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An inverse turbulent cascade in a restricted two-dimensional periodic domain creates a condensate—a
pair of coherent system-size vortices. We perform extensive numerical simulations of this system and carry
out theoretical analysis based on momentum and energy exchanges between the turbulence and the
vortices. We show that the vortices have a universal internal structure independent of the type of small-scale
dissipation, small-scale forcing, and boundary conditions. The theory predicts not only the vortex inner
region profile, but also the amplitude, which both perfectly agree with the numerical data.
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From both a fundamental and practical perspective, a
central problem of turbulence theory is in the understanding
and the description of the interaction of turbulence fluc-
tuations with a mean (coherent) flow [1]. Even at the most
basic level of energy and momentum budget, such an
interaction is quite nontrivial: we expect energy to go from
the flow to turbulence in the fully three-dimensional case,
while it can go from turbulence to the flow in two
dimensions (2D) [2] or in thin fluid layers [3]. At present,
there is no unified conceptual framework to address this
problem. The cases most studied (for over a century) are
flows in channels or pipes. Despite this, even basic
problems, like determining at which mean velocity turbu-
lent fluctuations are sustained, are still objects of intense
investigations [4], nor is there any consistent theory for the
mean profile so that even the celebrated logarithmic law is a
subject of controversy [5]. Here, we consider 2D turbulence
where small-scale fluctuations excited by pumping transfer
energy to larger scales by an inverse cascade [2,3,6].
Already, the first experiments on 2D turbulence in thin

layers [7] have shown that in a finite system with weak
bottom friction, the inverse cascade leads to the formation
of coherent vortices. Subsequent direct numerical simu-
lations [8] and experiments [9] demonstrated that these
vortices have well-defined and reproducible mean profiles
with a radial power-law decay of vorticity in the inner
region. Moreover, the profile in that region depends neither
on the boundary conditions (periodic in numerics, no-slip
in experiments) nor on the type of forcing (random in
numerics versus parametric excitation or electromagnetic
force in experiments). Even more remarkable, the profile is
similar when modeling without linear (bottom) friction at
intermediate times where the vortices slowly grow [8] until
eventually viscosity stabilizes the system [10]. Here we
present the results of new extensive simulations of 2D

turbulence in a periodic box. By including linear friction,
we are able to reach a statistically steady state and collect
considerable statistics. Our results show that the internal
structure does not depend on the type of (hyper)-viscosity
nor on the value of the linear friction (as long as it is small
enough for condensation). One can thus conclude that the
profile in the inner region is universal since it depends on
neither the excitation mechanism, boundary conditions, nor
the dissipation mechanisms. This is also revealed by a new
theoretical framework for the analysis of turbulence-flow
interaction, which is developed below. The theory explains
the numerical results and gives new insight into the
coherent vortex formation and structure.
Both theory and numerics use the forced 2D Navier-

Stokes equation for the 2D velocity v with linear friction,

∂tvþ αvþ ðv · ∇Þv ¼ −∇pþ νΔvþ f ; ð1Þ
where ν is the kinematic viscosity. The external random
force (per unit mass), f , has homogeneous statistics, with
the correlation time small enough and the correlation length
much less than the system size L. The friction coefficient α
is small compared to the inverse turnover time of the
system-size vortices, α3 ≪ ϵ=L2, where ϵ ¼ hf · vi is the
energy production rate (per unit mass). The angular
brackets designate temporal averaging.
In our simulations, we used a periodic square box of size

L ¼ 2π so that the Fourier grid spacing is dk ¼ 2π=L ¼ 1.
We numerically solve (1) using a pseudospectral spatial
method, fully dealiazed by the two-thirds rule and time
stepped by a second-order Runge-Kutta scheme. We
initially perform three simulations at a spatial resolution
of 512 × 512. The external forcing acts in Fourier space in
an annulus of width 3dk ¼ 3 centered around the forcing
wave number kf ¼ 100 with a constant amplitude of 0.1.
We made several runs with small-scale (hyper)-viscous
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dissipation of the form νð−ΔÞ2pv for p ¼ 1, 2, 3, 4, with all
the results being quantitatively similar. We perform an
additional simulation at resolution 1024 × 1024 with a
smaller scale forcing situated at kf ¼ 200 with amplitude
0.16 to give a comparable ϵ. The data presented are for
the highest power of hyperviscosity considered: νð−ΔÞ8v
with ν ¼ 5 × 10−35 for 512 × 512 and ν ¼ 7 × 10−39 for
1024 × 1024, which gives the most extended inertial range
in Fourier space and the widest inner vortex region.
The first three sets of simulations are all for 512 × 512 but

