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Dynamics of double membrane films is investigated in the long-wavelengthdim#1 (q is the
wave vector, andh is the thickness of the filinincluding the overdamped squeezing mode.

We demonstrate that thermal fluctuations essentially modify the character of the mode due to its
nonlinear coupling to the transverse shear hydrodynamic mode. The renormalization can be
analyzed if the conditiorg<1 is satisfied(whereg~T/«, T is the temperature, and is the
bending modulus The corresponding Green'’s function acquires as a function of the
frequencyw a cut along the imaginary semiaxis. 4h> \/g the effective length of the cut is
~Tq® 7 (where 7 is the shear viscosity of the liquidAt qh< \/g the fluctuations lead

to an increase in the attenuation of the squeezing mode: it is larger than the ‘bare’ value by a
factor 1A/g. We also present the analysis of the elastic modes1988 American

Institute of Physicg.S1063-776198)01406-1

1. INTRODUCTION to the loss of the orientation correlation of the membrane
pieces at separations larger than the so-called persistent
The most distinctive property of amphiphilic molecules length &p, which is estimated to be
is their ability to spontaneously self-assemble into aggregates
of various shapes. Typically, the molecules spontaneously &p~ @ eXP2m«/T),

self-assemble into membranes which are bilayers of a thickyhere T is the temperature, and is the thickness of the
ness of the order of a molecular length. Different lyotropic memprane. The shape fluctuations of the membrane lead to
structures consisting of these membranes have generatggh logarithmic renormalization of the bending modukys
considerable current interegssee Refs. 1-3 and review \ypich was examined first by Helfrith and later by
articled~%). Films composed of two bilayer membranes sandegrster!! The correct renormalization-groufRG) equation
wiching a thin layer of a liquid are widely used in the lyo- \yas derived by Peliti and Liebléf, Kleinert®® and

tropic systems. They play also an essential role in variouspao|yakov_14 The explicit form of the one-loop RG equation is
biological processegnote the so-called flickering phenom-

ena in erythrocytes or red blood cell$n this paper we will d_K_ B 3_T
examine the dynamic properties of such double membrane d¢ 47"
films.

The main peculiarity of a membrane is its negligible Here é=In(r/a), andr is the characteristic scale. As follows

surface tension. The membrane is immersed into a liquid anio™M the equation, the role of the dimensionless coupling

consequently its area can vary. Zero surface tension is tHePnstant is played by the quantity
equilibrium condition with respect to the variations. In this 3T
case the shape fluctuations of the membrane are determined g=-—. 2
) o . ; 4ok
by the bending elasticity; the corresponding enerdy is
Note that In€,/a)~g~. For real membraneg~10 2-
2 102 and, consequently, we can treggas a small parameter.

, (D) The smallness off means that there exists a wide range of
scalesr <§, where the thermal fluctuations can be treated in
the framework of the perturbation theory.

where the integral is taken over the membrane which is con- Below we consider a double membrane film. We assume
sidered as a two-dimensional objeRt, andR, are its local that at equilibrium the film is parallel to they plane. Cor-
curvature radii, ande is the bending rigidity modulus. Cor- rugations of the membranes in a double film can be decom-
rugations of the membrane induced by the thermal noise leaplosed into undulatiofor bending deformations and squeez-
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ing deformations. The bending deformations are chara- To find dynamical characteristics of the film one should
cterized by the displacemenf the film as a whole from its solve the conventional hydrodynamic equations in bulk
equilibrium position along the axis and the squeezing de- supplemented by boundary conditions on both membranes.
formation is characterized by variations of the film thicknessIn the linear approximation the problem was solved by Bro-
h (which is the separation between the membranesthe  chard and Lennof who found the dispersion relation of the

harmonic approximation we obtain frofd) the energy squeezing mode
K 346
7/=f dx dy{K(Vzu)2+— (V2h)?|, 3 i o @
4 245
whereu andh are treated as functions eaindy, andV isthe  yhere, is the frequency of the modéy is the equilibrium
two-dimensional gradient. separation between the membranes, arisl the viscosity of

