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Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence
in a finite box
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We discuss the structure and geometrical characteristics of coherent vortices appearing as a result of the
inverse cascade in two-dimensional turbulence in a finite box. We demonstrate that the universal velocity profile,
established by J. Laurie et al. [Phys. Rev. Lett. 113, 254503 (2014)], corresponds to the passive regime of flow
fluctuations. We find the vortex core radius and the vortex size, and we argue that the amount of vortices generated
in the box depends on the system parameters.
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I. INTRODUCTION

The role of the counteraction of turbulence fluctuations
with a mean (coherent) flow is one of the central problems of
turbulence theory [1]. Usually the fluid energy is transferred
from the large-scale flow to turbulent pulsations [2]. However,
in some cases the energy can go from small-scale fluctuations
to large-scale ones, which can lead to the formation of a
mean flow [3]. Basic problems, such as how to determine the
mean velocity at which turbulent fluctuations are sustained,
remain the object of intense investigations [4]. There is
still no consistent theory for the mean (coherent) profile
coexisting with turbulent fluctuations, thus even the celebrated
logarithmic law for the turbulent boundary layer is a subject
of controversy [5]. Here, we consider two-dimensional (2D)
turbulence in a restricted box where large-scale coherent
structures are generated from small-scale fluctuations excited
by pumping. This process occurs because in two dimensions,
the nonlinear interaction favors the energy transfer to larger
scales [6–8].

Initial experiments on 2D turbulence [9] have already
shown that in a finite system with small bottom friction, the en-
ergy transfer to large scales leads to the formation of coherent
vortices. Numerical simulations [10–12] also demonstrate the
appearance of coherent vortices in 2D turbulence. Subsequent
numerical simulations [13] and experiments [14] demonstrated
that these vortices have well-defined and reproducible mean
velocity (vorticity) profiles. This profile is quite isotropic
with a power-law radial decay of vorticity inside the vortex.
The profile in that region depends neither on the boundary
conditions (no-slip in experiments, periodic in numerics) nor
on the type of forcing (random in numerics versus parametric
excitation or electromagnetic force in experiments). The same
profile is formed both in the statistically stationary case where
the mean flow level is stabilized by the bottom friction, and in
the case in which the average flow is still not stabilized and
increases as time passes.

In Ref. [15], the results of intensive simulations of 2D
turbulence were reported, and they demonstrated that the
vortex polar velocity profile is flat in some interval of distances
from the vortex center. That means that the average vorticity is
inversely proportional to the distance r from the vortex center.
In the same paper, a theoretical scheme based on conservation
laws and symmetry arguments was proposed that explains the
flat velocity profile. The scheme predicts the value of the polar

velocity U = √
3ε/α (where ε is the energy production rate

and α is the bottom friction coefficient), which is in excellent
agreement with the numerics [15]. However, in the numerics
the region of existence of the flat profile is definitely restricted.
In addition, in early simulations [10–12] no flat velocity profile
was observed. These facts require an explanation.

We performed a detailed analytical investigation of the
problem of 2D turbulence in a finite box. As a result, we
established that the flat velocity profile corresponds to the
passive regime of the flow fluctuations where their self-
interaction can be neglected. The passive regime allows for
consistent analytical calculations that confirm the validity of
the value U = √

3ε/α for the polar velocity. In addition, we
found expressions for the viscous core radius of the vortex
and for the border of the region where the flat velocity profile
is realized. The results explain why no flat velocity profile
was observed in early simulations [10–12], and they imply
that at some conditions a large number of coherent vortices
could appear instead of a few vortices in numerics [13,15] and
experiment [14].

II. GENERAL RELATIONS

We consider the case in which 2D turbulence is excited in
a finite box of size L by external forcing. It is assumed to
be random with statistical properties that are homogeneous in
time and space. We assume also that the correlation functions
of the force are isotropic. The main object of our investigation
is the stationary (in the statistical sense) turbulent state that is
caused by such forcing.

