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Dynamics of double membrane films is investigated in the long-wavelength limitqh!1 ~q is the
wave vector, andh is the thickness of the film! including the overdamped squeezing mode.
We demonstrate that thermal fluctuations essentially modify the character of the mode due to its
nonlinear coupling to the transverse shear hydrodynamic mode. The renormalization can be
analyzed if the conditiong!1 is satisfied~where g;T/k, T is the temperature, andk is the
bending modulus!. The corresponding Green’s function acquires as a function of the
frequencyv a cut along the imaginary semiaxis. Atqh.Ag the effective length of the cut is
;Tq3/h ~whereh is the shear viscosity of the liquid!. At qh,Ag the fluctuations lead
to an increase in the attenuation of the squeezing mode: it is larger than the ‘bare’ value by a
factor 1/Ag. We also present the analysis of the elastic modes. ©1998 American
Institute of Physics.@S1063-7761~98!01406-1#
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1. INTRODUCTION

The most distinctive property of amphiphilic molecul
is their ability to spontaneously self-assemble into aggreg
of various shapes. Typically, the molecules spontaneo
self-assemble into membranes which are bilayers of a th
ness of the order of a molecular length. Different lyotrop
structures consisting of these membranes have gene
considerable current interest~see Refs. 1–3 and review
articles4–6!. Films composed of two bilayer membranes san
wiching a thin layer of a liquid are widely used in the lyo
tropic systems. They play also an essential role in vari
biological processes~note the so-called flickering phenom
ena in erythrocytes or red blood cells!. In this paper we will
examine the dynamic properties of such double membr
films.

The main peculiarity of a membrane is its negligib
surface tension. The membrane is immersed into a liquid
consequently its area can vary. Zero surface tension is
equilibrium condition with respect to the variations. In th
case the shape fluctuations of the membrane are determ
by the bending elasticity; the corresponding energy is7,8

Hcurv5
k

2 E dAS 1

R1
1

1

R2
D 2

, ~1!

where the integral is taken over the membrane which is c
sidered as a two-dimensional object,R1 andR2 are its local
curvature radii, andk is the bending rigidity modulus. Cor
rugations of the membrane induced by the thermal noise
1141063-7761/98/86(6)/7/$15.00
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to the loss of the orientation correlation of the membra
pieces at separations larger than the so-called persis
length9 jp, which is estimated to be

jp;a exp~2pk/T!,

where T is the temperature, anda is the thickness of the
membrane. The shape fluctuations of the membrane lea
the logarithmic renormalization of the bending modulusk,
which was examined first by Helfrich10 and later by
Förster.11 The correct renormalization-group~RG! equation
was derived by Peliti and Liebler,12 Kleinert,13 and
Polyakov.14 The explicit form of the one-loop RG equation

dk

dj
52

3T

4p
.

Herej5 ln(r/a), andr is the characteristic scale. As follow
from the equation, the role of the dimensionless coupl
constant is played by the quantity

g5
3T

4pk
. ~2!

Note that ln(jp /a);g21. For real membranesg;1022–
1023 and, consequently, we can treatg as a small parameter
The smallness ofg means that there exists a wide range
scalesr ,jp where the thermal fluctuations can be treated
the framework of the perturbation theory.

Below we consider a double membrane film. We assu
that at equilibrium the film is parallel to thexy plane. Cor-
rugations of the membranes in a double film can be dec
posed into undulation~or bending! deformations and squeez
9 © 1998 American Institute of Physics
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1150 JETP 86 (6), June 1998 Kats et al.
ing deformations. The bending deformations are cha
cterized by the displacementu of the film as a whole from its
equilibrium position along thez axis and the squeezing de
formation is characterized by variations of the film thickne
h ~which is the separation between the membranes!. In the
harmonic approximation we obtain from~1! the energy

H5E dx dyFk~¹2u!21
k

4
~¹2h!2G , ~3!

whereu andh are treated as functions ofx andy, and¹ is the
two-dimensional gradient.

In deriving ~3! we disregarded the interaction betwe
the membranes. First, one should remember the steric in
action, which is associated with a certain restriction of
cessible configurations for one membrane in the presenc
the second membrane.8 The explicit expression for the en
ergy is15

Hster5E dx dy
3p2T2

128kh2 . ~4!

