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We consider advection of a passive scalér,r) by an incompressible large-scale turbulent flow.
In the framework of the Kraichnan model all PDRjsrobability distribution functionsfor

the single-point statistics of and for the passive scalar differenéér,) — 6(r,) (for separations
r,—r, lying in the convective intervalare found. ©1999 American Institute of Physics.
[S1063-776(199/01003-3

INTRODUCTION cases. The assertions are really correct for any temporal sta-
. . i tistics of the velocity field'see Refs. 3 and)4Thus we are
We treat advection of a passive scalar fié{d,r) by an dealing with the logarithmic case which is substantially sim-

incompressible turbulent flow; the role of the scalar can be . . . .
layed by temperature or by pollutant density. The VelocitypIer than cases with power-like correlation functions usually
P ' ncountered in turbulence problerfsge Refs. 57

field is assumed to contain motions from some interval of . : :
scales restricted from below hy, . A steady situation witha . Now about high-order cqrrelatlon functions of thg pas-
permanent random supply of the passive scalar is considered’® scalar. As long as aII_ dlstances_ between the points are
We wish to establish statistics of the passive scaldor much less tha"l' thg 2n-point cor.relat|on functions o_ﬁare
scales that are less than both the staleand the pumping given by the|r.reduC|bIe.par($hat_|s, are expressed via prod-
scaleL, and larger than the diffusion scalg; (for definite- uqts O_f the pair correlatlon_ functigmip to n-~In{Lr), yvhere

r is either the smallest distance between the points,pr

ness we assume thhtL,). Such a convective interval of . s

scales exists if the Peclet number=Rg/r 4 is large enough; depend!ng on Wh"fh IS Iarge(see Ref. % The reason for

we will assume this condition. Since all scales from the conSUch Wick decoupling is simply the fact that reducible parts
contain more logarithmic factor@vhich are considered as

vective interval are assumed to be smaller than we will - :
discuss advection by a large-scale turbulent flow. The probthe large onesthan non-reducible parts do. Consistent cal-
culations of the fourth-order correlation function of the pas-

lem is of physical interest for dimensionalitiels=2,3, but ; g |
formally it can be treated for an arbitrary dimensionatitgf ~ Sive scalar ad=2 (see Ref. Bconfirm the assertion. There-

space. Below we will tread as a parameter. In particular, all fore, €.g., the single-point PDF éfhas a Gaussian cofthat
expressions will be true for a space of high dimensionality describes the first moments with<InP¢ and a non-
Description of the small-scale statistics of a passive scaGaussian tailthat describes moments with>InP¢). The
lar advected by a large-scale solenoidal velocity field is dail appears to be exponentislee Refs. 3 and)4The same
special problem in turbulence theory. This problem wagd$ true of the passive scalar differenced= 6(r)—6(0),
treated consistently from the very beginning and some rigorwhere instead of In Pe we should takerIng;). The tails do
ous results have been obtained, which is quite unusual for 8ot depend on In Pe or on hf(y¢), and contain only coeffi-
turbulence problem. Batcheldsee Ref. 1 examined the cients that depend on the statistics of the advecting velocity.
case of an external velocity field being so slow that it does  Correlation functions of the passive scalar can be written
not change during the time of the spectral transfer of theéds averages of integrals of the pumping along Lagrangian
scalar from the external scale to the diffusion scale. Therrajectories(see, e.g., Ref.)9 For example, the pair correla-
Kraichnan(see Ref. 2 obtained plenty of results in the op- tion function (6(r)#(0)) is proportional to the average time
posite limit of a velocity field delta-correlated in time. The needed for two points moving along Lagrangian trajectories
pair correlation function of the passive scaja(r)6(0)) was to run from the distance to the distance.. Generally, cor-
found to be proportional to the logarithm Lrif), and the pair  relation functions of a passive scalar are determined by spec-
correlation function of the passive scalar differeqfé(r) tral transfer via evolution of Lagrangian separations up to the
—6(0)]?) was found to be proportional to Ity in both  scaleL. For the large-scale velocity field, the Lagrangian
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dynamics is determined by the stretching matux,;  A. Simultaneous statistics
:.V AU a and,lc?nse;quert].tly, thfe tsr,]tat|st|cs.of the rlnatn)'é il The sourceg is believed to possess Gaussian statistics
mmels (t:r? rrela |f(f).n. utncf"t)r? CI) (_Bthpa$SI;/r:% scaiar. cl)rt.ex—and to bed-correlated in time. The statistics is entirely char-
ample, the coetlicient ot the fogarithm in the pair correlation , e ize by the pair correlation function