In deriving (3) we disregarded the interaction between e |iquid surrounding the membranes. In deriviyit was
the membranes. First, one should remember the steric intefsgmed that at equilibrium the film is flat. The dispersion

action, which is associated with a certain restriction of ac

. ! . , Trelation
cessible configurations for one membrane in the presence of
the second membrafieThe explicit expression for the en- . PO 3
ergy is® =15, )

_%Ster:f dx dy 3772T22_ 4) of the bending mode was al_so founq in_the linear approxi-
128«h mation. Note that the dispersion relatitf) is correct only if

one neglects the direct interaction of the membranes upon

satisfaction of the conditiofb), whereas the region of appli-

cability of the dispersion relatio(8) does not depend on the

interaction of the membranes, since they move in-phase in

gqh> \/5 (5) the bending mode. The elastic modes associated with varia-

; " 18
whereq is the characteristic wave vector. Second, we shoul lons of the membrane densities are harder [@and(8).

) . . herefore the only effect of the elastic degrees of freedom
take into account the van der Waals interaction. We assume. " amination of the squeezind mode is the incompress-
that the same liquid is inside and outside the film. We can b q g P

then write the van der Waals energy%s Ibility condition
| Ha? Vav,=0. (9)
"%vdW:J‘ dx dym, (6)

Due to the interaction4) two membranes can be treated
independently only on scales smaller tignth. Therefore
(3) is the main contribution to the energy if

Here and below we believe that all variables characterizing

where H is the Hamaker constant. We can disregard thisthe film are functions ok andy and we assume that the

energy, in contrast witf3), if Greek subscripts run overandy.
9y, ' We will consider the renormalization of the dispersion
2

. H law (7) of the squeezing mode due to fluctuational effects.
(qh) < h Nonlinear dynamical equations of the film should be utilized
. o for this purpose. In the long-wavelength limithy<<1 the
Let us assume that the thickness of the film is large enoughqations can be derived phenomenologically. The reactive
to satisfy the inequality (nondissipativi part of the equations can be found by using
H/a\2 the Poisson brackets meth@ske Ref. 19 and also Ref. )18
92>; h whereas the dissipative part of the equations is expressed in

terms of the kinetic coefficients. One should know the ex-
Then (5) is the only restriction that enables us to treat thepression for the energy” of the system to write both con-
energy(3) as the main contribution to the film energy. tributions. Actually, we will need the expression for one
Poisson bracket:

U a(X1,Y1),h(X2,¥2) } =h(X1,Y1) V[ 8(X1—X2) 8(y1—Y2) 1,
2. DYNAMICS (10)

We will examine the dynamics of the double membranewherej, is the two-dimensional momentum density of the
film in the long-wavelength limitgh<1, whereq is the film. The expression(10) (which is characteristic of two-
wave vector of the eigenmodes of the film. Note that thedimensional density of any conserved scalar quantity on a
inequality gh<1 is compatible with(5) sinceg<1. In the  film!®) is motivated by the fact that the two-dimensional
limit gh<1 we should take into account the following vari- mass density of the film isph, where p is the three-
ables which describe the dynamics: the velocity of the film dimensional density of the liquid. Note thpt~phv, since
the displacement of the filrg, the film thicknes, and the  we believe that the membrane thickn@ssan be ignored in
densities of the two membranes since they are conservezbmparison with the film thickneds
quantities. We are interested mainly in the squeezing mode, The dynamic equation for the thicknelshas the stan-
which is associated with the relaxation of the thicknless dard form following from(10)
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SH 3. RENORMALIZATION OF THE SQUEEZING MODE