For exciting turbulence, the forcing should be stronger than
dissipation that is caused by both bottom friction and viscosity.
That implies that the characteristic velocity gradient of the
fluctuations produced by the forcing should be much larger
than their damping at the pumping scale. The velocity gradient
is estimated as ε1/3k

2/3
f , where ε is the energy production rate

per unit mass and kf is the characteristic wave vector of the
pumping force. Thus we arrive at the inequalities

ε1/3k
2/3
f � α,γ, (1)

where α is the bottom friction coefficient, and γ is the viscous
damping rate at the pumping scale k−1

f , γ = νk2
f (ν is the

kinematic viscosity coefficient). In simulations, hyperviscosity
is often used. In that case, the inequalities (1) are still obligatory
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for exciting turbulence, where γ is the hyperviscous damping
rate at the pumping scale k−1

f .
If the inequalities (1) are satisfied, then turbulence is excited

and pulsations of different scales are formed due to nonlinear
interaction of the flow fluctuations. The energy produced by
the forcing at the scale k−1

f flows to larger scales, whereas the
enstrophy produced by the forcing at the same scale flows to
smaller scales [6–8]. Thus two cascades are formed: the energy
cascade (inverse cascade) realized at scales larger than the
forcing scale k−1

f , and the enstrophy cascade realized at scales

smaller than the forcing scale k−1
f . In an unbound system, the

energy cascade is terminated by the bottom friction at the scale

Lα = ε1/2α−3/2, (2)

where a balance between the energy flux ε and the bottom
friction is achieved. The enstrophy cascade is terminated by
viscosity (or hyperviscosity) [3].

If the box size L is larger than Lα , then the above two-
cascade picture is realized. We consider the opposite case
L < Lα . Then the energy, transferred to the box size L by the
inverse cascade, is accumulated there, giving rise to a mean
(coherent) flow. We consider the statistically stationary case in
which the mean flow is already formed. To describe the flow,
we use the Reynolds decomposition, that is, the flow velocity
is presented as the sum V + v, where V is the mean velocity
and v represents velocity fluctuations in the background of
V . Let us stress that V is an average over time, whereas it
possesses a complicated spatial structure.

As numerics and experiment show, the coherent flow
contains some vortices separated by a hyperbolic flow. The
characteristic velocity V of the coherent motion can be
estimated as V ∼ √

ε/α. The estimate is a simple consequence
of the energy balance: the incoming energy rate ε has to be
compensated by the bottom friction rate. The characteristic
mean vorticity in the hyperbolic region is estimated as � ∼
L−1√ε/α. However, inside the coherent vortices, the mean
vorticity � is much higher.

Due to the energy accumulation at the box size, the average
flow appears to be much stronger than the flow fluctuations.
Therefore, in the main approximation one can neglect fluctua-
tions, dissipation (bottom friction and viscosity), and pumping
to proceed to the Euler equation for the mean flow. Since we
consider the stationary case, we end up with

V∇� = 0, (3)

where � = curlV . Equation (3) is valid (in the main approxi-
mation) both inside the vortices and in the hyperbolic region.

III. COHERENT VORTEX

Here we examine the flow inside the coherent vortex. We
attach the origin of our reference system to the vortex center
that is determined as the point of maximum vorticity. The
definition corresponds to the procedures used in Refs. [13–15]
to establish the mean vortex profile. The position of the vortex
center fluctuates; for the laboratory experiments, it fluctuates
near a fixed position determined by the cell geometry. For
the periodic setup (used in the numerics), the vortex center
can shift essentially from its initial position, and only the
average relative position of the vortices is fixed. The reference

system is not inertial, and the velocity of the vortex center is
subtracted from the flow velocity in the system. However, the
flow vorticity in the reference system coincides with the one
in the laboratory reference system.

As was established in Refs. [13–15], in the chosen reference
system the mean flow possesses axial symmetry. Such flow
can be characterized by the polar velocity that is U -dependent
on the distance r from the vortex center. Then the average
vorticity is � = ∂rU + U/r . Obviously, such isotropic flow
satisfies Eq. (3) since the derivative ∇� is directed along the
radius vector r , whereas the velocity V is orthogonal to the
radius vector.

Therefore, to obtain an equation for U , one has to use
the complete Navier-Stokes equation. Assuming that the
average pumping force is zero, one obtains after averaging
the Reynolds equation [16]

αU = −
(

∂r + 2

r

)
〈uv〉 + ν

(
∂2
r + 1

r
∂r − 1

r2

)
U, (4)

where v and u are radial and polar components of the velocity
fluctuations, and angular brackets denote time-averaging. The
average 〈uv〉 is the Reynolds shear stress. Therefore, to find
the r dependence of U , one has to establish the statistics of the
flow fluctuations.

