related to the fluid densities
r1,2 by A;sr1−r2d / sr1+r2d, and g is the acceleration of
gravity. The laws1d was observed in many numerical and
laboratory experimentsssee Refs.f6,7g for recent reviewsd.
Numerical and experimental values of the dimensionless co-
efficient a in Eq. s1d vary from 0.02 to 0.07.

Recently one of ussM.C.d proposed a phenomenological
theory explaining the hierarchy of scales and the spectra of
velocity and density fluctuations in a specific regime of
three-dimensionals3Dd RT turbulence: for lowA si.e., in the
Boussinesq approximationd and for miscible fluidsf8g. The
theory is based on the laws1d and also on a common feature
of multiscale organization in hydrodynamic turbulence, viz.,
that small scales adjust adiabatically to changes in large-
scale characteristics. The phenomenology predicts that, in
the wide range of scales between the integral scale,L, and
the viscous scale,h, energy cascades down scalesas ob-
served numerically and experimentallyf9–12gd and the Kol-
mogorov estimate for the velocity incrementsdifferenced
f13–15g,

dvr , serd1/3, s2d

holds. Heree is the energy flux per unit mass,e,A2g2t,
which grows linearly with time. It was shown in Ref.f8g that
the Kolmogorov scenario is self-consistent, in the sense that
even though the RT turbulence is buoyancy driven at scales
,L, the effect of buoyancy on turbulence becomes irrelevant
at smaller scales,r !L. This self-consistent logic is an adap-
tation sto the RT turbulence settingd of the Shraiman-Siggia
argumentsf16g, introduced in the context of Boussinesq con-
vection. The phenomenology also predictssin agreement

with the numerical analysis of Ref.f17gd that the viscous
scaleh decreases with time as

h , S n3

A2g2t
D1/4

, s3d

wheren is the kinematic viscosity.sWe assume that the ki-
nematic viscosities of the fluids are of the same order.d Com-
paring Eqs.s1d and s3d one finds that the turbulent descrip-
tion is self-consistent, i.e.,L@h, for t@n1/3A−2/3g−2/3.

It is clear that the adiabatic and Kolmogorov-like argu-
ments leading to the estimates2d are not restricted to the
miscible case considered in Ref.f8g. In particular, the gen-
eral argument suggests that the Kolmogorov picture also
holds within some range of scales for the immiscible case. In
this case, however, surface tension should play an essential
role in the mixing zone. The problem addressed in the
present paper is to identify and study phenomena related to
surface tension.

II. SURFACE-TENSION EFFECTS

We examine the dynamics of two immiscible fluids when
the heavier fluid is placed initially above the lighter one. This
configuration leads to RT instability, which eventually devel-
ops into RT turbulence. The size of the turbulent mixing zone
sand thus the amount of fluid entrained in the turbulent mo-
tiond grows according to Eq.s1d. Hydrodynamic motion at
scales,L is driven by buoyancy. At smaller scales the direct
si.e., directed towards smaller scalesd cascade ofskineticd
energy is realized, leading to the estimates2d. The cascade is
accompanied by mutual penetration of the fluids, which is
initiated by the injection of pure fluid jets into the mixing
zone. The collision of jets of different fluids produces com-
plex sfractald interfacial structures. Drops of both types are
permanently shed from the interface; the result is the creation
of an emulsionlike state. A schematic view of a snapshot
taken inside the mixing zone, illustrating the density distri-
bution, is shown in Fig. 1. Notice that the exact shapes of the
drops are by no means fixed, as fluctuations in the local
radius of curvature of the interface are of the orderl, i.e., the
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typical drop size. Surface tension does not allow drops to
have a size much smaller thanl.

Let us consider the case when the typical drop size is
larger than the viscous scale,l @h. Then the sizel can be
estimated to be the scale where the kinetic-energy density of
the fluids,%sdvld2, and the interfacial energy density,s / l, are
of the same order,

l , S s3

A4%3g4t2
D1/5

, s4d

where% is the mean mass density,%=sr1+r2d /2, ands is
the surface-tension coefficient. According to Eq.s4d, the
characteristic drop sizel decreases with timet, generating an
emulsion that is progressively more dispersed. Dynamically,
the permanent decrease in the typical drop size is realized
through creationssheddingd of new drops as well as through
breakup of already existing drops into smaller ones.