Due to the interaction~4! two membranes can be treate
independently only on scales smaller thang21/2h. Therefore
~3! is the main contribution to the energy if

qh.Ag, ~5!

whereq is the characteristic wave vector. Second, we sho
take into account the van der Waals interaction. We ass
that the same liquid is inside and outside the film. We c
then write the van der Waals energy as16

Hvdw5E dx dy
Ha2

2ph4 , ~6!

where H is the Hamaker constant. We can disregard t
energy, in contrast with~3!, if

~qh!4.
H

k S a

hD 2

.

Let us assume that the thickness of the film is large eno
to satisfy the inequality

g2.
H

k S a

hD 2

.

Then ~5! is the only restriction that enables us to treat t
energy~3! as the main contribution to the film energy.

2. DYNAMICS

We will examine the dynamics of the double membra
film in the long-wavelength limitqh!1, where q is the
wave vector of the eigenmodes of the film. Note that
inequality qh!1 is compatible with~5! sinceg!1. In the
limit qh!1 we should take into account the following var
ables which describe the dynamics: the velocity of the filmv,
the displacement of the filmu, the film thicknessh, and the
densities of the two membranes since they are conse
quantities. We are interested mainly in the squeezing mo
which is associated with the relaxation of the thicknessh.
-
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To find dynamical characteristics of the film one shou
solve the conventional hydrodynamic equations in b
supplemented by boundary conditions on both membra
In the linear approximation the problem was solved by B
chard and Lennon,17 who found the dispersion relation of th
squeezing mode

v52 i
kh0

3q6

24h
, ~7!

wherev is the frequency of the mode,h0 is the equilibrium
separation between the membranes, andh is the viscosity of
the liquid surrounding the membranes. In deriving~7! it was
assumed that at equilibrium the film is flat. The dispers
relation

v52 i
kq3

2h
~8!

of the bending mode was also found in the linear appro
mation. Note that the dispersion relation~7! is correct only if
one neglects the direct interaction of the membranes u
satisfaction of the condition~5!, whereas the region of appli
cability of the dispersion relation~8! does not depend on th
interaction of the membranes, since they move in-phas
the bending mode. The elastic modes associated with va
tions of the membrane densities are harder than~7! and~8!.18

Therefore the only effect of the elastic degrees of freed
upon examination of the squeezing mode is the incompr
ibility condition

¹ava50. ~9!

Here and below we believe that all variables characteriz
the film are functions ofx and y and we assume that th
Greek subscripts run overx andy.

We will consider the renormalization of the dispersio
law ~7! of the squeezing mode due to fluctuational effec
Nonlinear dynamical equations of the film should be utiliz
for this purpose. In the long-wavelength limitqh0!1 the
equations can be derived phenomenologically. The reac
~nondissipative! part of the equations can be found by usi
the Poisson brackets method~see Ref. 19 and also Ref. 18!,
whereas the dissipative part of the equations is expresse
terms of the kinetic coefficients. One should know the e
pression for the energyH of the system to write both con
tributions. Actually, we will need the expression for on
Poisson bracket:

$ j a~x1 ,y1!,h~x2 ,y2!%5h~x1 ,y1!¹a@d~x12x2!d~y12y2!#,
~10!

where j a is the two-dimensional momentum density of th
film. The expression~10! ~which is characteristic of two-
dimensional density of any conserved scalar quantity o
film18! is motivated by the fact that the two-dimension
mass density of the film isrh, where r is the three-
dimensional density of the liquid. Note thatj a'rhva since
we believe that the membrane thicknessa can be ignored in
comparison with the film thicknessh.

The dynamic equation for the thicknessh has the stan-
dard form following from~10!
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1151JETP 86 (6), June 1998 Kats et al.
] th1¹a~vah!5G¹2
dH

dh
, ~11!

where] t[]/]t, andG is the kinetic coefficient. The secon
power of the gradient appears in~11! since the equation
should support the conservation law of the liquid inside
film and therefore the right-hand side of the equation sho
be a full derivative at anyH. Due to~9! the second term on
the left-hand side of~11! describes the sweeping ofh by the
velocity va . In the linear approximation we can ignore th
sweeping term. Substituting the harmonic expression~3! for
the energyH into ~11! and comparing the result with~7!, we
obtain

G5h0
3/12h. ~12!