To analyze the fluctuations, it is convenient to use the
equation for the fluctuating vorticity � ,

∂t� + (U/r)∂ϕ� + v∂r� + ∇(v� − 〈v� 〉) = φ − �̂�,

(5)
which is obtained from the Navier-Stokes equation. Here ϕ is a
polar angle, φ is a curl of the pumping force, v is the fluctuating
velocity, and the operator �̂ presents dissipation including both
the bottom friction and the viscosity term, �̂ = α − ν∇2. For
the case of hyperviscosity, the last contribution to �̂ should be
modified; it is substituted by (−1)p+1νp(∇2)p. After solving
Eq. (5), one can restore the velocity from the relation � =
∂rv + v/r − ∂ϕu/r and the incompressibility condition ∂ru +
u/r + ∂ϕv/r = 0 with the boundary condition u,v = 0 at
r = 0.

Now we specify the statistical properties of the pumping φ.
They are assumed to be isotropic and invariant under φ → −φ

and time inversion. In other words, odd correlation functions
are zero and even correlation functions of φ are invariant under
t → −t and space rotations. An example of such pumping
is analyzed in the Appendix, where φ is assumed to be
briefly correlated and possessing Gaussian statistics, which
are characterized by the pair correlation function depending
on the distance between the points. This case can be analyzed
in detail (provided the flow fluctuations are passive); see the
Appendix. However, some conclusions can be drawn from
symmetry reasoning.

The left-hand side of Eq. (5) changes its sign under the
combined transformation

t → −t, � → �, ϕ → −ϕ, r → r, v → −v, u → u. (6)

That is why in the case �̂ = 0, correlation functions of
the velocity fluctuations have to be invariant under the
transformation (6). Therefore, the average 〈uv〉 or the average
〈u� 〉 should be zero, since the averages change sign at the
transformation (6). However, in the case �̂ = 0 the system
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is inhomogeneous in time. To ensure the homogeneity, one
should take a finite �̂, which makes the averages nonzero. They
remain finite in the limit �̂ → 0, which is a manifestation of the
dissipation anomaly that is well known in turbulence. One of
the manifestations of the anomaly is the so-called d’Alembert
paradox.

A. Universal interval

The viscous core is in the center of the coherent vortex. As
we are interested in the region outside the core, we neglect the
viscous term in Eq. (4), staying with

αU = −
(

∂r + 2

r

)
〈uv〉 = −〈u� 〉. (7)

The last relation in Eq. (7) can be checked using the isotropy
(ϕ independence) of the averages. As follows from Eq. (7),
the main goal of our calculations is the average 〈uv〉 or the
average 〈u� 〉.

Furthermore, we consider the region outside the vortex core
where the coherent velocity gradient is large enough,

U/r � ε1/3k
2/3
f . (8)

In this case, fluctuations in the interval of scales between the
pumping scale k−1

f and the radius r are strongly suppressed by
the coherent flow. The inequality (8) means that the average
velocity gradient U/r is larger than the gradient of the velocity
fluctuations in the interval of scales. Therefore, the passive
regime is realized there, i.e., the self-interaction of the velocity
fluctuations is negligible.

Moreover, the passive regime is then realized for scales
smaller than the pumping scale k−1

f . Indeed, in the direct

cascade the velocity gradients can be estimated as ε1/3k
2/3
f , up

to logarithmic factors weakly dependent on scale; see [17–19].
Therefore, inequality (8) represents the dominating coherent
velocity gradient in the interval of scales where the direct
cascade would be realized.

The passive regime can be consistently analyzed. Then one
neglects the term in Eq. (5) that is nonlinear in the velocity
fluctuations, staying with a linear equation for the vorticity
fluctuation � . The equation enables one to express � in terms
of the pumping φ and then to calculate the correlation functions
of � via the correlation functions of φ. As we are aiming to
calculate the Reynolds shear stress 〈uv〉, we are interested
mainly in the pair correlation function of � .

Furthermore, we focus on the case in which the pumping φ

is briefly correlated in time and has Gaussian statistics. Direct
calculations (see the Appendix) show that in this case,

〈uv〉 = ε/�, (9)

where � is the local shear rate of the coherent flow,

� = r∂r (U/r) = ∂rU − U/r. (10)

The expression (9) is derived at the condition � � γ,α, which
is guaranteed by the inequalities (1) and (8). Some additional
condition γ � α is needed to validate expression (9). The
inequality γ � α is assumed to be satisfied in our scheme.
(Note that the inequality is satisfied in numerics [15].) The
opposite case warrants some additional analysis, but that is
beyond the scope of our work.

Substituting expression (9) into Eq. (7), one finds a solution,

U =
√

3ε/α, � = −U/r, (11)

for the mean profile. Thus we arrive at the flat profile of the
polar velocity found in Ref. [15].