The estimates4d is correct provided that the scalel is
much smaller thanL; this requirement corresponds to the
condition

t @ S s

A3%g3D1/4

. s5d

This inequality emphasizes that at large scales,,L, gravity
overcomes surface tensionswhich tends to stabilize the RT
instabilityd. Another condition,l @h, results in

t ! t0, t0 =
s4

A2%4g2n5 . s6d

This inequality means that the Kolmogorov cascade is insen-
sitive to viscosity at scales,l. We assume that the inequali-
ties s5d ands6d are compatible, thus leading to the condition

s3 @ A%3gn4. s7d

Below we discuss separately scales larger and smaller thanl.

III. DENSITY FLUCTUATIONS

As the mixing zone grows, new portions of both heavy
and light fluids are entrained in the turbulent region. Jets of
the fresh portions, of the typical sizeL, move from the mix-
ing zone periphery towards the mixing zone center through
the counterpropagating emulsion containing drops of other
fluid ssee Fig. 1d. The interfacial contact of the counterpropa-
gating jets generates increasingly complexsfractald structures
evolving passively at scales larger thanl, where surface ten-
sion is not relevant and the interface dynamics does not exert
any back reaction on the flowsso that it cannot lead to any
interface ruptured. Surface tension becomes relevant at the
scalel, leading to interface breakdown, i.e., to formation of
drops of sizes,l. Notice that as time advances, old drops
si.e., drops of larger size formed earlier, because at the time
of their formationl was largerd are broken, so that a majority
of drops inside the mixing zone at any given time have size
,l. The concentration of drops is also inhomogeneous, im-
plying scale-dependent density variations.

In the immiscible case, the “microscopic” densityr is a
two-valued quantity,r=r1,2. Therefore, a spatial distribution
of the mass density at the scales larger thanl has to be
described in the framework of a coarse-graining procedure,
i.e., in terms of averaged quantities. For this purpose, we
introduce the quantityut, which is the deviation of the mass
density from its mean value% coarse grained at a scaler.
Values ofur can be positive or negative, signaling which of
the two fluids dominates ther vicinity of a given pointR.
sThe situation is illustrated in Fig. 1, where regions of a size
r are enclosed by dashed circles.d Accounting for mass ad-
vection and neglecting surface-tension effects, one arrives at
the following continuity equation forur ssee, e.g., Ref.f18gd:

]tursRd = − vrsRd · = ursRd, s8d

wherevrsRd is defined as the velocity field, coarse grained at
the same scaler. In complete analogy with the miscible
Boussinesq description of Ref.f8g, one finds that the fieldur
is a passive tracer advected in the inertial-convective range
of scales, L@ r @ l. Therefore, in accordance with the
Obukhov-Corrsin lawf19,20g, the scalar incrementsdiffer-
enced at the scaler is estimated as

dur , A%sr/Ld1/3. s9d

From Eqs.s2d and s9d one derives that the power generated
by the gravity force sper unit massd at the scale r,
,%−1durgdvr, is much less than the Kolmogorov energy flux
sper unit massd, e. As a result, the direct cascade of passive
density fluctuations is established in the range of scales be-
tween L and l, thus confirming self-consistency of the
Obukhov-Corrsin picture.