Note thatG is inversely proportional to the shear viscos
coefficient. The point is that the dissipation described byG
comes from viscous motion of the liquid surrounding t
double membrane film which is excited only slightly at lar
h.

The dynamic equation forj a has the form21

] t j a2$H, j a%5Ja , ~13!

where J is the momentum flow from the bulk to the film
Since this term supplies the main dissipation of the film m
mentum, we ignored the internal viscosity. The Poiss
bracket$H, j a% can be reduced to the divergence of the sy
metric stress tensor for any energyH.18 Actually, only the
contribution associated with the Poisson bracket~10! and
created by the harmonic energy~3! is relevant for us. We can
then write Eq.~13! in the form

] t j a1
k

2
h¹a¹4h1¹aPs5Ja , ~14!

wherePs is the two-dimensional pressure, which is related
the elastic degrees of freedom~see the Appendix!. In the
linear approximation relevant for us we can write21

Ja522hq̂va , ~15!

whereq̂ is the nonlocal operator, which is reduced to mu
plying by the absolute value of the wave vectorq in the
Fourier representation. The expression~15! implies the in-
equality v!hq2/r, which is satisfied for the squeezin
mode.

We will not present here dynamical equations for t
variables j z and u and for the densities of the membrane
The reason is that the equations forj z andu, which describe
the bending mode, decouple in the approximation used f
Eqs. ~11! and ~14!. Actually, the equations describing th
bending motion of the double film are the same as fo
single membrane and the corresponding nonlinear equa
can be found in Ref. 18 and also in Refs. 20 and 21. O
should remember only that the bending modulus of
double film is 2k, as follows from~3!. As to the equations
for the densities of the membranes, they need a sepa
analysis, which is presented in the Appendix. The only r
of the degrees of freedom in analyzing the squeezing m
reduces to the incompressibility condition~9!.
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3. RENORMALIZATION OF THE SQUEEZING MODE

As can be seen from~7!, in the long-wavelength limit
the squeezing mode is very soft. This is the reason why
anticipates that fluctuational effects which are related to
mode are relevant. The effects are associated with the n
linear terms in the dynamic equations and can be exam
in terms of the diagrammatic technique of the first ty
which was developed by Wyld,22 who studied the velocity
fluctuations in a turbulent fluid. In Ref. 23 the Wyld tec
nique was generalized for a broad class of dynamical s
tems. A textbook description of the diagram technique c
be found in the book by Ma.24 The diagram technique can b
formulated in terms of path integrals, as was first sugges
by de Dominicis25 and Janssen.26 In the framework of this
approach apart from conventional dynamic variables o
should also introduce auxiliary fields conjugated to the va
ables. The dynamic correlation functions of the variables
then be presented as functional integrals over both type
fields: conventional and auxiliary. The integrals are tak
with the weight exp(iI ), where I is the effective action
which is constructed on the basis of nonlinear dynamic eq
tions of the system.

Since we are interested in the renormalization of
squeezing mode of the double membrane film, we will ta
into account only the variablesh andva and the correspond
ing auxiliary conjugated fieldsp and ma . We should also
remember the incompressibility condition~9! and impose an
analogous constraint¹ama50 on the fieldma . We can then
write the correlation function of the film thicknessh in the
form

^h1h2&5E DhDvtrDpDm tr exp~ i I !h1h2 , ~16!

where the subscript ‘‘tr’’ implies that in the Fourier repre-
sentation we should use only the components of the fieldv
and m, which are transverse to the wave vectorq. The ex-
plicit expression for the effective action in~16! can be found
by using the dynamic equations~11! and ~14!. It can be
written as the sum of the reactive part and the dissipative
I 5I reac1I diss, where

I reac5E dt d2r H p] th1pva¹ah

1ma] t j a2
k

2
ma¹4h¹ahJ , ~17!

I diss5E dt d2r H 2
1

2
Gkp¹6h

1 iTG~¹p!212hmq̂~v1 iTm!J . ~18!

The detailed derivation of the effective action for the pro
lem can be found in Refs. 20 and 21.

We introduce the notation for the pair correlation fun
tions. Taking into account only the transverse component
the fieldsv andm, we can write
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1152 JETP 86 (6), June 1998 Kats et al.
^h~ t,r !p~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !G~v,q!,

^va~ t,r !mb~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !

3Fdab2
qaqb

q2 GGtr~v,q!, ~19!