function of the passive scalar %, /\ (see Refs. 1-4where

P, is the pumping rate of? and X is Lyapunov exponent (B(t1,r1) d(t2,r2))=8(t1—ta) x(|ri—ral), (1.2

that is the average of the largest eigenvalue of the matrix  \here we assume that the pumping is isotropic. The function
The coefficients in the exponential tails are more sensitive t‘3((r) is assumed to have a characteristic stalhich is the

the statistics ofo; specifically, they depend on the dimen- ,,mning length. We will be interested in the statistics of the
sionless parameterr (see Ref. #wherer is the correlation  passive scalar on scales much smaller than

time of 6. The motion of the fluid particles in the random  Simultaneous correlation functions of the passive scalar

velocity field resembles in some respects random walks, bug can be represented as coefficients in the expansionyover
one should remember that correlation lengths of both thef the generating functional

advecting velocity and of the pumping are much larger than

scale; fro_m the conveptlve interval we are interested in. ThL_Js Ay)= < exp{ iyJ dr,B(r)a(O,r)] > ’ 1.3
the situation is opposite to one usually encountered in solid

state physics, where, e.g., random potential is short-ranggnereg s a function of the coordinates and angular brackets
correlated in space. o _ denote averaging over both the statistics of the pumping
~Since In/r) is really not very large, it is of interest to g the statistics of the velocity The generating functional
find all PDF’s for the single-point statistics éfand for the vy contains complete information about the simultaneous
passive scalar differenc®é. It is possible to do this for the giatistics of the passive scalér Specifically, knowingZ(y)
Kraichnan short-correlated case<1 when the statistics of one can reconstruct the simultaneous PDF of the passive sca-
o can be regarded to be Gaussian. An attempt to do this wasr; the problem is discussed in Sec. 3.

made in Refs. 10 and 11 in terms of the statistics of the main  |f characteristic scales ¢8 in (1.7) are much larger than
eigenvalue of the matrig. Unfortunately, the scheme works the diffusion scale 4, then it is possible to neglect diffusion
only for the dimensionalityd=2 where the matrixd has a  when treating the generating functior(al3). Then the left-
single eigenvalue. This was noted in Ref. 12 where also th@and side of Eq(1.1) describes simple advection, and it is

correct coefficient in the exponential tails for an arbitraryreasonable to consider a solution of Eq. in terms of Lagrang-
dimensionality of spacel was found. Here, we develop a jan trajectories (t) introduced by Eq.

scheme enabling one to obtain all PDF’s for arbitrdryrhe

scheme is also interesting from a methodological point of de=Vv(t,Q). (1.4
view. For example, its modification enables one to calculatgye |abel the trajectories with, which are the positions of
the statistics of local dissipatiofsee Ref. 18 the Lagrange particles &&0: o(0r)=r. Next, introducing

The paper is organized as follows. In Sec. 1 we find aé(t,r)= o(t,0), we rewrite Eq(1.1) asd,f= ¢, which leads
path integral representation for the simultaneous statistics %

the passive scalar. In Sec. 2 we analyze the generating func-

tional for correlation functions of the passive scalar in the 0
convective interval of scales. Using different approaches we 0(0r)= f,mdtd’(t’e)'
obtain the functional and establish the applicability condi- ) _
tions of our consideration. In Sec. 3 we find explicit expres-Here we have taken into account thata{0 the functionsy
sions for the single-point PDF and for the PDF of the passiveéind 6 coincide. Starting with{(1.5) and exploiting Gaussian
scalar difference. In the Conclusion we briefly discuss thgpumping statistics, we can average the generating functional