Expression (9) is in accordance with our expectation based
on symmetry reasoning. Indeed, in the absence of dissipation,
the average 〈uv〉 is zero due to the symmetry of the system
under the transformation (6). As we demonstrate in the
Appendix, the bottom friction cannot produce nonzero 〈uv〉.
Therefore, its value is related to viscosity (hyperviscosity)
and it should be determined by short scales where the
viscosity (hyperviscosity) becomes relevant and kills the flow
fluctuations. (This is demonstrated explicitly in the Appendix.)
That is why � is present in the denominator of expression (9)
since just � determines the dissipation rate at the viscous scale.

The left-hand side of inequality (8) diminishes as r grows.
Therefore, it is broken at some r ∼ Ru. Substituting expression
(11) into Eq. (8), one obtains

Ru = L1/3
α k

−2/3
f = ε1/6α−1/2k

−2/3
f . (12)

Note that Ru can be larger or smaller than the box size
L, depending on the system parameters. The case Ru > L

is, probably, characteristic of the numerics [13] and the
experiments [14], and the passive regime is then realized
everywhere in the box. In contrast, in numerics [15] the
universal region is relatively small, Ru < L, and is well
separated from the outer region, which is not completely
passive.

B. Viscous core

The universal profile (11) implies neglecting viscosity
in the equation for the average velocity. Since the average
velocity (11) is independent of the separation, the mean
velocity gradient increases as r diminishes. In that situation,
the viscosity is responsible for forming the vortex core. To find
the core radius Rc, one can use the equation for the average
polar velocity (4). Comparing the left-hand side in Eq. (4) and
the viscous term, one finds an estimation for the core radius,

Rc ∼ (ν/α)1/2. (13)

At r 	 Rc, the viscosity dominates and therefore U ∝ r ,
which corresponds to a solid rotation.

The estimate (13) can obviously be generalized for the case
of hyperviscosity. Taking the dissipation operator in the form
�̂ = (−1)p+1νp(∇2)p, one obtains Rc ∼ (νp/α)1/(2p) instead
of Eq. (13). If p = 1, we return to Eq. (13).

The universal profile (11) is realized in the interval of
distances Rc 	 r 	 Ru. The interval exists if Rc 	 Ru. The
inequality is equivalent to inequality (1) for γ = νk2

f , that is,

ε1/3k
2/3
f � νk2

f . The inequality means that the characteristic
velocity gradient at the pumping scale is much larger than
the viscous damping there. In other words, the inequality
Rc 	 r 	 Ru is equivalent to one enabling direct cascade
in the traditional two-cascade picture. The above arguments
are directly generalized for the case of superviscosity.

Note that a derivation of expression (9) implies the
inequality kf r � 1 justifying the shear approximation for the
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average velocity (used in the Appendix). Substituting here
r = Rc, we find νk2

f � α. More generally, the inequality
γ � α has to be valid for our analysis of the viscous core. In
the opposite case, α � γ , the shear approximation is destroyed
at r ∼ k−1

f , which has to be the lower border of the profile (11).
The structure of the coherent vortices in the case of zero

bottom friction, α = 0, was established in [20]. In this case,
just the viscosity determines the structure.

C. Outer region

Let us consider the region outside the interval with the
universal flat profile (11), that is, the case r > Ru. We refer
to this region as the outer one, and it exists if Ru < L. One
expects that the average motion remains isotropic there. In the
outer region, � 	 ε1/3k

2/3
f . Therefore, the passive regime is

substituted here by a mixed one. In the interval of scales from
k−1
f to ε1/2/�3/2 the traditional inverse cascade is realized,

whereas at larger scales the coherent motion modifies the
inverse cascade essentially. The direct (enstrophy) cascade is
weakly influenced by the coherent flow in the outer region.

The symmetry (6) leads us to the conclusion that the average
〈uv〉 is formed at the scales where the viscosity (hypervis-
cosity) comes into play. This property is demonstrated in
detail for the passive regime where consistent calculations
can be performed (see the Appendix). In the outer region,
such consistent calculations cannot be performed. Therefore,
conclusions should be based on symmetry reasoning. Thus,
we expect that the average 〈uv〉 can be determined by an
expression like (9), where the denominator is merely the
characteristic dissipation rate at the viscous (hyperviscous)
scale. Based on this, one would expect the expression 〈uv〉 ∼
ε/(ε1/3k

2/3
f ) since ε1/3k

2/3
f is just the characteristic dissipation

rate in the direct cascade. (Again, to avoid a misunderstanding,
note that in the above reasoning we ignored a weak logarithmic
dependence of the vorticity correlation functions in the direct
cascade; see [17–19].)