^h~ t,r !h~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !D~v,q!,

^va~ t,r !vb~0,0!&5E dv d2q

~2p!3 exp~2 ivt1 iqr !

3Fdab2
qaqb

q2 GDtr~v,q!. ~20!

The correlation functionŝpp& and ^mm& are equal to zero
~for the general property of the technique, see, e.g., Ref.!.
The functionsD andDtr determine the pair correlation func
tions of the observable quantities and the functionsG and
Gtr are the response functions. Therefore, the functionG(v)
is analytic in the upperv half-plane.

It is possible to formulate the diagram technique for c
culating the correlation functions~19! and ~20!. The har-
monic part of the effective actionI 5I reac1I diss deter-
mines the bare values of the response functions

G0~v,q!52
1

v1 iGkq6/2
, Gtr ,0~v,q!52

1

rhv12ihq
.

~21!

The values of the ‘bare’ pair correlation functions satisfy t
relations

Im G5
kq4

4T
D, Im Gtr5

1

2T
Dtr , ~22!

which are the consequences of the fluctuation-dissipa
theorem. In addition to the harmonic part, the effective
tion I contains terms of the third order, which determine t
third-order vertices which figure on the diagrams represe
ing the perturbation series for the correlation functions~19!
and ~20!. One can check the relations~22! order by order.
Consequently, these relations are valid for the ‘‘dresse
correlation functions~19! and ~20!. Note that the relation

E dv

2p
D~v,q!5

2T

kq4 , ~23!

which can be proved by using~22!, the analyticity ofG(v)
in the upper half-plane, and the asymptotic lawG(v)
'2v21, which is correct for largev. Actually, ~23! is a
direct consequence of~3!, since the integral over frequencie
is just the simultaneous correlation function.

Analysis of the diagrams shows that they contain inf
red logarithms, which are related to the lines representing
correlation functionD in Eq. ~20!. The lines produce the
factors

~¹ah~ t,r !¹bh~ t,0!!5
TL

2pk
dab , ~24!
-

n
-

e
t-

’’

-
e

whereL5 ln@hg21/2/r #, and r 21 is determined by the char
acteristic external wave vector of the diagram. The expr
sion ~24! can be found from~23! if one recalls condition~5!.
The presence of the logarithmic contributions implies th
the main renormalization of a correlation function lik
G(v,q) is produced by the degrees of freedom with t
wave vectors much smaller thanq. Therefore, we should
extract from the diagrammatic expressions forG(v,q) only
the contributions corresponding to the interaction with t
degrees of freedom.

The program can be realized directly in using the la
guage of the functional integral. Let us separate the varia
h, p, v, andm into fast parts~with wave vectors larger than
q!, basic parts~with wave vectors of the order ofq!, and slow
parts ~with wave vectors smaller thanq!. In calculating
G(v,q) we can forget about the fast parts and keep the
teraction of the basic part with the slow part. We then obt
the following expression from~17! and ~18!:

I 5E dt d2r H p] th1pvama1ma] t j a

2
k

2
ma¹4hma2G

k

2
p¹6h12hmq̂vJ 1..., ~25!

whereh, p, v, andm denote the basic parts of the fields,ma

is the gradient of the slow part ofh, and the dots designat
the irrelevant terms. The action~25! is of the second orde
over h, p, v, andm and, consequently, the integrals over t
fields can be taken explicitly. Sincem varies only weakly
along the lengthq21, we obtain

G~v,q!52^~rhv12ihq!D21&m , ~26!

Gtr~v,q!52^~v1 ikGq6/2!D21&m , ~27!

D5~rhv12ihq!~v1 ikGq6/2!2kq4mtr
2 /2, ~28!

where

mtr
2 5S dab2

qaqb

q2 Dmamb ,

and the notation̂...&m means averaging over the statistics
m. In calculating~26! and ~27! we substitutedj5rhv. Ac-
tually, the terms withrh can be and we omit them below.

In averaging~26! and ~27! we can assume that the st
tistics of m are Gaussian. The point is that only the simul
neous correlation functions ofm enter the expressions. Thes
functions are described by the harmonic energy~3!. The pair
correlation function ofm is equal to~24!. Therefore,

^mtr
2 &5

TL

2pk
,

and we find from~26!

G~v,q!52E
2`

` d§

A2p
exp~2§2/2!