sh’ (1)
As can be seen froni7), in the long-wavelength limit

whered,=d/dt, and[ is the kinetic coefficient. The second the squeezing mode is very soft. This is the reason why one
power of the gradient appears 1) since the equation anticipates that fluctuational effects which are related to the
should support the conservation law of the liquid inside theMode are relevant. The effects are associated with the non-
film and therefore the right-hand side of the equation shouldn€ar terms in the dynamic equations and can be examined
be a full derivative at any. Due to(9) the second term on N terms of the diagrammatic technique of the first type
the left-hand side of11) describes the sweeping bfby the ~ Which was developed by Wy'l%f, who studied the velocity
velocity v,,. In the linear approximation we can ignore the flgctuatlons in a tu_rbulent fluid. In Ref. 23 the Wylc_i tech-
sweeping term. Substituting the harmonic expres¢®rfor ~ Nique was generalized for a broad class of dynamical sys-
the energy7 into (11) and comparing the result witff), we ~ €Ms. A textbook description of the diagram technique can

gh+V (v, h)=TV2

obtain be found in the book by M&! The diagram technique can be
formulated in terms of path integrals, as was first suggested
I'=h3/127. (12 by de Dominici€® and Jansseff. In the framework of this

approach apart from conventional dynamic variables one
should also introduce auxiliary fields conjugated to the vari-
ables. The dynamic correlation functions of the variables can
then be presented as functional integrals over both types of
fields: conventional and auxiliary. The integrals are taken

Note thatI" is inversely proportional to the shear viscosity
coefficient. The point is that the dissipation describedlby

comes from viscous motion of the liquid surrounding the
double membrane film which is excited only slightly at large

G . . : with the weight exg(?), where.7 is the effective action
The dynamic equation fof,, has the forrft which is constructed on the basis of nonlinear dynamic equa-
AP A EN (13)  tions of the system.

Since we are interested in the renormalization of the
whereJ is the momentum flow from the bulk to the film. Squeezing mode of the double membrane f||m, we will take
Since this term SUpplieS the main diSSipation of the film MO-into account 0n|y the Variab]é—sandva and the Correspond_
mentum, we ignored the internal viscosity. The Poissor]ng auxiliary conjugated fieldp and u,,. We should also
bracke{. 77, ] .} can be reduced to the divergence of the symyemember the incompressibility conditi¢®) and impose an
metric stress tensor for any energy.'® Actually, only the  analogous constraifit,u,=0 on the fieldu, . We can then

contribution associated with the Poisson brackE)) and  rite the correlation function of the film thicknessin the
created by the harmonic ener(f) is relevant for us. We can  form

then write Eq.(13) in the form

h.h =f NN DPD g, €XP(1.7)hh,, 16
ﬁtia+ghVaV4h+VaPs=Ja, (14) < 1 2> tr L PZL ey FX 7) 1112 ( )

wherePg is the two-dimensional pressure, which is related toWhere the subscript ™ implies that in the Fourier repre-

the elastic degrees of freedofaee the Appendix In the sentation we should use only the components of the fields

. e and u, which are transverse to the wave vectprThe ex-
linear approximation relevant for us we can wiite . . . :
plicit expression for the effective action {&6) can be found

J,=—275qu,, (15 by using the dynamic equatiord1) and (14). It can be

o o _ written as the sum of the reactive part and the dissipative part
whereq is the nonlocal operator, which is reduced to multi- ;,— 5

. . reac '—7diss where
plying by the absolute value of the wave vectpiin the
Fourier representation. The expressid®) implies the in-
equality w<7q%/p, which is satisfied for the squeezing -7reac:f dt dzrrpﬁtth pv,V.h
mode.