However, for the traditional direct cascade, 〈uv〉 = 0
because of the isotropy of the cascade. Therefore, the main
contribution to 〈uv〉, estimated as ε/(ε1/3k

2/3
f ), is absent. The

isotropy is weakly broken by the presence of coherent flow, and
its influence can be characterized by the dimensionless param-
eter �/(ε1/3k

2/3
f ). One expects that the main contribution to

the average 〈uv〉 is linear in �. Adding the factor �/(ε1/3k
2/3
f )

to the above estimate, we find

〈uv〉 ∼ ε1/3�

k
4/3
f

. (14)

Of course, at r ∼ Ru, expression (14) becomes expression (9).
Substituting expression (14) into Eq. (7), one obtains

αU ∼ ε1/3

k
4/3
f

(
∂r + 2

r

)(
r∂r

U

r

)
. (15)

This expression implies a fast (exponential) decay of U at r >

Ru on a length ∼Ru. Thus, Ru can be treated as the coherent
vortex size, where the mean vorticity is much larger than its
typical value L−1√ε/α.

One can think about the case Ru 	 L. Then, as we
demonstrate further, a lot of vortices should appear, separated
by the distance ∼Ru. Therefore, even in the case Ru 	 L,
there is no region outside Ru where the mean flow profile is,
rigorously, isotropic. Thus the consideration of this subsection
is mainly qualitative. Nevertheless, the conclusion about fast
attenuation of � at r > Ru at the scale ∼Ru remains correct.
Note that at Ru 	 L, the mean vorticity at the border of the
universal region, ε1/2α−1/2R−1

u , is still much larger than the
typical mean vorticity in the hyperbolic region, ε1/2α−1/2L−1.
Therefore, a layer of the order Ru, where the vorticity
diminishes from ε1/2α−1/2R−1

u to ε1/2α−1/2L−1, does exist.

IV. HYPERBOLIC REGION

One can generalize the symmetry reasoning formulated
in Sec. III to the case of the hyperbolic region. For that
purpose, we introduce the curvilinear reference system related
to the Lagrangian trajectories of the mean velocity V . In the
reference system, the mean velocity has the only component
U (along the Lagrangian trajectories). Let us also introduce
components of the fluctuating velocity, u and v, longitudinal
and transverse to the Lagrangian trajectories. Clearly, inside
the coherent vortices the quantities pass to the ones introduced
previously.

In terms of the introduced variables, the Euler equation is
invariant under the transformation

t → −t, � → �, � → �, U,u → U,u, v → −v. (16)

In addition, one should change the sign of the coordinate along
the Lagrangian trajectories. Clearly, the transformation (16) is
a direct generalization of the transformation (6) (relevant for
the interior of the coherent vortices).

An invariance of the Euler equation and of the pumping
statistics under the transformation (16) means that the average
〈uv〉 or 〈u� 〉 is formed at the dissipation scale. Therefore, we
can use the same estimate (14) for the average 〈uv〉 for the
hyperbolic region as well. Substituting there � ∼ L−1√ε/α,
one obtains

〈u� 〉 ∼ √
εα

R2
u

L2
, (17)

where we exploited the fact that the characteristic scale of the
coherent flow is L.

Now we examine an equation for the coherent flow that can
be obtained by averaging the Navier-Stokes equation. In the
principal approximation, the mean velocity V should satisfy
Eq. (3). We designate its solution as V 0. Due to the dissipation
terms and the nonlinear term related to the flow fluctuations,
there is a correction V 1 to the velocity V 0 that satisfies the
following equation:

α�0 + (V 0∇)�1 + (V 1∇)�0 + ∇〈v� 〉 = 0. (18)

Here we omitted the dissipation term (that is irrelevant outside
the vortex cores), and we took into account that the average
force (exciting the turbulence) is equal to zero.

Multiplying Eq. (18) by �0 and integrating the result over
the whole box, one finds

α

∫
dS �2

0 −
∫

dS ∇�0〈v� 〉 = 0. (19)
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Here we utilized Eq. (3), V 0∇�0 = 0, the incompressibility
condition, and the boundary conditions. Relation (19) is correct
for both the periodic setup and the case of a box with zero
velocity at the boundaries. It is a manifestation of the existence
of a zero mode of Eq. (3) that can be obtained by multiplying
�0 (or V 0) by a constant. As it follows from Eq. (3), ∇�0 is
perpendicular to V 0. Therefore, one can rewrite Eq. (19) as

α

∫
dS �2

0 =
∫

dS|∇�0|〈v� 〉. (20)

It is satisfied in the main approximation in the fluctuation
weakness.