1.9

results obtained. (1.3) explicitly over the statistics. The result is
y? (o
F(y)=| ex —?f dtu|), (1.6
1. GENERAL RELATIONS -
The Qynam|cs of t.he passive scaldradvected by the U:f dr,dr,B(r) B(ro) x(|e1— o)), 1.7)
velocity field v is described by Eq.
8,0+VV 60— kV26=¢b. (1.1  where angular brackets mean averaging over the statistics of

h th th loci . h , ¢ the velocity field only.
Here, the term with the velocity describes the advection o Being interested in the single-point statistics @fwe

the passiv'e'scalar, the next 'term is diffug(veis the diffu- should takeB(r)=&(r). But this is impossible since we
sion coefficient, and ¢ describes a pumping source of the have neglected diffusion. We takg(r)=8,(r) instead,

passive scalar. Both(t,r) and ¢(t,r) are assumed to be hare the functions,(r) tends to zero atAr>1 fast
random functions of andr. We regard the statistics of the enough, and is normalized by the condition

velocity and source to be independent. Therefore, all corre-

lation functions ofé are to be treated as averages over both dréarn=1
statistics. roa(r=1.
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Then the generating functionél.6) will describe the statis- ity statistics is Gaussian and is entirely determined by the
tics of an object pair correlation function, which in the convective interval is
written as

HA:f dr 5 (N (1), @8 (1.1 )v o r2)) = St — o) 7 6Bug— T ap(F1—T2)],

smeared over a spot of size™ L. If rysA<1, then the sta- (1.19
tistics of the object is not sensitive to diffusivity. On the _ ) (d—1)D )

other hand, ifAL> 1, then knowing the correlation functions 7 ag(1) =D(r*8ag=Tal p) + ——5—— dapr ™. (116

of 6, , we can reconstruct single-point statistics due to the . ) )

logarithmic character of the correlation functions. To obtain€r® 7 o is & huger-independent constant aitlis a param-
single-point correlation functions one should substitute sim&ter characterizing the amplitude of the strain fluctuations.
ply A—r ! into the correlation functions of, . The above ~The structure of expressiol.16 is determined by the as-
inequalitiesAr <1 andAL>1 are compatible because of SUmed isotropy and spacial homogeneity, and by the incom-
Pe>1. If we are interested in the statistics of the passivePressibility conditionVv=0. Then the statistics of is
scalar differences in points with a separatiop (where Ga_ussmn and is determined by the pair correlation function,
Fo>T4¢) then instead of, (r) we should take which can be found from Eqg¢$1.15 and(1.16):

B(r)=8,(r—r/2)— Sy (1 +15/2). (1.9 (0ap(11)0,,,(12)) =D[(d+1) 8,4, 65, 641 Op,

Then the generating functionél.6) will describe the statis- —8apbur]o(ti—15). (1.1

tics of an object Note that the correlation functiofl.17) is r-independent, as

AOr=0,(1g/2)— 0, (—To/2). (1.10 it should be. We see frorflL.17) that the parametdd char-
_ ) ) . ) acterizes the amplitude @f fluctuations.
Again, correlation functions Qf the passive scalar differences Averaging over the statistics @ can be replaced by a
can be found from correlation functions d&ff, after the . . A . .
substitutionA —sr & path integral over unimodular matric®¥(t) with a weight
dif - exp(.7). The effective action7=[dt, is determined by
(1.17:

B. Path integral i Lo=

1
=~ 2da+zpLdt 1Tr(6"6)+Tro?]. (118

Below, we treat advection of the passive scalar by a . . .
large-scale velocity field, that is, we assume that the velocityrhen the generating functionél.?) can be rewritten as the
correlation lengtt_, is larger than the scales from the con- following functional integral over unimodular matrices

vective interval. Then for the scales one can expand the dif- 0 y2
ference J(y)=f @Wexp“ dt(i.%—;u”, (1.19
V() =0 () =o,5(1)(rip—rop), O'aﬁzvﬁvrz- )
1.1
sz dr.dr,B(rq)B(ro)x
Hereo,4(t) can be treated as arindependent matrix field. P 2
Then Eq.(1.4) leads to X[\/(rla_rZa)BaB(rlB_rZB)]' (1.20
(010~ 024) = Tup(D)(0157 C2p). (1.12 Here, we should substituté=a,W(W)~* and recall the
A formal solution of Eq.(1.12) is boundary conditiotV=1 att=0.
01a— 020a=Wap(F15—T2p), Some words abqu'g the “potenﬂalp (1.‘0' figuring in
(1.20. The characteristic value of —r, in the integral(1.7)
Al an A o is of order A~ for B(r)=45,(r). Since we assume L
HW=aW, W—.7exp(—ft dt U)’ (113 >1, then for single-point statistict)~P,, where P,