We will not present here dynamical equations for the K 4
variablesj, andu and for the densities of the membranes. thadda™ 2 maV Vo, (17)
The reason is that the equations ferandu, which describe
the bending mode, decouple in the approximation used from 1
Egs. (11) and (14). Actually, the equations describing the -7diss=f dt dzr[ 3 I'kpV°h
bending motion of the double film are the same as for a
single membrane and the corresponding nonlinear equations
can be found in Ref. 18 and also in Refs. 20 and 21. One
should remember only that the bending modulus of the
double film is Z, as follows from(3). As to the equations The detailed derivation of the effective action for the prob-
for the densities of the membranes, they need a separakem can be found in Refs. 20 and 21.
analysis, which is presented in the Appendix. The only role  We introduce the notation for the pair correlation func-
of the degrees of freedom in analyzing the squeezing modgons. Taking into account only the transverse components of
reduces to the incompressibility conditi¢®). the fieldsv and u, we can write

+iTF(Vp)2+277,ufq(v+iT,u)]. (18
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d2q _ _ whereL=In[hg ¥%r], andr ! is determined by the char-
(h(t,r)p(0,0)= 20 exp(—iwt+igr)G(w,q), acteristic external wave vector of the diagram. The expres-

sion(24) can be found fron{23) if one recalls conditior{5).

. , The presence of the logarithmic contributions implies that
<Ua(t’r)ﬂﬁ(o’o)>:f 2 exp—iwt+iqr) the main renormalization of a correlation function like
G(w,q) is produced by the degrees of freedom with the
wave vectors much smaller tham Therefore, we should
extract from the diagrammatic expressions &fw,q) only
o 2 the contributions corresponding to the interaction with the
<h(t,r)h(o,0)>:f o exp(—iwt+igrD(w,q),  degrees of freedom. o o

(2m) The program can be realized directly in using the lan-
de d2q guage of the functional integral. Let us separate the variables
<Ua(t1r)vﬁ(010)>:J' ——5 exp(—iwt+igr) h, p, v, and u into fast partqwith wave vectors larger than
(2) ), basic partgwith wave vectors of the order ofj, and slow
adp parts (with wave vectors smaller thag). In calculating
Oap™ _Q_}Dtr(qu)- (20 G(w,q) we can forget about the fast parts and keep the in-
q teraction of the basic part with the slow part. We then obtain
The correlation functiongpp) and (uu) are equal to zero the following expression fromi17) and(18):
(for the general property of the technique, see, e.g., Ref. 18
The functionsD andD;, determine the pair correlation func-
tions of the observable quantities and the functiGhand
G,, are the response functions. Therefore, the fundB¢mw)
is analytic in the uppew half-plane. VM, —T = pVeh+ 2pudvt +....  (25)
It is possible to formulate the diagram technique for cal- 2 2
culating the correlation function&l9) and (20). The har-
monic part of the effective actiotV=.7,.ct Z4iss deter-
mines the bare values of the response functions

2

X| 8ap— Gy (w,0), (19

QaQB}

X

,7=J dt dzr[pathwL PV oMyt padt] o

whereh, p, v, and 4 denote the basic parts of the fields,,

is the gradient of the slow part ¢f and the dots designate
the irrelevant terms. The actidi25) is of the second order
overh, p, v, and u and, consequently, the integrals over the

Go(w,q)=— S ITRa2" Girolw,0)=— ohot 2i7q" fields can be tak?? explicitly. Sinae varies only weakly
21) along the lengthg™*, we obtain
The values of the ‘bare’ pair correlation functions satisfy the ~ G(w,q)=—((phw+2i pg)A ™), (26)
relations 6 -1
4 Gy(w,q) _—<(w+Iqu 12)A >mr (27)
Kq 1
ImG=-=D, ImGy=57Dy, (22) A=(phw+2i7q)(w+ix[q¢/2) — kq*m2/2, (28)

which are the consequences of the fluctuation-dissipatiowhere

theorem. In addition to the harmonic part, the effective ac-

tion.7 contains terms of the third order, which determine the 1,2 — ( Sap— q“gﬁ) Mg,
third-order vertices which figure on the diagrams represent- q