Now we can substitute into relation (20) the estimates �0 ∼
L−1√ε/α and |∇�0| ∼ L−2√ε/α. Then we conclude that the
relation cannot be satisfied if Ru 	 L. Therefore, we expect
that in the case Ru 	 L, a number of coherent vortices should
appear in the box separated by a distance ∼Ru. As far as we
can tell, that is the only way to overcome the discrepancy
associated with relation (20) and estimate (17).

V. CONCLUSION

We investigated analytically the coherent flow generated
by the inverse cascade in a restricted box consisting of a
number of vortices and a hyperbolic flow between them. The
mean velocity can be estimated as

√
ε/α (where ε is the

energy production rate and α is the bottom friction coefficient)
everywhere. In addition, the mean vorticity inside the vortices
is much larger than in the hyperbolic region, which can
be estimated as

√
ε/α/L. The flow inside the vortices is

complicated. It can be divided into the following regions: the
viscous core, the universal interval, and the outer region. In
the universal interval, the velocity fluctuations are passive and
the polar mean velocity of the flow is characterized by the flat
profile U = √

3ε/α.
We established the values of the viscous core radius Rc

(13) and of the vortex size Ru (12). Subsequent analysis
shows that the coherent vortex vorticity diminishes fast in
the outer region r > Ru; the characteristic length of this decay
is ∼Ru. Our analysis of the outer vortex region r > Ru is
based on symmetry reasoning. This reasoning is confirmed
by consistent calculations performed for the passive regime
realized at r < Ru. A relation between the box size L and the
vortex radius Ru can be arbitrary. The case Ru > L is realized
in the numerics [13] and experiments [14], and the vortex
is not clearly separated from the hyperbolic region. In this
case, the passive regime is realized everywhere. In contrast, in
numerics [15] the universal region is relatively small, Ru < L,
and is well separated from the hyperbolic region, where the
fluctuations are not completely passive.

In numerics [13,15], dealing with the periodic setup, two
coherent vortices were observed, while in experiments [14] a
few vortices were observed as well. In this case, the hyperbolic
coherent motion is characterized by a scale determined by
the box size L. Vortices are then placed in the stagnation
points of the hyperbolic flow (up to fluctuations). However,
in the limit Ru 	 L, we expect appearing a lot of vortices
with complicated hyperbolic flow between them; see Sec. IV.
These vortices will most likely arrange as a lattice. A natural
space structure for the lattice is a chessboard. (A similar lattice

was observed in [11].) However, other possibilities (say, the
hexagonal or the honeycomb structure) are not excluded.

We formulated conditions under which the coherent vor-
tices with the universal profile (11) appear in 2D turbulence
in a finite box. One of the conditions is that the viscous
(hyperviscous) dissipation at the pumping scale k−1

f should be

much weaker than the characteristic velocity gradient ε1/3k
2/3
f .

This condition was violated in early simulations [10–12] (to
extend the interval for the inverse cascade). If ε1/3k

2/3
f is of

the order of the viscous damping at the pumping scale, then
Ru ∼ Rc and the universal interval is absent. That is why the
universal profile (11) was not observed in the works.

Note also that the inverse energy cascade is observed for
surface solenoidal turbulence excited by waves caused by
Faraday instability [21,22]. It would be interesting to extend
our analysis to this case. This will be a subject of future
investigations.
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APPENDIX: PASSIVE REGIME

Here we investigate the passive regime of flow fluctuations
in the background of the coherent isotropic vortex character-
ized by the average polar velocity U (r). In this case, consistent
calculations can be done. As we already noted in the main
body of the paper, the passiveness implies inequality (8),
which guarantees the weakness of the interaction of the flow
fluctuations at all scales. Neglecting the nonlinear terms (which
are responsible for the interaction) in Eq. (5), one obtains the
linear equation for the fluctuating vorticity,

∂t� + (U/r)∂ϕ� + v∂r� = φ − �̂�. (A1)

Equation (A1) describes the dynamics of the flow fluctuations
in the background of the average (coherent) flow.

The dissipation in Eq. (A1) (the last term in the equation)
is caused by both the bottom friction and the viscosity (or,
in numerics, by the hyperviscosity). Therefore, in a Fourier
representation the operator �̂ can be written as

�(k) = α + γ (k/kf )2p, (A2)

where k is a wave vector and kf is the characteristic wave
vector of the pumping force. For the viscosity p = 1, while
for the hyperviscosity p > 1. Due to the inequalities (1) and
(8), the inequality � � α,γ is satisfied, where � is the local
shear rate of the coherent flow defined by Eq. (10).