with different friction: α ¼ 1.1 × 10−4 (A), 6.4 × 10−5 (B),
and 3.2 × 10−5 (C), which give ϵ ¼ 3.47 × 10−4 (A), 3.57 ×
10−4 (B), and 3.47 × 10−4 (C). To better resolve the inner
vortex region, we perform an additional simulation (D) at a
spatial resolution of 1024 × 1024 with α ¼ 6.7 × 10−5,
resulting in ϵ ¼ 3.77 × 10−4. Each simulation is run until
the system reaches a nonequilibrium stationary state through
the balance of forcing and friction, observed by the satu-
ration of the total kinetic energy E ¼ ð1=2Þ R v2dxdy. Once
stationary, we output data at every large eddy turnover time
(estimated by assuming that the total energy is dominated
by the condensate at the largest scale) for 4 × 104 turnover
times. Because of the increased resolution and the sub-
sequent additional computation expense, simulation D was
only performed for 2 × 102 turnover times. A typical snap-
shot of the vorticity field in the stationary state is plotted in
Fig. 1. For disentangling the mean flow from the turbulence,
it is crucial to locate the vortex center and then to follow it
as the vortex pair wanders in space. For each time frame, we
locate the center of the (positive) vortex by determining the
global maximum of the vorticity and then computing the
center of mass of the vorticity in a box of 8 × 8 grid points
around the extremum. Subsequently, we shift the domain at
every step so that the vortex center is at the origin.
The temporal average over all time frames of the

centered vortex filters out the zero-mean fluctuations and
gives the mean vorticity distribution. Subtracting the mean
flow from the original vorticity gives the fluctuations.
We double the statistics by applying the same method to

the other (negative vorticity) vortex after the required
vorticity-velocity symmetry transformations that permit
us to change the sign of the vorticity. Results of the
temporal averaging for the simulations with different linear
friction coefficients are presented in Figs. 2–7. The ampli-
tude of the final condensate apparently scales as α−1=2.
The mean velocity profile inside the vortex is highly

isotropic. The vortex interior can be separated into the
narrow vortex core and the region outside the core where
the mean profile reveals some universal scaling properties.
We focus on this universal behavior.
Let us now provide some basic theoretical analysis. We

introduce polar coordinates with the origin at the vortex
center: r is the distance from the center, and φ is the polar
angle. Based on numerical simulations and experiments,
we assume that the inner region of the vortex is isotropic
and can be described in terms of the mean polar velocity U
depending on r. The average vorticity is then Ω ¼ U=
rþ ∂rU. Taking the curl of (1), neglecting the viscous term
(assumed to be small for scales larger than the pumping
length) and decomposing the mean from fluctuations, one
obtains

FIG. 1 (color online). Plot of the total vorticity normalized by
ðϵ=αL2Þ1=2 during the condensate regime of simulation B.

FIG. 2 (color online). Radial profile of the mean vorticity Ω
normalized by ðϵ=αL2Þ1=2. The straight black dashed line
corresponds to the theoretically predicted radial profileffiffiffi
3

p ðr=LÞ−1 determined from Eq. (8).

FIG. 3 (color online). Radial profile of the mean polar velocity
U in log-lin coordinates. The horizontal black line is
ðα=ϵÞ1=2U ¼ ffiffiffi

3
p

[Eq. (8)].
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αΩþ 1

r
∂rðrhvωiÞ ¼ 0; ð2Þ

∂tωþU
r
∂φωþ v∂rΩþ αω

¼ −½v∂r þ ðu=rÞ∂φ�ω − αΩþ curlf ; ð3Þ

where the radial velocity v, polar velocity u, and vorticity ω
describe the fluctuations.
An attempt to construct a theory explaining the power-

law profile Ω ∝ r−a was made in [11]. It was based on the
existence of power-law zero modes of ω on the background
of the power-law mean vorticity Ω. Assuming that the zero
modes give the main contribution to the mean vorticity flux
hvωi and using perturbation theory (over nonlinear inter-
action), one relates a to the scaling of the hypothetical
leading contribution to hvωi. Equating scaling exponents of
both parts of (2), one finds a ¼ 5=4 [11], which does not
contradict the results of [8,9]. Our data, with higher
resolution and increased statistics, suggest, however, that
a ≈ 1 (see Fig. 2). This is even more clear from Fig. 3,
which demonstrates that U is r independent inside the
vortex, in accordance with Ω ∝ r−1.
To explain the discrepancy between the zero-mode

prediction and the actual profile, we note that the zero
modes must give an anomalously small contribution to the
average hvωi. This follows from symmetry considerations
applied to (3). If, as assumed in [11], the pumping term on
the right-hand side can be neglected when the characteristic
scale r exceeds the pumping correlation length, then by
multiplying (3) by ωn and averaging over time one obtains

hvωni∂rΩþ ∂rhrvωnþ1i
ðnþ 1Þr þ αhωnþ1i þ αhωniΩ ¼ 0;

where we have used isotropy. From the relations for
different n, it follows that the large-scale contributions to
hvωni are proportional to α. Also all averages odd in v tend
to zero as α → 0. On a deeper level, this follows from time

reversibility of the Euler equation, broken only by the linear
friction term. The smallness of hvωni for large-scale
contributions implies the smallness of the respective
correlation functions as well. This conclusion is supported
by the data presented in Fig. 4.
Let us show now that the mean profile can be derived

from the conservation laws. The Navier-Stokes equation (1)
itself is the momentum conservation law. Taking the radial
component and averaging it while exploiting isotropy and
incompressibility, ∂φuþ ∂rðrvÞ ¼ 0, one obtains