ing the perturbation series for the correlation functi¢h8)
and (20). One can check the relatiori22) order by order.
Consequently, these relations are valid for the “dressed’
correlation functiong19) and(20). Note that the relation

and the notation...),, means averaging over the statistics of
m. In calculating(26) and (27) we substituted = phv. Ac-
tually, the terms withph can be and we omit them below.
In averaging(26) and (27) we can assume that the sta-
® tistics of m are Gaussian. The point is that only the simulta-
f o D(w,q)= K_q“’ (23) neous correlation functions afl enter the expressions. These
functions are described by the harmonic eng®)y The pair

which can be proved by usin@2), the analyticity ofG(w)  correlation function ofn is equal to(24). Therefore,
in the upper half-plane, and the asymptotic |a®(w)
~—w" !, which is correct for largan. Actually, (23) is a TL
direct consequence @8), since the integral over frequencies (M= 5 27k’
is just the simultaneous correlation function.

Analysis of the diagrams shows that they contain infra-
red logarithms, which are related to the lines representing the

correlation functionD in Eqg. (20). The lines produce the G(w,q):_foo Gs exp —s2/2)

and we find from(26)

factors —» 27
v.h Vh(t,0 TL5 24 'KFG'TL 32_1 29
(Vo h(t,r)Vgh(t,0)= aB (24 X w+17q+I%Qs . (29
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We see thaG as a function of the frequenay has the cut not depend on the bending elasticity. It is important to dis-
along the imaginary semiaxis, which starts from tinguish the characteristic frequency from the attenuation of
w=—iT'kq%?2 and goes to-ix. The effective length of the the membrane bending mod8), which has the samg?®

cut can be estimated as®/ , which is the new character- dependence on the wave vector. We stress that the strong
istic frequency associated with the fluctuations. Let us comfluctuation effects are observed only for dynamics. The static
pare the frequency with the position of the pole in the barecharacteristics are not influenced by fluctuations because of

expression: the smallness of the coupling const&x This is the reason
Ty why we need only the harmonic part of the ene(@y
a7 9 (30) Strong dynamic fluctuations ¢foccur for the wave vec-

T.0%  (an3
I'xg”  (gho) torsq=\/g/h. For smaller wave vectors the fluctuationshof

We conclude that the fluctuation effects dominate in the reare weak. Nevertheless, even for the wave vectors there is a
gion gY?<qghy<g'®. We can now justify the disregard of memory of the region of strong fluctuations, which is the
pho in comparison withyq in the above expressions. When renormalized value of the kinetic cogfficieﬁtin Eq. (11):
qh~1, The bare valug1?) is substituted byi'~g~YI'>T. Note

also that to analyze the dispersion relation of the squeezing
mode in the limitq< \/g/h starting from(11) we should take

and atqhy~ g into account in addition to the enerd§), the steric contri-
bution (4) and the van der Waal&) contribution to the
energy. As a result, we find

phow/ 7]q"" pK/ 772h0~a/h0< 1,

phow! nq~ prg? n?hy<1.

Performing Fourier transform aR9) over frequencies,

: ~ . [9m°T? 10Ha?
we obtain =—ilg?l ———-
e 0=-iIq (64Kh4+w-
. K
G(t,q)=i ( 1+ g q3t) exp{ -3 rqgbt. (31 Let us discuss the possibility of checking our predictions