3S v1 i
kG

2
q61 i

TL

8ph
q3§2D 21

. ~29!
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1153JETP 86 (6), June 1998 Kats et al.
We see thatG as a function of the frequencyv has the cut
along the imaginary semiaxis, which starts fro
v52 iGkq6/2 and goes to2 i`. The effective length of the
cut can be estimated asTq3/h, which is the new character
istic frequency associated with the fluctuations. Let us co
pare the frequency with the position of the pole in the b
expression:

Tq3/h

Gkq6 ;
g

~qh0!3 . ~30!

We conclude that the fluctuation effects dominate in the
gion g1/2,qh0,g1/3. We can now justify the disregard o
rhv in comparison withhq in the above expressions. Whe
qh;1,

rh0v/hq;rk/h2h0;a/h0!1,

and atqh0;Ag

rh0v/hq;rkg2/h2h0!1.

Performing Fourier transform of~29! over frequencies,
we obtain

G~ t,q!5 i S 11
TL

4ph
q3t D 21/2

expH 2
k

2
Gq6t. ~31!

The expression~31! is correct for a positive timet. For nega-
tive timesG(t)50 due to the causality principle sinceG is
the response function. We see from~31! that in the fluctua-
tion region g1/2,qh,g1/3 there appears an intermedia
power asymptoticst21/2, which at large timest is changed
by the exponential decay. This means that the squee
mode is described by a dynamic equation, which is nonlo
in time.

The above assertion is correct for the wave vect
q*Ag/h0 . In the limit qh0!Ag we return to the local equa
tion ~11! but with the renormalized kinetic coefficientG̃. The
quantity can be found by integrating the weight exp(iI ) over
the degrees of freedom with the wave vectorsq*Ag/h0 .
The main effect is attributed to the sweeping term in
effective action~17!. Because of the integration over the d
grees of freedom with the wave vectorsq*Ag/h, the term
iTG(¹p)2 in ~18! for the long-wavelength degrees of fre
dom is renormalized. We find for the renormalized value

Ḡ2G5
1

4T E dt d2r ^v~ t,r !h~ t,r !v~0,0!h~0,0!&, ~32!

where averaging is performed over the degrees of freed
with the wave vectorsq*Ag/h0 . Using the renormalized
expressions for the correlation functions, we obtain the e
mateG̃;g21/2G@G.

4. CONCLUSIONS

We demonstrated that fluctuations essentially modify
character of the squeezing mode due to its nonlinear c
pling with transverse shear hydrodynamic mode. The fl
tuation effects lead to nonlocality of the equation for t
mode; the corresponding Green’s function is~31!. The new
characteristic frequency of the mode related to the fluct
tions isv;Tq3/h ~q is the wave vector!; remarkably, it does
-
e
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e
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e
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not depend on the bending elasticity. It is important to d
tinguish the characteristic frequency from the attenuation
the membrane bending mode~8!, which has the sameq3

dependence on the wave vector. We stress that the st
fluctuation effects are observed only for dynamics. The st
characteristics are not influenced by fluctuations becaus
the smallness of the coupling constant~2!. This is the reason
why we need only the harmonic part of the energy~3!.

Strong dynamic fluctuations ofh occur for the wave vec-
torsq*Ag/h. For smaller wave vectors the fluctuations ofh
are weak. Nevertheless, even for the wave vectors there
memory of the region of strong fluctuations, which is t
renormalized value of the kinetic coefficientG in Eq. ~11!:
The bare value~12! is substituted byG̃;g21/2G@G. Note
also that to analyze the dispersion relation of the squee
mode in the limitq!Ag/h starting from~11! we should take
into account in addition to the energy~5!, the steric contri-
bution ~4! and the van der Waals~6! contribution to the
energy. As a result, we find

v52 i G̃q2S 9p2T2

64kh4 1
10Ha2

ph6 D .

Let us discuss the possibility of checking our predictio
experimentally. The membranes can be studied by a var
of experimental techniques. Lately, laser «tweezers» h
become a useful tool for probing dynamical properties
membranes. This technique enables us to obtain direct in
mation about amplitudes and characteristic times of dyna
cal fluctuations of different objects consisting of membran
For details see the monography27 and recent experi-
ments.29–31 We can also mention force apparatus measu
ments,28 which make it possible to investigate dynamical r
sponse for two very thin lamellar systems confined betw
the walls, and the classical light-scattering experiments.
cause of relaxation of the membrane fluctuations, the s
tered light has a broadened spectral distribution compare
the incident light. Despite the small broadening, the mod
technique of light beating~intensity fluctuation spectros
copy! allows one to obtain information about eigenmodes
the system.