=x(0), if B is not very large. In particular, it is correct at
" _ _ moderate time#|, sinceB=1 att=0. With increasindt| the
detW=1; this property is a consequence ofg+0 and the  5rqument ofy in (1.20 grows andU tends to zero when the
initial conditionW=1 att=0. The Lagrangian difference in argument ofy becomes greater thdn For the passive scalar
(1.7) is now rewritten as difference wherB is determined by1.9) the situation is a bit
A A more complicated. Theb) is a difference of two contribu-
@17 @2l = V(r1a=T20)Bag(rag—rap), B:WT\?Q’ 14 tions. The first contribution behaves as for single-point sta-

tistics. The second contribution contaipsvith the argument
where the subscript denotes a matrix transpose. Note thatdetermined byr;—r,~*r,. Then att=0 the meaning of

where .7 denotes antichronological ordering. Note that

detB=1 since deW=1. the second contribution is determined again By, but it
The generating functiona¥(y) (1.6) can be explicitly  vanishes with increasing earlier than the first contribution.
calculated in the Kraichnan cag¢see Ref. 2 when the sta- The path integral representati¢h.19 indicates that we

tistics of the velocity iss-correlated in time. Then the veloc- reduced our problem to the quantum mechanics wfth 1
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degrees of freedom. Nevertheless to solve the problem we Aijzgij if i>j, Aij:_zji if i<j. (1.2
should perform an additional reduction of the degrees of

freedom. The conventional way to do this is passing to ei- One can easily check that the irreducible pair correlation
genvalues, say, of the matri figuring in (1.20 (see, e.g., function of%;; has the same form as for; [see Eq(1.17]:
Ref. 14 and excluding angular degrees of freedom. Just this _

way was used by Bernard, Gawedzki and Kupiairisee (2ij(t) 2 mn(t2)) = DI(d+1) §imSjn = SinOjm

Ref. 12. Thelj the auth(_)rs using known facts about the quan- — 8 Omn] 8(t1—15). (1.28
tum mechanics associated with the eigenval(s==, e.g.,

Ref. 15 have found the coefficient in the exponential tail of Furthermore, the average value Bfj is nonzero(see Ref.
the single-point PDF of. Unfortunately this way is not very 10):
convenient to find the whole PDF. To do this we will use a

special representation of the mati) in the spirit of the (Si)=—
nonlinear substitution introduced by Kolokologee Ref. N

16). That is the subject of the next subsection.

d(d—2i+1)
—— 0. (1.29

Nonzero averages &fj; are related to Lyapunov exponents
(not only the first ong see Ref. 18for our model see also
Ref. 19. To obtain(1.29 one should take into account that
the matrix R propagates backward in time siné&=1 is

To examine the generating functional(y) we use a fixed at t=0 and we treat negativé. Solving Eq. A
mixed rotational-triangle parametrization =R"4,R for R on a small interval- we get

C. Choice of parametrization

W=RT, BTT, (1.2 . .
R(t— ) ~R(t)

t

1—] dt’A(t’)}.
whereR is an orthogonal matrix anl is a triangular matrix: t-r
Ti;=0 fori>j. The parametrizatiofil.2]) is the direct gen-
eralization of the & substitution suggested in Ref. 17. Note
that defi=1 since de¥W=1. Note aIsoAthat the matri8 i(t—r)%ﬁT(t)&(t—r)ﬁ(t)
introduced by(1.14) does not depend oR, as is seen from
(1.21). That is a motivation to exclude the matrx from
consideration, integrating over the corresponding degrees of
freedom in the path integrél.19. A Jacobian appears in the R
integration. To avoid an explicit calculation of the Jacobian,The average value di arises from the second term on the
which needs a discretization over time and then an analysigght-hand side o0f(1.30. The explicit form of the average
of an infinite matrix (see Ref. 1) we use an alternative can be found using
procedure described below. .

Let us examine th_e dynamics of the matifix It is de- <Eij(t— 7 dt’Emn(t')>

termined by the equation t—r

Then with the same accuracy we get from EQ23

i(t—T),f:_ dt'A(t")|. (1.30

D
3¢ Tij =E“Tij + ; . (Eik+2ki)TkJ , (1.22 = E[(d+1)6im5jn_5in5jm_ 5ij5mn]- (1.39
i <k<]

following from Egs. (1.13 and (1.21). Here we used the Here we utilized Eq(1.28 and replaced the integral
notations