∂rhrv2i þ r∂rhpi ¼ U2 þ hu2i: ð4Þ

The polar mean component of (1) is as follows:

r−1∂rðr2huviÞ ¼ −αrU: ð5Þ

The left-hand side of (5) is the divergence of the flux of the
mean angular momentum rU, and so rhuvi is the flux.
When huvi is nonzero, the flow is irreversible; i.e. the sign
of huvi does not change upon the transformation t → −t
while the sign of U does. If huvi does not decay faster
than r−2, then the signs of huvi and U are opposite, which
implies that the momentum flows toward the vortex center
(this is natural since the mean angular momentum density
rU decreases towards the center).

FIG. 4 (color online). Third-order moments, hu3i, hu2vi, huv2i,
and hv3i for simulation C: an additional smallness of all odd in v
moments.

FIG. 5 (color online). Polar velocity fluctuations.

FIG. 6 (color online). Radial velocity fluctuations.
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Consider now the energy balance. By taking a scalar
product of v with (1) and averaging, one gets for the total
energy density (containing both the mean flow and
fluctuations):

1

r
∂r

�
rUhuvi þ r

�
v

�
u2 þ v2

2
þ p

���

þ αðU2 þ hu2 þ v2iÞ ¼ hf · vi: ð6Þ
In deriving (6), we have neglected, again, viscosity, which
mainly influences the direct cascade, dissipating enstrophy
(squared vorticity) but not energy [2] (in the numerics, we
use hyperviscous dissipation).
We now consider the inner region of the vortex, where

u; v ≪ U (see Figs. 5 and 6), which demonstrate that
fluctuations inside the vortex are suppressed compared with
the mean flow. It is a consequence of the large mean
velocity gradient ∼U=r, growing toward the center. The
relative strength of the fluctuations increases as r grows,
and on the periphery where r≃ L, fluctuations become of
the order of the mean flow. Considering the vortex interior,
we neglect hu2 þ v2i in comparison to U2, and also odd in
v terms since they contain two small parameters, related to
the smallness of α and that of the fluctuations. Substituting
hf · vi ¼ ϵ, one obtains

ϵ ¼ 1

r
∂rðrUhuviÞ þ αU2: ð7Þ

The same approximation is made in considering logarith-
mic turbulent boundary layers [12], but there ϵ is the
dissipation rate, whose coordinate dependence is unknown
a priori. In our case, ϵ is the pumping term independent of
coordinates, which allows us to solve the problem.
Combining (5) and (7) we find an r-independent mean
polar velocity

U2 ¼ 3ϵ=α; ð8Þ
whose value and r independence are in excellent agreement
with the numerics (see Figs. 2 and 3). Note that this vortex

profile is different from previously known cases (the
Rankine vortex with uniform vorticity and the Lamb-
Oseen vortex with a Gaussian distribution of vorticity)
apparently due to the feeding by turbulence.
It follows from (8) that the second term in (7) is equal to

2ϵ; i.e., at every point inside the vortex, the energy transfer
from outside brings twice more than the local inverse
cascade. Substituting (8) into (4) and neglecting u2 and v2

in comparison to U, we obtain for the pressure

pðrÞ ¼ ð3ϵ=αÞ lnðr=RÞ; ð9Þ
where R ∼ L. We present the radial profile of the pressure
around the vortex condensate in Fig. 7. One extracts from
the numerical data R=L ¼ 0.143, which is approximately
the size of the vortex (see Fig. 2).
Let us stress that the analytical theory presented is

explicitly universal. First, it does not depend on the
boundary conditions. Second, only the mean energy flux
ϵ, which is an outcome of the interplay between the small-
scale mechanisms of excitation and dissipation, enters into
the theory, not the mechanisms themselves. This was
confirmed in numerical simulations with different forms
of forcing and dissipation. Third, it is straightforward to
modify our theory for the frictionless case α ¼ 0. The time
dependence of the mean velocity can be established
from the fact that the total energy must grow as ϵt so that
UðtÞ ∝ ffiffi

t
p

, which was indeed observed in the numerics
of Chertkov et al. [8] and also of Chan et al. [10] for
intermediate times before viscosity stabilized the system.
Subsequently, in all formulas (2)–(9), the time-derivative
term replaces that of the linear friction with the substitution
α → 1=t. The form of the mean profile remains the same,
but, of course, all averages are now taken over a time
interval τ short compared with t but long compared with
1=Ω≃ r=

ffiffiffiffi
ϵt

p
, which requires t ≫ r2=3ϵ−1=3.

To conclude, we have developed a theory describing the
mean velocity profile inside the coherent vortices. Within
the vortex, we have found that velocity fluctuations are
suppressed. Towards the periphery, velocity fluctuations
become comparable to the mean flow, both of which can be
estimated by ðϵ=αÞ1=2, arising from the energy balance
between production and friction. For small r, the constant
U profile is correct down to the vortex core.
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