The conclusions concerning the renormalization of
squeezing mode, in our opinion, are interesting, both in th
own right and as a new test of the membrane fluctuation

The research described in this publication was made p
sible in part by Russian Fund for Fundamental Resea
grants. One of the authors~E.K.! thanks Max Planck Institute
for Physics of Complex Systems~Dresden! for supporting
his stay at this institute.

APPENDIX

Elastic modes

Here we consider the elastic modes associated with
relaxation of the surface density of molecules that comp
the two membranes of a double film. To find the dispers
relation for the modes we should start from the elastic ene
associated with the variations of the surface density of m
eculesns . In the harmonic approximation the elastic ener
of a single membrane is21
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Hel5
1

2 E dAB§2. ~A1!

Here

§5~ns2n0!/n0 ,

wherens2n0 is the deviation of the surface density of mo
eculesns from its equilibrium valuen0 , and the coefficientB
has the meaning of the inverse compressibility of the me
brane. The elastic energy is the sum of terms~A1! for both
membranes that constitute the double film.

Let us consider the elastic modes in the linear appro
mation. We assume that at equilibrium the membranes li
the planesz56h0/2. The deviations of the membranes fro
the positions can then be characterized by their displa
mentsu1,2 along thez axis. To find the dispersion relation
for the modes one should solve conventional hydrodyna
bulk equations supplemented by boundary conditions at
membranes. As we will see, the frequencies of the ela
modes are small compared to sound frequency. Co
quently, we can use the convential linearized equations
an incompressible liquid,32

¹kvk50, S h

r
¹22]t D vk5

¹kP

r
, ~A2!

wherek5x,y,z. Since the membranes are immersed into
liquid, they move with the velocity of the liquid which i
continuous near the membranes. The boundary condit
for Eqs.~A2! for a membrane can be found in Refs. 20 a
21. In the linear approximation they are

rs] tvz 1,21k¹a
4u1,252 bPc1,2, ~A3!

] tu1,25vz 1,2, ~A4!

rs] tva 1,21B¹a§1,25h b¹zvac1,2, ~A5!

] t§1,21¹ava 1,250, ~A6!

where the ‘‘floors’’ designate a jump at the membranes,rs is
the two-dimensional mass density of amphiphilic molecul
and subscripts 1 and 2 numerate the membranes. The t
with rs in Eqs.~A3! and ~A5! are negligible.

Now, we will solve Eqs.~A2! with the boundary condi-
tions ~A3!–~A6! under the assumption that all variables a
proportional to exp(2ivt1iqx), where v is the frequency,
andq is the wave vector.

The velocity of the liquid is divided into two parts: po
tential and solenoidal. The potential component is related
the pressure which obeys the equation

~¹z
22q2!P50.

The solenoidal component is described by the equation

2 irwv5h~¹z
22q2!v.

Thus we can explicitly write the solutions of the equatio
inside and outside the film in terms of the velocity of t
membranes. The expressions are slightly different for
symmetric (§15§2) and the antisymmetric (§152§2) cases.
Using the solutions in bulk, we can express the jumps in E
~A3! and~A5! in terms ofvx andvz on the membranes. As
-

i-
in

e-

ic
e

ic
e-
or

e

ns

,
ms

to

e

s.

result, we find a linear system forvx and vz . We can then
write the condition for the existence of nontrivial solutions
the system, which for the symmetric case in the simplifi
form is

V2S coth
Vqh0

2
2coth

qh0

2 D 2

2FV21~V1b!

3S V coth
Vqh0

2
2coth

qh0

2 D G
3FV coth

qh0

2
coth

Vqh0

2

1S V coth
Vqh0

2
2coth

qh0

2 D G50. ~A7!

Here we introduce the notation

V5A2 i
vr

hq2, b5 i
Bq

hv
,

and suggest that in the case of elastic modes one deals
the frequencyv@hq2/r. For the antisymmetric case th
condition can be obtained from~A7! by substituting coth
→tanh.