t
S=RT5R. (1.23 ft_r v’ s(t=r-t')
Next introducing the quantities by 1/2. The reason is that the correlation functiorodctu-
_ _ o lly has a finite correlation time, and therefasé) (repre-
Ti=exppi), Ti=explpi)ni, if i<j, 1.2 atly ! . ) .
" Rpi) ! R J (1.29 senting this correlation functionshould be replaced by a
we rewrite Eq.(1.22 as narrow function symmetric unddér— —t. Then we will get
P (1.25 1/2. Expressin(j\ via 2 from (1.27 in (1.30 and calculating
toi= ii s ' its average usingl.31) we get the answe(l.29).
The expression€l.25), (1.26), (1.28), and(1.29 entirely
dmij= (2 +2j)explp;— pi) + > (it ) determine the stochastic dynamicsggfand 7;; . Using the
I<k<] conventional approacksee Refs. 20—34correlation func-
X expl px— pi) M - (1.26  tions of these degrees of freedom can be described in terms

_ _ _ _ of a path integral ovep; , 7;; and over auxiliary fields which
Comparing(1.13 with (1.21), one can find the following we denote bym; and w;, (i<n). This integral should be
expression foA=RT4,R: taken with the weight exp(dt¥%), where the Lagrangian is
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d . d
B d(d—2a+1)| iD 3 d(d+1-2a)
= ma[ﬁtpa-l—Df +?[d2 m2 L= ma[o?tpa-i-Df
a=1 a a=1
2 5 iD 2
_<§ m, +|Ddi§<:j expl 2p; — 2pi) 1 + < dg mg—(é ma) . (2.2)

) Now, to obtain Z(y) one should integrate the exponent in
+2'Ddi§<j Mij ik €XP( 2Pk 2pi) 7k (1.33 (with %,) over p, and m,. To examine(2.1) it is
convenient to pass to new variables,=O,,p, and M,

- =0,,m,, whereO is an orthogonal matrix. We make the
+i2<j wijdymi;+ibd > MimMin Tk ab’"’b 9

i<k<m,n following transformation:
X exp(2px—2p;i)- (1.32 3
| 1=\ grgz=py L@~ Dprt (d=3)pot ...+ (1= d)pg],
Since the matrixB in accordance with{1.21) does not de- 1
pend onR it is enough to know the statistics pf and »;; to Go=..crce, Pg=—=[p1t+pat...+pql. (2.2
determine the averagé.6). Therefore, instead dfl.19 we \/a
get Then the expressiof2.1) will be rewritten as
d d-1
0 2 . _ Dd _
(,7(y)=f DpInormYu exr{J’ dt( i.£— y?U” I:%/r:IaZl Mydypa— > azl m32
(1.33 L Dd [d(d®—1) _ 03
IT Tml. ( )|

HereU is determined by1.20), where the matrix8 is de-
termined by Eqgs(1.21) and(1.24). The Lagrangian2.3) is a sum over different degrees of
Thus we obtained the expression for the generating funcireedom. The dynamics o, is ballistic, whereas the dy-
tional (1.3) in terms of the functionalpath integral whichis  namics of¢, for d>a>1 is purely diffusive. The condition
convenient for the analysis presented in the subsequent segetT=1 meansgy=0, correspondingly the dynamics gf;
tion. determined by the Lagrangia@.3) is trivial: d;¢,=0. We
will see that times determining the main contribution to the
generating functional are large enough tidge> ¢, for the
5 GENERATING FUNCTIONAL relevant region. Therefore, the potentldl (1.20 depends
essentially only onp,, and it is possible to integrate explic-
Here we calculate the generating functioil3) for a  itly over, ¢, andim, for a>1. After that we are left with
single-point statistics of) that is of the object{1.8) corre- only one degree of freedom, which is described by the
sponding toB(r)=8,(r), and also the statistics of the dif- Lagrangian
ference that is of the obje¢tl.10 corresponding td1.9). >
The starting point for the subsequent consideration is the | o —jn ( D_d M) — D_d~ 2
! _ > i Z1=iMq| g+ mi. (2.4
expression(1.33. There are different ways to examine 2 3 2
(y). We will describe two schemes leading to the same  Neglecting allg, for a>1 and inverting transformation
answer but carrying in some sense complementary informa; 2) we obtain
tion. We also believe that consideration of the different

schemes is useful from a methodological point of view. A _[3(d=1) _d-2a+l )
modification of the second scheme is presented in the Ap- P17~ d(d+1) b1 Pa~ d—1 Pr 2.9

endix. . -
P We will see below that the characteristic valuig>1.
A. Saddle-point approach Therefore the characteristic value @t is much larger than