IV. CAPILLARY WAVE RANGE

If t! t0, then the drop size,l, lies in between the integral
scale,L, and the viscous scale,h. We have argued above that
in the range of scales bounded from above byL and from
below by l, the Kolmogorov in-volume cascade is realized.
Moreover, one finds that at smaller scales,r , l, turbulence

FIG. 1. Schematic view of the mass distribution snapshot. Dif-
ferent mass densities are marked as gray for light and white for
heavy. Circular domains bounded by dashed lines correspond to
regions dominated by heavysur .0d and lightsur ,0d fluids. Den-
sity distribution within any of the domains is not homogeneous:
drop-rich semulsiond regions alternate with drop-free regions. The
arrows indicate the mean direction of the flow in the corresponding
regions. Drops are shed from single-phase tongues possessing frac-
tal shape. The inset on the top of the figure illustrates that surfaces
of the drops are populated by capillary waves.
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inside and outside drops is also of the Kolmogorov type. As
far as dynamics on the interfacessurfaces of the dropsd is
concerned, we claim that a turbulent cascade of capillary
waves takes place. The capillary-wave dynamics opens an
additional channel for the energy transfer to small scales.
The energy flux, coming from the integral scaleL, splits in
two parts at the scalel: a part of the energy cascades further
stowardshd in the bulk sthe mechanism being equivalent to
that for single-phase turbulenced while the remainderswhich
is roughly of the same order as the volume partd feeds cap-
illary fluctuations, giving rise to the capillary-wave energy
cascade at the surfaces of drops.

Capillary waves are excited at the scalel by the inertial
motion; then capillary-wave interactions lead to the forma-
tion of a cascade in which waves with smaller and smaller
wavelengthsr, r ! l, are produced. The cascade is of a weak
turbulence kind, i.e., the roughnesssdegree of nonflatnessd of
the interface decreases with scale. Therefore, zoomed at the
scaler ! l, the interface can be viewed as an almost flat one
populated by capillary waves. Such zoomed portion of the
interface is shown schematically as an inset in Fig. 1. The
fluctuation spectra for the capillary-wave cascade were de-
rived by Zakharov and co-workersf21–23g. Using their re-
sults, one finds that the pair-correlation function of the wave-
generated velocity field, measured at two points on the
interface lying distancer apart from each other, is

kvsRd ·vsR + rdl , seld2/3sl/rd1/4. s10d

The typical surface elevation between the two points is esti-
mated ashr , rsr / ld3/8. Therefore, the typical slope,hr / r,
characterizing an effective nonlinearity of the problem, de-
creases with the scale. This estimate confirms that the wave
turbulence at the interface is weak. It is also straightforward
to check that the nonlinear interaction time at the scaler
within the wave turbulence range decreases with scale,~r3/4,
thus making our adiabatic description well justified.

We also find that velocity fluctuations induced by the cap-
illary wavess10d are stronger than respective fluctuations in
the bulk, described by Eq.s2d. Therefore, the interface tur-
bulence is insensitive to fluctuations in the bulk. On the other
hand, velocity fluctuations at a scaler generated by surface
waves become negligible beyond distancer from the inter-
face. This explains why turbulent fluctuations in the bulk are
insensitive to fluctuations at the interface.

Comparing the capillary-waves dispersion law,vk

=Îs / s2%dk3/2 swherevk is the frequency of a wave charac-
terized by the wave vectorkd, with the viscosity enforced
dissipation rate,,nk2, one finds that the capillary waves are
dissipated at the scale

r0 = %n2/s. s11d

Combining Eqs.s3d, s4d, and s11d one concludes that the
capillary-wave interval, bounded byl from above, byr0 from
below, and containingh scale in between, shrinks with time,
so that the three scales become comparable att0.

Equations10d gives an estimate for velocity fluctuations
at the interface. Therefore, if the velocity spectrum is calcu-
lated as a full volume average, an additional small factorr / l
for the capillary-wave contribution emerges due to the afore-

mentioned localization of the capillary-wave dynamics in
some close proximity of any given drop surface. One con-
cludes that the overallsvolume-averagedd contribution into
the velocity increment atr @h is dominated by the bulk, i.e.,
by the 3D Kolmogorov cascade term, which masks the wave
turbulence contribution. On the other hand, the capillary-
wave spectrum extends to scales smaller thanh, h@ r @ r0,
where the volume contribution is already damped by viscos-
ity. Therefore, the interfacial contribution should be clearly
seen in the velocity fluctuation spectrum within this special
range of scales.

