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We present phenomenology describing the internal structure of a turbulent zone, produced as the result of the
push of a heavy fluid into a light one, for the case of immiscible fluids. One finds that the Kolmogorov cascade
is realized within a range that grows with time, viz., scales between the mixing zone width, and the
viscous scalep=t 4, Surface-tension effects lead to formation of an emulsionlike state. Density fluctuations
on scales larger than the typical drop sizeare governed by the Obukhov-Corrsin cascadé=lf), a wave

energy cascade, related to capillary waves propagating along the surfaces of drops, is formed at scales below
[, loct™25,
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I. INTRODUCTION with the numerical analysis of Refl17]) that the viscous

If a heavy fluid lies above a light one, the gravity-driven scalen decreases with time as

Rayleigh-Taylor (RT) instability develops[1-4]. At later 3\
stages, this unstable flow becomes turbulent. The most strik- n-~ (Az_gzt) ) 3
ing feature of RT turbulence is the formation of a turbulent
mixing zone of width L that grows quadratically with wherewv is the kinematic viscosity\We assume that the ki-
time [5], nematic viscosities of the fluids are of the same oydeom-
paring Egs.(1) and(3) one finds that the turbulent descrip-
~ aAgt, () tion is self-consistent, i.eL > 7, for t> 1847239723,
Here, 4 is the Atwood number, related to the fluid densities !t is clear that the adiabatic and Kolmogorov-like argu-
p12 by A=(pi—p,)/(p1+p,), andg is the acceleration of MeNts leading to the estimaté) are not restricted to the
gravity. The law(1) was observed in many numerical and miscible case considered in R¢8]. In particular, the gen-
laboratory experimentésee Refs[6,7] for recent reviews ~ ©ral argument suggests that the Kolmogorov picture also
Numerical and experimental values of the dimensionless cd20!ds within some range of scales for the immiscible case. In
efficient a in Eq. (1) vary from 0.02 to 0.07. this case, hovv_e\_/er, surface tension should play an e_ssentlal
Recently one of u¢M.C.) proposed a phenomenological role in the mixing zone. The problem addressed in the
theory explaining the hierarchy of scales and the spectra di€Sent paper is to identify and study phenomena related to
velocity and density fluctuations in a specific regime ofSurface tension.
three-dimensiondl3D) RT turbulence: for lowA (i.e., in the
Boussinesq approximatiprand for miscible fluidd8]. The
theory is based on the la{t) and also on a common feature
Of multiscale Organization in hydrodynamic turbulence, ViZ., We examine the dynamics of two |mm|sc|b|e ﬂu'ds When
that small scales adjust adiabatically to changes in largehe heavier fluid is placed initially above the lighter one. This
scale characteristics. The phenomenology predicts that, igonfiguration leads to RT instability, which eventually devel-
the wide range of scales between the integral sdal@nd  ops into RT turbulence. The size of the turbulent mixing zone
the viscous scaley, energy cascades down scdls ob-  (and thus the amount of fluid entrained in the turbulent mo-
served numerically and experimental§-12)) and the Kol-  tion) grows according to Eq(1). Hydrodynamic motion at
mogorov estimate for the velocity incremefdifference  scales~L is driven by buoyancy. At smaller scales the direct

Il. SURFACE-TENSION EFFECTS

[13-15, (i.e., directed towards smaller scalesascade of(kinetic)
S, ~ (er)t3 ) energy is r_ealized, leading to the e_stim&)e The (_:ascade is _
' accompanied by mutual penetration of the fluids, which is
holds. Heree is the energy flux per unit mass~.4%g, initiated by the injection of pure fluid jets into the mixing

which grows linearly with time. It was shown in R¢8] that  zone. The collision of jets of different fluids produces com-
the Kolmogorov scenario is self-consistent, in the sense thatlex (fractal) interfacial structures. Drops of both types are
even though the RT turbulence is buoyancy driven at scalegermanently shed from the interface; the result is the creation
~L, the effect of buoyancy on turbulence becomes irrelevandf an emulsionlike state. A schematic view of a snapshot
at smaller scales,<L. This self-consistent logic is an adap- taken inside the mixing zone, illustrating the density distri-
tation (to the RT turbulence settingf the Shraiman-Siggia bution, is shown in Fig. 1. Notice that the exact shapes of the
argument$16], introduced in the context of Boussinesq con-drops are by no means fixed, as fluctuations in the local
vection. The phenomenology also predi¢te agreement radius of curvature of the interface are of the ordere., the
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I1l. DENSITY FLUCTUATIONS