Below we assume the inequality kf r � 1. As we explained
in the main body of the paper, in the whole region of the
existence of the universal profile (11), Rc < r < Ru, the
condition kf r � 1 is guaranteed by the inequality α 	 γ .
The smallness of the pumping scale k−1

f in comparison with
the radius r enables one to proceed to the shear approximation
for the vorticity fluctuations, which is correct in leading order
in (kf r)−1. The effective shear rate is determined by Eq. (10).

Let us consider the fluctuation dynamics near a circle of
radius r0. Passing to the reference system rotating with angular
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velocity �0 (corresponding to the radius r0), one finds from
Eq. (A1) in leading order

∂t� + �x1
∂�

∂x2
+ �̂� = φ, (A3)

where � is taken at r = r0, x1 = r − r0 is the radial coordi-
nate, and x2 = r0ϕ is the angular coordinate. Equation (A3)
describes the passive evolution of the flow fluctuations in the
shear flow with the shear rate �.

Equation (A3) leads to the homogeneous statistical proper-
ties of the flow fluctuations in the space (x1,x2). Therefore, it
is worthwhile to perform a Fourier transform over x1 and x2.
Rewriting the evolution equation (A3) for the spatial Fourier
component of the vorticity �k, one obtains

∂t�k − �k2∂�k/∂k1 + �(k)�k = φk. (A4)

A formal solution of Eq. (A4) is written as

�k(t) =
∫ t

dτ φ[τ,k1 + (t − τ )�k2,k2]

× exp

{
−

∫ t

τ

dτ ′�
(√

[k1 + (t − τ ′)�k2]2 + k2
2

)}
,

(A5)

where the integral is taken over the time interval where the
pumping is switched on.

Furthermore, we assume that the pumping is shortly
correlated in time. Therefore, it is characterized by the pair
correlation function that can be written as

〈φk(t)φq(t ′)〉 = 2(2π )2εδ(k + q)δ(t − t ′)k2χ (k) (A6)

in the Fourier representation. The function χ (k) is concen-
trated in the vicinity of kf , and it has to be normalized as

∫
d2k

(2π )2
χ (k) = 1 (A7)

to provide the energy pumping rate ε. We also assume isotropy
of pumping. In other words, the function χ (k) depends solely
on k, i.e., the absolute value of k.

One finds directly from expressions (A5) and (A6) the
simultaneous pair correlation function of the vorticity,

〈�k(t)�q(t)〉
= 2(2π )2εδ(k + q)

×
∫ T

0
dτ

[
(k1 + �τk2)2 + k2

2

]
χ (k1 + �τk2,k2)

× exp

{
−2

∫ τ

0
dτ ′ �

(√
[k1 + �τ ′k2]2 + k2

2

)}
, (A8)

where T is the duration of the period before t when the
pumping was switched on. In the stationary case, one should
take the limit T → ∞. We are interested only in this stationary
case.

Using the relation vαk = iεαβ(kβ/k2)�k, we can calcu-
late the correlation functions of the velocity fluctuations in
the Fourier representation. Performing the inverse Fourier
transform, we find the velocity correlation function. Below,

we concentrate on the single-point correlation function 〈uv〉,
which is written as

〈uv〉 = −2ε

∫ T

0
dτ

∫
d2k

(2π )2

k1k2(
k2

1 + k2
2

)2

×[
(k1 + �τk2)2 + k2

2

]
χ (k1 + �τk2,k2)

× exp

{
−2

∫ τ

0
dτ ′ �

(√
[k1 + �τ ′k2]2 + k2

2

)}
.

(A9)

Furthermore, we proceed to the variable q = (k1 + �τk2,k2).
We first consider the case �(k) = 0. Then the passive

equation (A1) is invariant under the transformation (6) as well
as the complete equation (5). That is why the integral

−2ε

∫ T

0
dτ

∫
d2q q2χ (q)

(2π )2

(q1 − �τq2)q2[
(q1 − �τq2)2 + q2

2

]2 , (A10)

determining 〈uv〉 at � = 0, is zero at any finite T . Indeed, the
average 〈uv〉 changes its sign at the transformation (6) and
should be equal to zero at � = 0. Introducing a finite � breaks
the symmetry and makes the average 〈uv〉 nonzero.