It is difficult to find the dispersion relations from~A7!
and the analogous equation for the antisymmetric case
general situation. Below we consider two different limitin
cases and assume that

h2

Bph0
!1, ~A8!

which is natural sinceh0 is much larger than the molecula
length for real films. First, we consider the short-wavelen
limit

qh0@S h2

Brh0
D 1/2

. ~A9!

We then obtain the same dispersion relation as for the ela
mode of a single membrane33,21

v5
6)2 i

2 S B2

4hr D 1/3

q4/3. ~A10!

This means that the thickness of layers near the membra
where the hydrodynamic motion occurs, is much less thanh0

and, consequently, the membranes can be assumed t
nearly independent in this case. Note that due to~A8!, the
condition ~A9! is compatible withqh0!1, where the mem-
branes cannot be regarded as independent in conside
say, the squeezing mode. Therefore, one should be car
under the condition~A9! the membranes can be treated
nearly independent only in examining the elastic modes
the opposite long-wavelength limit,

qh0!S h2

Brh0
D 1/2

, ~A11!

we deal with two different dispersion relations. In the sym
metric case the dispersion relation is
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2 S B2

hr D 1/3

q4/3. ~A12!

This is the same dispersion relation as~A10! but with the
doubled membrane elasticity, which is natural for the dou
film. In the antisymmetric case the dispersion relation is

v52 i
Bq2h0

2h
. ~A13!

Thus we encounter a simple diffusion.
The dispersion laws~A10!, ~A12!, and~A13! show that

the frequencies of the elastic modes are small in compar
with the sound frequencycq ~wherec is the sound velocity!,
which justifies our using the incompressible hydrodynam
equations~A2!. Note also that for the mode~A13! the con-
dition ~A8! ensures the inequalityv@hq2/r, which was
suggested in the derivation of the relation~A7! ~the inequal-
ity enables us to disregard the potential part of the veloci!.
Thus, the condition~A8! makes our scheme self-consisten

In the long-wavelength limit the double membrane fi
can be treated as an effective single membrane. This e
tive membrane should be framed by hydrodynamic variab
which give the information about the ‘‘microscopic’’ con
struction of the double membrane film. In other words, o
should incorporate into the set of ‘‘macroscopic’’ variabl
the surface densities~described by§1 and§2) of molecules,
which comprise the two membranes, and the tw
dimensional mass densityrh of the liquid between the mem
branes. The dynamic equation for the variable has been
rived in the main text of this paper@see Eq.~11!#. The
phenomenological dynamic equations for§1 and §2 can be
derived in the same manner as the Poisson brackets fo
density of any conserved scalar quantity, the same struc
of the Poisson bracket as~10!.18 In terms of the variables
§15(§11§2)/2 and§25§12§2 the equations are

] t§152¹a@~11§1!va#1D1¹2§1 , ~A14!

] t§252¹a~§2va!1D2¹2§2 . ~A15!

Here we discarded the bending motion. The system of eq
tions ~A14! and ~A15! should be supplemented by Eq.~14!
in the main text of the paper, where

Ps52B§1 . ~A16!

In analyzing the elastic degrees of freedom we should use
following expression for the momentum flow from the bul

Ja522Aihrv̂va , ~A17!

where the velocityva is implied to be longitudinal, since jus
the longitudinal component of the velocity is involved in th
elastic motion. We stress that the expression~A17! is correct
if v@hq2/r, in contrast with the applicability condition o
~15!.

Linearizing the system of equations~14!, ~A14!, and
~A15! ~and ignoring the squeezing degrees of freedom!, we
find the dispersion relations~A12! and v52 iD 2q2. The
term with D1 in ~A14! appears to be irrelevant. Comparin
the dispersion relationv52 iD 2q2 with ~A13!, we obtain

D25Bh0/2h. ~A18!
e

on

c

c-
s,

e

-

e-

he
re
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he

It can then be verified that the linear coupling between
elastic and the squeezing degrees of freedom describe
the term withk in ~14! is negligible. The nonlinear terms in
Eqs.~14!, ~A14!, and~A15! lead to the interaction of differ-
ent modes. Explicit analysis shows that the fluctuation
fects do not affect appreciably the linear dispersion relati
~A10!, ~A12!, and~A13! due tog!1. The same holds for a
nonlinear interaction with the bending degree of freedo
which ~because of the same inequalityg!1) does not
change the results obtained in the linear approximation.
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