The first way to obtain the answer for the generating®there’s, and we conclude that the potentlaldepends re-

functional (1.3 is by using the saddle-point approximation &lly only onp; . For the case of the single-point St‘f"tiSti&S' the
for the path integral1.33. The inequalities justifying the Ccharacteristic value of the differencg—r, in (1.20 is A ™.

approximation areé\L>1 for the object1.8) andAr>1 for Then it follows from(1.21) and (1.24) that the potentialJ
the object(1.10. decreases frorR, to zero near the poin; =In(LA), which

As we will see, large values of the differences- py is near the pointp, = ¢, , where

(i<k) will be relevant for us. Then fluctuations afand d(d+1)
are suppressed and it is possible to neglect the fluctuations. ¢,= 3(d—1)
Therefore we can omit the integration oweandw in (1.33),
substitutingnz= x=0 into (1.32. After that we obtain a re- For the difference the potential increases from zeroRg at
duced Lagrangian: $1= ¢r, Where

IN(LA). (2.6
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- /d(d+1)|n£
o= 3(d—1) fo’

and then decreases fromP2 to zero near¢,=¢,. The

(2.7

expressiong2.6) and (2.7) determine the characteristic val-

ues of ¢, which are actually large, sindeA>1 or L/rg
>1; this justifies our conclusions.
Now we can employ the saddle-point approximation:
0 y2
Iny(y)wJ' dt i(,,%)l—EU , (2.9

inst
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Note that(2.14) does not depend on the pumping sdalbut
still depends on the cutofh.

The characteristic value of, is determined by the
quantity (2.6) which is much larger than unity. Then it fol-
lows from (2.5 that exp(p;—2p;)<<1, i>], (excluding a
short initial stage of evolutionand we see froni1.32 that
fluctuations of the fieldsy are suppressed in comparison,
say, with p,. This justifies neglecting the fieldg and w
leading to the reduced Lagrangiéhl). Next, the dynamics
of ¢, for a>1 is diffusive, and it follows from2.3) that the
characteristic value ob, can be estimated to béDd[t[. As
follows from (2.3), d;¢p;~Dd>? and we find from(2.6) the

where we should substitute solutions of the extremal condiinstantonic lifetime

tions, which we will call instantonic equations. The instan-
tonic equations, which can be found from extremal condi-

tions fori %, —y?U/2, are

Dd [d(d®*-1) . _
b1t —- T:_'del'

(2.9
. y*au -
ofmy =1 ? Tﬁl ( . ()
Egs. conserve the “energy”
Dd_  [d(d*>-1) Dd_, y2U 01
| 7m1 T'f’ 7m1+ ? . (2.11)

The conservation law is satisfied siric&; —y2U/2 does not
explicitly depend ort. The “energy” (2.11) is equal to zero,

since ast— —« the value offh; should tend to zero. This

property can be treated as the extremal condition when
—y2U/2 is varied over the initial value a,. Equating the
“energy” (2.11) to zero, we can expresh,; via ¢;. Next,
since(2.11) is zero, the saddle-point value gf(y) (2.8) can
be written asifd¢,M;, where the integral ovety; goes
from zero to infinity.
Substituting the expression fd@n, in terms of ¢4 into

i fd¢,M;, we get for the single-point statistics

" d(d+1) 12y°P,

(2.12

Note that the expressiof2.12 has(as a function ofy) two
branch points/= *iyjng, Where

ty=D"1d " 2In(LA), (2.1
which determines times producing nonzero contributions to
the effective action. Att|~t,, the characteristic values of
¢, for a>1 are of orderyIn(LA)/d, and we conclude that

®a 1
b1 dyIn(LA) <t

at times|t| ~t,; . The inequality(2.17) justifies passing to the
Lagrangian(2.4). The same arguments can be applied to the
generating functional for the passive scalar difference; the
only modification is in the substitution Ibh{\)—In(ryA).

There are also additional applicability conditions for the
results (2.12 and (2.14). To establish the conditions, one
should go beyond the main order of the saddle-point approxi-
mation. It will be more convenient for us to develop an al-
ternative scheme, which enables one to find the conditions
more simply. That is the subject of the next subsection.

(2.1

B. Schro dinger equation

Here we present another way to get the answers?
and (2.14). As before, we start with the path integral repre-
sentation(1.33 for the generation functionaf/(y).

