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Comment on “Thermodynamics of quantum crystalline membranes”
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Amorim et al. [Phys. Rev. B 89, 224307 (2014)] reported the theoretical investigation of quantum crystalline
membranes. In this Comment we dismiss the validity of their calculations based on a “natural” estimation of the
ultraviolet divergent contributions into correlation functions. We claim that such calculations give qualitatively
the wrong results.
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In a recent paper [1] the authors study long-scale vibrational
modes of free-standing crystalline membranes. In particular,
they examine the low-temperature membrane, areal thermal
expansion coefficient, and the membrane specific heat. The
same systems (free-standing crystalline membranes) were
investigated in our paper [2] where we demonstrated that
quantum fluctuations produce logarithmic renormalization of
the membrane elastic moduli regarding zero surface tension.
However, the authors of the paper [1] include into con-
sideration a contribution into the surface tension (the term
proportional to k2 in the self-energy function) that comes from
short-scale fluctuations. In our Comment we warn that such
terms cannot be calculated or even estimated via evaluation of
the UV terms.

Let us be reminded about the Landau-Wilson paradigm for
applications of the field theory in condensed-matter physics
(see, e.g., the survey [3] and the monographs [4,5]). A
macroscopic system can be described in terms of a few relevant
variables (fields) possessing “soft” behavior, i.e., slow in time
and smooth in space (in comparison with microscopic degrees
of freedom). The macroscopic properties of the system can be
analyzed in terms of a field theory that serves as a control-
lable theoretical tool for calculating correlation functions of
the variables (fields). In theory, the correlation functions are
presented as path integrals with a weight factor determined by
the effective action or the Landau functional of the system.

Usually, the correlation functions are calculated in the
framework of a perturbation expansion. Then some UV di-
vergent integrals appear unavoidably that cannot be calculated
within the long-scale field theory. Such UV divergent terms
have to be included into the renormalization (redefinition)
of the factors of the Landau functional or of the effective
action [3,4]. This concept has frequently been misinterpreted,
and it should not be mixed with renormalizability of the model
Hamiltonian. The latter one is about a number of relevant
interaction vertices.

What is worse is that estimations of the UV divergent con-
tributions, based on the “natural” microscopic cutoff (Debye
frequency for the problem under consideration) are, generally,
incorrect. The matter is that some macroscopic parameters
have to be zero due to a symmetry or due to some other
physical circumstances, whereas the natural estimations give
nonzero values for the parameters. This is just the case for the
freely suspended crystalline membranes that have zero surface
tension σ . This fact follows from the equilibrium condition

with respect to area variations for the freely suspended films
that may adjust their area to minimize the film free energy.

One can say that σ = σbare + σUV = 0, where σbare is
the “bare” value of the surface tension and σUV is the UV
(short-scale) contribution to the surface tension. Moreover,
there is no way to calculate within the long-scale theory or to
determine separately the contributions σbare and σUV. Only
the sum of both has physical meaning for the tensionless
free-standing crystalline membranes σbare + σUV = 0. It is
obvious that in this situation the contribution σUV cannot be
used for estimating σ . Neither can σUV be used to calculate
thermodynamic characteristics. For example, flexular contri-
bution into the low-temperature specific heat Cp calculated
at constant pressure (i.e., constant external stress) scales (up
to logarithmic corrections) as T 2 and not linear in T as in
the paper [1] with the UV divergent term σUV for the surface
tension.

Next, the coefficient in front of the UV divergent k2 term
in the self-energy function analyzed in the paper [1] cannot
be interpreted as the renormalized bending modulus. It is the
surface tension as one can conclude by comparing the poles
of the Green’s function and the phenomenological equation
for bending fluctuations since both should give the same long-
wavelength dispersion law. The dispersion law reads as ρω =
σk2 + κk4, where ρ is the mass density, κ is the bending
module, and σ is the surface tension. For tensionless free-
standing films σ = 0. If the membrane is somehow stretched,
then the surface tension σ is nonzero. Then σ is determined
by an external force stretching the membrane, that is, by a
macroscopic factor. Then, evidently, σ is much smaller than its
natural estimation made in terms of the microscopic (atomic)
parameters that determine σUV.

A certain similarity of the problem under discussion
and the long-scale description of continuous (second-order)
phase transitions are worth noting. The transition temperature
Tc is determined by microscopic material parameters and
characteristics and cannot be found in the framework of
the long-scale Landau-Wilson approach. Some UV divergent
terms appearing in the renormalization procedure should be
included into the definition of Tc: Tc → Tc,bare + Tc,UV. How-
ever, neither Tc,bare nor Tc,UV can be found in the framework
of the long-scale theory. Thus, in the long-scale theory Tc

has to be considered as a phenomenological parameter, and
its value can be taken from experimental data or microscopic
calculations.
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Note the point (although it is a minor issue for our
Comment’s main message) that the authors of the paper [1]
state that in our paper [2] we neglect: (i) “some relevant
anharmonic terms” and (ii) “the effects of retardation.” In
statement (i) the authors of the paper [1] probably have in mind
the fourth-order interaction vertex for the bending fluctuations.
We certainly do not neglect this vertex. The fact is that in
the one-loop approximation the vertex appears only in the
UV divergent (Hartree-like) contribution to the self-energy
function, that has to be included into the redefinition of the
surface tension (see above). In statement (ii) the authors of
the paper [1] probably pointed to the frequency-independent

renormalized interaction vertices in our paper. The fact is that
in our paper [2] we exploit the standard renormalization-group
(RG) procedure that is valid if the dimensionless interaction
constant is small. In this RG scheme the vertices remain
frequency independent, indeed.

To conclude, we claim in this Comment that the results
obtained in the paper [1] on the basis of the natural UV
estimation of the surface tension are qualitatively wrong and
are not applicable to free-standing crystalline membranes.
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