V. ADVANCED STAGE

When timet approachest0, both l andh reachr0 simul-
taneously and the capillary interval collapses. Later on, for
t@ t0, the characteristic drop sizel becomes smaller thanh,
which, in turn, becomes smaller thanr0. Therefore, the cap-
illary cascade is absent at this stage. The scalel emerges now
as the result of a balance between the capillary forcesl and
the viscous forceA%nsdvh /hdl2 at the scalel. Taking into
account estimatess2d and s3d one arrives at

l ,
s

A%g

1
Înt

, s12d

which guarantees thatl decreases with time faster thanh,
with the viscous scale being described by Eq.s3d.

For t@ t0 a new range of scales, bounded byh from above
and by l from below, emerges. In this range, the velocity
fluctuations, e.g., those entering the expressions8d for the
dynamics of coarse-grained density field, are spatially
smooth; that is, the fluctuations are of the so-called Batchelor
kind f24,25g. Thus, fluctuations of the coarse-grained density
field are described by the following second-order structure
function f24–26g:

ksdurd2l , A2%2sh/Ld2/3lnsh/rd. s13d

Notice that if the conditions7d is reversed, i.e., ifs3

!A%3gn4, then the RT instability develops into turbulence
for t@ fn / sA2g2dg1/3, when l is already smaller thanh, so
that the RT turbulence begins immediately in the regime just
discussed.

VI. CONCLUSIONS

We examined the effect of surface tension on the immis-
cible RT turbulence. It was shown that the surface-tension
effects lead to the formation of an emulsionlike state, with
the typical drop sizel decreasing in time. We found that the
character of the density fluctuations on the scales larger than
l is insensitive to the immiscible nature of the problem. If the
size l is larger than the viscous scale, turbulence in capillary
waves propagating along the drops’ surfaces is realized in
parallel with the Kolmogorov turbulence inside, and also
outside, the dropssi.e., in the bulkd. Thus, the energy is car-
ried towards small scales by both inertial and wave cascades
simultaneously. This is the regime realized at moderate time
as well as if the effects of surface tension are stronger than
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those of viscosity. Later in time, the wave turbulence interval
collapses, leading to the formation of a finely dispersed
emulsion with the typical drop size being much smaller than
the viscous scale.

Let us mention, for the sake of completeness, that an im-
miscible RT turbulence in two dimensions, which is fre-
quently addressed in numerical simulations, is very different
from that in three dimensions, which has been the focus of
this paper. One expects, in analogy with the Boussinesq case
considered in f8g, that the Bolgiano-Obukhov regime
f27,28g, rather than the Kolmogorov regime, is realized in
two dimensions. Besides, it is easy to estimate that the vis-
cous scale,h, and the capillary scale,l, both increase in two
dimensions, contrary to what was concluded above for three
dimensions.

The description of RT turbulence proposed in this paper is
phenomenological. The phenomenology ignores effects asso-
ciated with the spatial inhomogeneity of the mixing zone. It
also ignores the effects of intermittency, leading to anoma-
lous scaling of higher-order velocity and density increments
f15g. These and other issuesse.g., analyzing the case when
two viscosities are parametrically differentd should be ad-
dressed in the future.

Even though our theory is specific to RT turbulence, one
can apply it in other situations, for instance, when immis-
cible fluids are driven into a turbulent regime by a mecha-
nism other than constant gravity. Two interesting examples
of this kind aresad the statistically steady regime realized
under permanent forcingse.g., in a Taylor-Couette apparatus
or when two immiscible fluids are pushed through a piped
and sbd the decaying Rightmayer-Meshkov regime realized
after an initially large acceleration is switched off. Although
the overall temporal picture of the flow requires serious
modification, the spatial picture of the immiscible turbulence
reported in this paper will still be applicable. In particular,
one finds that the multidropsemulsiond picture discussed
above and the splitting of the energy cascade in two at scales
smaller than the scale of the typical drop size should be seen
as well in these other immiscible turbulence problems.
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