Furthermore, we analyze the stationary case (implying � =
0), and we take the limit T → ∞. Passing to the variable
q = (k1 + �τk2,k2) and taking an integral in part, one finds
from Eq. (A9)

〈uv〉 ≡ 〈v1v2〉 = ε

�
(1 − Q), (A11)

where Q is defined as

Q = 2
∫ ∞

0
dτ

∫
d2q q2χ (q)

(2π )2

�
(√

(q1 − �τq2)2 + q2
2

)
(q1 − �τq2)2 + q2

2

× exp

[
−2

∫ τ

0
dτ ′ �

(√
(q1 − �τ ′q2)2 + q2

2

)]
. (A12)

This expression is a starting point of subsequent analysis.
Let us analyze the case in which the viscosity (hypervis-

cosity) is stronger than the bottom friction at the pumping
scale k−1

f , γ � α. Then α can be neglected in the expression
(A12) and we stay with �(k) = γ (k/kf )2p. An inspection of
expression (A12) shows that for p > 1/2, both q1 and q2 are
of the order of kf . The estimate implies that χ (q) decreases
fast enough as q grows. There is a potentially dominant
contribution to the value of Q from the region q2 	 kf .
However, at p > 1/2 the contribution gained from small q2

is smaller than that gained from q2 ∼ kf . If q1,q2 ∼ kf , then
for a characteristic τ the inequality �τ � 1 is satisfied. Then
we easily obtain the estimate

Q ∼
(

γ

�

)2/(2p+1)

	 1. (A13)

Thus, we arrive at the conclusion that if viscosity (or
hyperviscosity) dominates over α at the pumping scale k−1

f ,
then Q 	 1 in the passive regime. Therefore, expression (A11)
leads to expression (9).

Note that the characteristic time τ0 in expression (A9)
or in expression (A12) is determined by the condition
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τ0�(kf �τ0) ∼ 1, that is, γ τ0(�τ0)2p ∼ 1. The relation de-
termines the characteristic time that is needed to enhance (by
the influence of the coherent flow) the wave vector q from the
initial value ∼kf to the value ∼τ0�kf . The enhancement is
caused by the deformation of the flow fluctuations (produced
by pumping) in the coherent shear flow. At τ ∼ τ0, dissipation
comes into play and stops the flow fluctuations. We conclude
that the main contribution to the average 〈uv〉 is determined by
small scales (large wave vectors) where dissipation is relevant.
This conclusion is in accordance with our symmetry arguments
based on transformation (6).

It is instructive to consider the case � = α, that is, γ =
0. In this case, Q = 1. This can be explicitly obtained from
expression (A12) after integrating over the polar angle in q

space and using condition (A7). Let us stress that this property
exploits the isotropy of the pumping statistics, that is, the
assumption that χ is a function of the absolute value of q.
Thus, in this case 〈uv〉 = 0. Therefore, although the bottom
friction breaks the symmetry under the transformation (6), it
cannot produce a nonzero value of 〈uv〉 = 0. One expects that
at α � γ , the difference 1 − Q is small in the parameter γ /α.
Therefore, expression (9) is not correct, and some additional
analysis is needed that is beyond the scope of our work.

Let us consider in more detail the mean velocity inside the
viscous core. We start from Eq. (4), where expression (9) has
to be substituted. Furthermore, we assume that Rc is larger
than the pumping scale k−1

f , kf Rc � 1, and we analyze the

region kf r � 1, where

〈v� 〉 =
(

∂r + 2

r

)
ε

r∂r (U/r)
. (A14)

Then the mean profile can be written as

U (r) =
√

ε

α
f

(
r

Rc

)
. (A15)

Equation (4) is then reduced to an equation for the dimension-
less function f (ρ):

f ′′ + 1

ρ
+

(
1 − 1

ρ2

)
+

(
∂ρ + 2

ρ

)
1

f ′ − f/ρ
= 0. (A16)

The boundary conditions for Eq. (A16) are an absence of
singularity at ρ → 0 and the asymptotic behavior f → √

3 at
ρ → ∞.

One can find an expansion of the function f (ρ) at small ρ,
that is,

f (ρ) = Aρ + Bρ3 + Cρ7 + · · · , (A17)

where the fifth-order term is absent. The factor C and
coefficients at higher terms are expressed via A and B, say,
C = B2(2B + A)/6. To establish the coefficients A and B, one
should impose two conditions: an absence of an exponentially
growing contribution to f at large ρ, and matching to the
region ρ � kf Rc where Eq. (A16) has to be modified. This
situation is typical of a boundary layer.
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