As the mixing zone grows, new portions of both heavy
and light fluids are entrained in the turbulent region. Jets of
the fresh portions, of the typical size move from the mix-
ing zone periphery towards the mixing zone center through
the counterpropagating emulsion containing drops of other
fluid (see Fig. 1 The interfacial contact of the counterpropa-
gating jets generates increasingly compleactal) structures
evolving passively at scales larger tHanvhere surface ten-
sion is not relevant and the interface dynamics does not exert
any back reaction on the floggo that it cannot lead to any

FIG. 1. Schematic view of the mass distribution snapshot. Dif-interface rupture Surface tension becomes relevant at the
ferent mass densities are marked as gray for light and white fobcalel, leading to interface breakdown, i.e., to formation of
heavy. Circular domains bounded by dashed lines correspond t@rops of sizes~I. Notice that as time advances, old drops
regions dominated by heavy, >0) and light(6,<O0) fluids. Den-  (i.e., drops of larger size formed earlier, because at the time
sity distribution within any of the domains is not homogeneous:of their formationl was larger are broken, so that a majority
drop-rich (emulsion regions alternate with drop-free regions. The of drops inside the mixing zone at any given time have size
arrows indicate the mean direction of the flow in the corresponding~|. The concentration of drops is also inhomogeneous, im-
regions. Drops are shed from single-phase tongues possessing fraglying scale-dependent density variations.
tal shape. The inset on the top of the figure illustrates that surfaces |n the immiscible case, the “microscopic” densjyis a
of the drops are populated by capillary waves. two-valued quantityp=p; ,. Therefore, a spatial distribution

of the mass density at the scales larger thamas to be
typical drop size. Surface tension does not allow drops talescribed in the framework of a coarse-graining procedure,
have a size much smaller than i.e., in terms of averaged quantities. For this purpose, we

Let us consider the case when the typical drop size isntroduce the quantity,, which is the deviation of the mass
larger than the viscous scale> 5. Then the sizd can be density from its mean valug coarse grained at a scale
estimated to be the scale where the kinetic-energy density ofalues of 6, can be positive or negative, signaling which of
the fluids,e(dv;)?, and the interfacial energy density/l, are  the two fluids dominates the vicinity of a given pointR.
of the same order, (The situation is illustrated in Fig. 1, where regions of a size

3 s r are enclosed by dashed circle8ccounting for mass ad-
- (L) (4) vection and neglecting surface-tension effects, one arrives at
Ate3g?) the following continuity equation foé, (see, e.g., Ref18]):

where ¢ is the mean mass densig=(p;+p,)/2, ando is 3.6,(R)=-v,(R) - V 6,(R), (8)

the surface-tension coefficient. According to Hg), the . , N .
characteristic drop sizedecreases with time generating an whereuv,(R) is defined as the velocity field, coarse grained at
he same scale. In complete analogy with the miscible

emulsion that is progressively more dispersed. Dynamicall : I 4 '
the permanent decrease in the typical drop size is realizeﬁous’Slnesq description of R¢B], one finds that the field,

through creatiorishedding of new drops as well as through iS a passive tracer advected in the inertial-convective range
breakup of already existing drops into smaller ones. of scales, L>r>I. Therefore, in accordance with the

The estimate(4) is correct provided that the scaleis Obukhothorrsiln |gm[19,2q, t;e scalar incremerttliffer-
much smaller tharl; this requirement corresponds to the ence at the scale is estimated as

condition 56, ~ Ap(rIL)Y=, 9
/
. ( o )14 (5y  From Egs.(2) and(9) one derives that the power generated
Adog? by the gravity force (per unit masp at the scaler,