experimentally. The membranes can be studied by a variety
The expressio31) is correct for a positive timé For nega-  of experimental techniques. Lately, laser «tweezers» have
tive timesG(t)=0 due to the causality principle sin€gis  become a useful tool for probing dynamical properties of
the response function. We see frdB1) that in the fluctua- membranes. This technique enables us to obtain direct infor-
tion region g*?<gh<g'? there appears an intermediate mation about amplitudes and characteristic times of dynami-
power asymptotics ™%, which at large times is changed cal fluctuations of different objects consisting of membranes.
by the exponential decay. This means that the squeezingor details see the monographyand recent experi-
mode is described by a dynamic equation, which is nonlocaents?®—3! We can also mention force apparatus measure-
in time. ments?® which make it possible to investigate dynamical re-
The above assertion is correct for the wave vectorgponse for two very thin lamellar systems confined between
q=\/g/hy. In the limit ghy< /g we retumn to the local equa- the walls, and the classical light-scattering experiments. Be-
tion (11) but with the renormalized kinetic coefficieht The  cause of relaxation of the membrane fluctuations, the scat-
guantity can be found by integrating the weight éxf)(over  tered light has a broadened spectral distribution compared to
the degrees of freedom with the wave vectqes \/g/hy. the incident light. Despite the small broadening, the modern
The main effect is attributed to the sweeping term in thetechnique of light beatingintensity fluctuation spectros-
effective action(17). Because of the integration over the de- copy) allows one to obtain information about eigenmodes of
grees of freedom with the wave vectars \/g/h, the term  the system.
iTI(Vp)? in (18) for the long-wavelength degrees of free- The conclusions concerning the renormalization of the
dom is renormalized. We find for the renormalized value squeezing mode, in our opinion, are interesting, both in their
1 own right and as a new test of the membrane fluctuations.
—T=— f dt d?r(v(t,r)h(t,r)v(0,00h(00)), (32 The research described in this publication was made pos-
4T sible in part by Russian Fund for Fundamental Research
where averaging is performed over the degrees of freedor@rants. One of the authofE.K.) thanks Max Planck Institute
with the wave vectorgj=./g/h,. Using the renormalized for Physics of Complex System®resden for supporting
expressions for the correlation functions, we obtain the estihis stay at this institute.
matel'~g Y>T.

=l

APPENDIX
4. CONCLUSIONS Elastic modes

We demonstrated that fluctuations essentially modify the  Here we consider the elastic modes associated with the
character of the squeezing mode due to its nonlinear couelaxation of the surface density of molecules that comprise
pling with transverse shear hydrodynamic mode. The flucthe two membranes of a double film. To find the dispersion
tuation effects lead to nonlocality of the equation for therelation for the modes we should start from the elastic energy
mode; the corresponding Green’s function(3d). The new associated with the variations of the surface density of mol-
characteristic frequency of the mode related to the fluctuaeculesng. In the harmonic approximation the elastic energy
tions isw~Tq* 7 (q is the wave vectdr remarkably, it does of a single membrane s
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result, we find a linear system for, andv,. We can then
Her=5 f dABs?. (A1) write the condition for the existence of nontrivial solutions of
the system, which for the symmetric case in the simplified
Here form is
s=(ns—no)/no, thO qho 2
2 2
whereng—ny is the deviation of the surface density of mol- v (COthT_COth 7) —| VI VES)
eculesng from its equilibrium valueny, and the coefficien
has the meaning of the inverse compressibility of the mem- x| v Cothm_coth q_h‘)”
brane. The elastic energy is the sum of ter@#$) for both 2 2
membranes that constitute the double film. qho Vahy
Let us consider the elastic modes in the linear approxi- X|V coth—— coth——
mation. We assume that at equilibrium the membranes lie in 2 2
the planez= *hgy/2. The deviations of the membranes from Vaho aho
the positions can then be characterized by their displace- +{V COthT—COIhT”=0- (A7)

mentsu, , along thez axis. To find the dispersion relations
for the modes one should solve conventional hydrodynami¢iere we introduce the notation
bulk equations supplemented by boundary conditions at the

membranes. As we will see, the frequencies of the elastic Ve = wp B=i ﬂ
modes are small compared to sound frequency. Conse- 79” nw’

uently, we can use the convential linearized equations for . . .
gn inc)(;mpressible liquid? g and suggest that in the case of elastic modes one deals with

the frequencyw> 5q?/p. For the antisymmetric case the
7, VP condition can be obtained frorfA7) by substituting coth
Vkvk=0, ; V — ot Uk:_p y (AZ) —>tanh.
] ) ) It is difficult to find the dispersion relations froit\7)
wherek=x,y,z. Since the membranes are immersed into the, 4 the analogous equation for the antisymmetric case in a

liquid, they move with the velocity of the liquid which IS ganera) situation. Below we consider two different limiting
continuous near the membranes. The boundary conditionS;qes and assume that

for Egs.(A2) for a membrane can be found in Refs. 20 and
21. In the linear approximation they are 7