Unfortunately it is impossible to get a closed equation
for 7(y). To avoid the difficulty we introduce an auxiliary
quantity

0
2 _Dd*(d*-1) (2.13 ‘I’(t,y,Poﬂlo):f DpInImMIp exﬁ{ f_tdt’
sing 12pP,
2
The same procedure can be done for the passive scalar dif- X| 14— y_U” (2.18
ference, or, more precisely, for the obj¢ttl0. Taking into 2 p(~0)=pg. 7~ =g
account the presence of the jum({@s6) and(2.7) in the po-
tential U, we get an answer slightly different frof2.12): It follows from the definition(2.18 that
In 55} d(d+1) ) /1+ 24y°P, }| (ro)
n Z(y)= - ————|In(rgA), .
Ay 6 Dd%(d2-1)| " ° Z(y)=lim f I dpadn W (t,y,p, 7). (2.19
(214} t—o
2 Dd*(d’~1) Eq. for the function¥ can be obtained from the expression
Ysing=— oup. (2.19 q. o P
24P, (1.32 and the definition2.18:
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UL
w7

52 1( d 5 )2 p’s. If the cloud is inside the region whetd=P,, then
i=1 dp;

d

2 —— 7 evolution of the cloud is not influenced . After a period

=1 dpi d of time t,; (2.16), the cloud reaches a barrier, where the po-
d P tential U decreases fronP, to 0. The subsequent history

D (d=2i+1)—+2D, exp(2pj—2pi) depends on the value gf For moderatey the cloud passes
=1 i IS this barrier and continues to move at the same rate. After
g2 J this, the integral ofl” will not change in time, and its value

X—=+4 E exp(2p—2p;) will determine the generating functiong#(y). Naive esti-

I 1<k I mates yield InZ(y)=—y?t,/2, which reproduces the pair
J correlation function ofé.
X+ 2 > exp2p—2p) Special consideration is needed|¥>ygng, Or if y is
ik F<ksmn close to*iygng, Whereygyg is defined by(2.13. Just this
J 9 y2U region determines the PDF’s and is consequently of special
T ay, e v-—=-". (220 interest. Note thay= *iy g COrresponds to the appearance

of a bound state near the pumping boundampnereU de-
We see that Eq(2.20 for ¥ resembles the Schdinger creases fronP, to zerg. If y>ygp,, then the front of the
equation. The initial condition for the equation can be foundcloud reaches the jump of the potential much earlier than

directly from the definition(2.18: The remainder of the cloudinside the potential wellis
damped due to the term withh and does not contribute to
U (t=0y,p, =11 8(pa)6(m;). 221 ). Ifly[>ysingthen 7(y)>exp(-y*1,/2); the asymptot-

ics of Z(y) is actually exponential in the case. If

The value of 7, in accordance witif2.19; is determined by Y= 1Ysind <Ysing then the cloud stays near the pumping

the integral of¥ over  andp. This integral is equal to unity bou_ndary for a |9ng time, that is the .Shapelbf|ns|de the

att=0, and then varies with increasing timeue toU+#0, regionU=P, varies in time comparatively 'slowly. Further-

since only the term withJ in (2.21) breaks the conservation MOre, & part ofl” percolates out to the region whetk=0,

of the integral. Thus, to fingZ we must establish the evoly- and the integral of¥” grows with increasingt|. Asy ap-

tion of the function? from t=0 to larget. proachesying, this stage lasts longer. One can say that the
Below we concentrate on the single-point statistics. Thd?ack of the cloudV” gives the right answer fog7(y). The

scheme can obviously be generalized for the passive scalfpPortant point is that ify is not very close tdysiyy then
difference. during the timeV¥ leaves the potential, the width oF in