~07156,96v,, is much less than the Kolmogorov energy flux
(per unit mask e. As a result, the direct cascade of passive
density fluctuations is established in the range of scales be-
tween L and I, thus confirming self-consistency of the

ot Obukhov-Corrsin picture.
t<tp, tOZWQZVS' (6)

This inequality emphasizes that at large scatek, gravity
overcomes surface tensig@which tends to stabilize the RT
instability). Another condition] > #, results in

This inequality means that the Kolmogorov cascade is insen- IV. CAPILLARY WAVE RANGE

sitive to viscosity at scales|. We assume that the inequali- | t<t,, then the drop sizd, lies in between the integral
ties (5) and(6) are compatible, thus leading to the condition scale L, and the viscous scale, We have argued above that
o3> Ao’git @) in the range of scales bounded from abovelbgnd from

below byl, the Kolmogorov in-volume cascade is realized.
Below we discuss separately scales larger and smalled thanMoreover, one finds that at smaller scales;|, turbulence
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inside and outside drops is also of the Kolmogorov type. Asnentioned localization of the capillary-wave dynamics in
far as dynamics on the interfagsurfaces of the dropss  some close proximity of any given drop surface. One con-
concerned, we claim that a turbulent cascade of capillargludes that the overallvolume-averagedcontribution into
waves takes place. The capillary-wave dynamics opens athe velocity increment at> # is dominated by the bulk, i.e.,
additional channel for the energy transfer to small scalesby the 3D Kolmogorov cascade term, which masks the wave
The energy flux, coming from the integral scélesplits in  turbulence contribution. On the other hand, the capillary-
two parts at the scale a part of the energy cascades furtherwave spectrum extends to scales smaller tham>r>r,
(towardsy) in the bulk (the mechanism being equivalent to where the volume contribution is already damped by viscos-
that for single-phase turbulencenhile the remaindetwhich ity. Therefore, the interfacial contribution should be clearly
is roughly of the same order as the volume p&tds cap- seen in the velocity fluctuation spectrum within this special
illary fluctuations, giving rise to the capillary-wave energy range of scales.
cascade at the surfaces of drops.

Capillary waves are excited at the scalby the inertial
motion; then capillary-wave interactions lead to the forma-
tion of a cascade in which waves with smaller and smaller When timet approaches,, both| and 5 reachr, simul-
wavelengths, r <1, are produced. The cascade is of a weaktaneously and the capillary interval collapses. Later on, for
turbulence kind, i.e., the roughneskegree of nonflatnegsf t>1,, the characteristic drop sizebecomes smaller thamn,
the interface decreases with scale. Therefore, zoomed at théhich, in turn, becomes smaller thag Therefore, the cap-
scaler <1, the interface can be viewed as an almost flat onellary cascade is absent at this stage. The scaieerges now
populated by capillary waves. Such zoomed portion of thess the result of a balance between the capillary foflcand
interface is shown schematically as an inset in Fig. 1. Thehe viscous forcedowv(dv,/ »)1? at the scald. Taking into
fluctuation spectra for the capillary-wave cascade were degccount estimate&?) and (3) one arrives at
rived by Zakharov and co-workef21-23. Using their re-
sults, one finds that the pair-correlation function of the wave- _ o 1 (12)
generated velocity field, measured at two points on the Aeg V'E’
interface lying distance apart from each other, is

V. ADVANCED STAGE

o3 1)d which guarantees thdtdecreases with time faster thap
(W(R) -v(R+1)) ~ (el)=(1/r)~". (100 with the viscous scale being described by E3).

The typical surface elevation between the two points is esti- T 0ft>to @ néw range of scales, boundedpjrom above
mated ash, ~r(r/1)¥8. Therefore, the typical slopeh/r, and by'I from below, emerges. In this range, the velocity
characterizing an effective nonlinearity of the problem, de-fluctuations, e.g., those entering the express@nfor the

creases with the scale. This estimate confirms that the wa@/"amics of coarse-grained density field, are spatially
turbulence at the interface is weak. It is also straightforwar?M00th: that is, the fluctuations are of the so-called Batchelor

to check that the nonlinear interaction time at the scale .ind [24,23. Th_us, fluctuations of _the coarse-grained density
within the wave turbulence range decreases with seafé? field are described by the following second-order structure

thus making our adiabatic description well justified. function [24-26:

. We also find that velocity fluctuations induced by the cap- ((86,)%) ~ A202(7IL)?3n(7lr). (13)

illary waves(10) are stronger than respective fluctuations in

the bulk, described by Eq2). Therefore, the interface tur- Notice that if the condition(7) is reversed, i.e., ifo?

bulence is insensitive to fluctuations in the bulk. On the other<.A@3gr*, then the RT instability develops into turbulence

hand, velocity fluctuations at a scalegenerated by surface for t>[v/(A?g»)]"3, whenl is already smaller tham, so

waves become negligible beyond distamctom the inter-  that the RT turbulence begins immediately in the regime just

face. This explains why turbulent fluctuations in the bulk arediscussed.

insensitive to fluctuations at the interface.

Comparing the capillary-waves dispersion lawg

=/ (20)k%? (wherew, is the frequency of a wave charac-

terized by the wave vectdr), with the viscosity enforced We examined the effect of surface tension on the immis-

dissipation rate;~vk?, one finds that the capillary waves are cible RT turbulence. It was shown that the surface-tension

dissipated at the scale effects lead to the formation of an emulsionlike state, with

to= 010 (11) the typical drop sizé Qecreasing_ in time. We found that the

character of the density fluctuations on the scales larger than

Combining Egs.(3), (4), and (11) one concludes that the | is insensitive to the immiscible nature of the problem. If the

capillary-wave interval, bounded bhyrom above, by, from  sizel is larger than the viscous scale, turbulence in capillary

below, and containingy scale in between, shrinks with time, waves propagating along the drops’ surfaces is realized in

so that the three scales become comparabtg at parallel with the Kolmogorov turbulence inside, and also

Equation(10) gives an estimate for velocity fluctuations outside, the drop§.e., in the bull. Thus, the energy is car-

at the interface. Therefore, if the velocity spectrum is calcu+ied towards small scales by both inertial and wave cascades

lated as a full volume average, an additional small factbr ~ simultaneously. This is the regime realized at moderate time

for the capillary-wave contribution emerges due to the aforeas well as if the effects of surface tension are stronger than

VI. CONCLUSIONS

055301-3



RAPID COMMUNICATIONS

CHERTKOV, KOLOKOLOQOV, AND LEBEDEV PHYSICAL REVIEW E71, 055301R) (20095

those of viscosity. Later in time, the wave turbulence interval Even though our theory is specific to RT turbulence, one
collapses, leading to the formation of a finely disperseccan apply it in other situations, for instance, when immis-
emulsion with the typical drop size being much smaller tharcible fluids are driven into a turbulent regime by a mecha-
the viscous scale. nism other than constant gravity. Two interesting examples
Let us mention, for the sake of completeness, that an imef this kind are(a) the statistically steady regime realized
miscible RT turbulence in two dimensions, which is fre- under permanent forcin@.g., in a Taylor-Couette apparatus
quently addressed in numerical simulations, is very differenbr when two immiscible fluids are pushed through a pipe
from that in three dimensions, which has been the focus o&nd (b) the decaying Rightmayer-Meshkov regime realized
this paper. One expects, in analogy with the Boussinesq casdter an initially large acceleration is switched off. Although
considered in[8], that the Bolgiano-Obukhov regime the overall temporal picture of the flow requires serious
[27,28, rather than the Kolmogorov regime, is realized in modification, the spatial picture of the immiscible turbulence
two dimensions. Besides, it is easy to estimate that the viseported in this paper will still be applicable. In particular,
cous scaley, and the capillary scalé, both increase in two one finds that the multidrogemulsion picture discussed
dimensions, contrary to what was concluded above for threabove and the splitting of the energy cascade in two at scales
dimensions. smaller than the scale of the typical drop size should be seen
The description of RT turbulence proposed in this paper i@s well in these other immiscible turbulence problems.
phenomenological. The phenomenology ignores effects asso-
ciated with the spatial inhomogeneity of the mixing zone. It ACKNOWLEDGMENTS
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