2

<1, (A8)
P01+ KV U1 7= —| Py 2, (A3) Bphy
OUs =1 (Ad) which is natural sincdg is much larger than the molecular
tLe el length for real films. First, we consider the short-wavelength
psatva l,2+ Bvag 12— anZv aJl,Z’ (A5) limit
S12+ V041270, (AB) 7? \1?
ghy> Bphg| (A9)

where the “floors” designate a jump at the membrangds

the two-dimensional mass density of amphiphilic moleculesyye then obtain the same dispersion relation as for the elastic
and subscripts 1 and 2 numerate the membranes. The terfsyde of a single membrafie?

with p® in Egs.(A3) and(A5) are negligible.

Now, we will solve Eqs(A2) with the boundary condi- _ =V3—i [ B? s 3 AL
tions (A3)—(A6) under the assumption that all variables are ~ “~ "~ 2 4np q (A10)
proportional to exp{iwt+igx), where w is the frequency, . )
andq is the wave vector. This means that the thickness of layers near the membranes,

The velocity of the liquid is divided into two parts: po- Where the hydrodynamic motion occurs, is much less tian
tential and solenoidal. The potential component is related t§"d: consequently, the membranes can be assumed to be

the pressure which obeys the equation nearly independent in this case. Note that dug¢A8), the
» condition (A9) is compatible withghy<1, where the mem-
(Vz—g9)P=0. branes cannot be regarded as independent in considering,

say, the squeezing mode. Therefore, one should be careful:
under the conditiorfA9) the membranes can be treated as

—ipwo=7(Vi-q?)v. nearly independent only in examining the elastic modes. In
the opposite long-wavelength limit,

The solenoidal component is described by the equation

Thus we can explicitly write the solutions of the equations
inside and outside the film in terms of the velocity of the 7? |2

membranes. The expressions are slightly different for the qho<<B h ) , (A11)
symmetric §;=s,) and the antisymmetricsg = —s,) cases. Pl

Using the solutions in bulk, we can express the jumps in Eqswe deal with two different dispersion relations. In the sym-
(A3) and(A5) in terms ofv, andv, on the membranes. As a metric case the dispersion relation is
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+v/3—1 /B2\13 s It can then be verified that the linear coupling between the
0= 5 <%> (A12) elastic and the squeezing degrees of freedom described by
the term withx in (14) is negligible. The nonlinear terms in
This is the same dispersion relation @sl0) but with the  Eqgs.(14), (A14), and(A15) lead to the interaction of differ-
doubled membrane elasticity, which is natural for the dOUb'%nt modes. Exp||c|t ana|ysis shows that the fluctuation ef-
film. In the antisymmetric case the dispersion relation is  fects do not affect appreciably the linear dispersion relations

Bgh, (A10), (A12), and(A13) due tog<<1. The same holds for a
w=—Ii 5y (A13) nonlinear interaction with the bending degree of freedom,
K which (because of the same inequaliy<1l) does not
Thus we encounter a simple diffusion. change the results obtained in the linear approximation.

The dispersion lawgA10), (A12), and (A13) show that
the frequencies of the elastic modes are small in comparison
with the sound frequencyqg (wherec is the sound velocity
which justifies our using the incompressible hydrodynamic
equationgA2). Note also that for the mod@\13) the con-  *’E-mail: kats@landau.ac.ru
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