Let us first describe the evolution qualitatively. The ini- terms of diffusive degrees of freedom is much less than

tial condition (2.21) shows that at=0 the functionW is  INLA. This means that the functio® is really narrow,
concentrated at the origin. Then it undergoes spreading in al¥hich justifies our consideration. _

directions, except fop,+...+ py, since the operator on the O a quantitative analysis it is convenient to pass to the
right-hand side 0{2.20 commutes withp, +...+py. This ~ Variablesé; (2.2). Since thes-dependence off is frozen

is a consequence of the condition diet1 (to be satisfie] after the initial evolution, it is possible to obtain an equation

which implies that during evolutiop,+...+py=0. This for the integral ofl aver
means that a solution dR.20 is W« d(pi+...+pg). The ~ B
function¥ is smeared diffusively with time, and also moves V(1. iba-1)= dd’dH doy W, (224

as a whole in some direction, which is determined by theWhere we also included an integration oy to remove the
ith the fi ivative if2.20. Th f ballisti . ;
term with the first derivative if2.20 e rate of ballistic factor 8(py -+ ...+ pg). Eq. for the function(2.24) is

motion is
-1 .2 2 27
d(d—2i+1) ~_bd o [dd -1 4 s yUg
(dpi)=D————. (2.22 W=~ ;1 Py L
] . (2.29
Therefore¥ describes a cloud, the center of which moves - _ )
according to the law where U is function of ¢, only which can be found by
) substituting intoU the “frozen” values of#'s. Qualitatively
pi=D —d(d—22| +1) t. (2.23 U has the same structure @sitself. One can conclude from

(2.25 that the cloud described lﬁf moves ballistically in
Effective diffusion coefficients for thejs decrease with in- the ¢; direction and spreads along other directions. We are
Creasingt, since in accordance W|tm23 the differences going to treat the situation when the cloud remains narrow
pk—pi » figuring in (2.20), are negative and grow in absolute duringthe relevant part of the evolution. Then one can inte-
value. Therefore diffusion oven stops when the character- grateW over all¢;, i>1 in a similar way as in the case with
istic values ofp; — p, becomes greater than unity. Note that #'s, and get a # equation for
the “frozen” values of do not depend ow, sinceU can be d-1
considered L,Jl’llfOI‘m during t_he mmal sta_ge of evolution. Af- ‘I’(¢1)=f H dep .
ter that they's are frozen, diffusion continues only over the 2
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The functionV satisfies Eq.
0 — —
— ¥ —y2U2V.

K [d(d®—1)
ddq 3 by
(2.26

The initial condition for Eq(2.26) is ¥ (t=0)=6(¢;). The
potentialU is obtained fronJ by the substitutions,— 0 for
a>0. In fact, for the directiori2.23 the potentiald depends
only onp,. The barrier is reached when=InLA. Passing
to the variabless; , we conclude that the potentilll dimin-
ishes fromP, at ¢, <¢, to zero atp,>p,, whereep, is
defined by(2.6).

The character of the solution of E(R.26 can be ana-

lyzed semiqualitatively in_terms of the widthof ¥ over ¢,

and its amplituddr. WhenW reaches the pumping boundary,
it stops there for a period of time. Then the widthnd the
amplitudeh are governed by the equations

dl bd Dd dh  Ddh y2P,h

a” P @ T
wherex=/d(d?—1)/12, DdX is the rate of cloud motion
along the¢, direction (whenU =cons}, andDd is the dif-
fusion coefficient for the¢,; direction. One can estimate
from the first equation the width~1/\. Then from the sec-

(2.27)

ond equation the heiglitdecreases or grows in time depend-

ing ony. The characteristig where the regime changes is of
the order|ygnd?~Dd\?/P,. We show this by consistent
calculations.

Equation(2.26 can be solved analytically, e.g., by the
Laplace transform over timee Taking the Laplace transform,

one gets
RSV B L C it} I
PV ()= 8(b1)= 5| 55—\~ 5| 7. V(P
- =
- U(g)¥(p). (2.29
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at ¢,> ¢, and smallp; the behavior can be found from
(2.28. The residue offd¢,;¥(p) at the pole determines
Z(y). To find the residue we must analyze the behavior of

WV (p) at 0< p,;< ¢, . At smallp there are two contributions
to ¥, proportional to

y°P, &

Dd )"

d(d>-1) d(d?>-1)
exp[w L, D,
(2.30

as follows from(2.28 at p=0. Therefore the residue, which
is determined by the integrald¢,V(p) over the region
1>, , is proportional to

d(d’—1) d(d?*—1)
exr{w b, A,

Substituting(2.6) here, we reproducé.12).

Let us now establish the applicability condition for the
above procedure. The expressi@3l) implies that the ex-
ponent with the minus sign i(2.30 makes a negligible con-
tribution to ¥ (p) at ¢,= ¢, . The condition is satisfied if

y2P2
Dd

o)
(2.3

Dd
Y2+ Yind #3> B,
Substituting(2.6) and (2.13 here, we obtain

>(d*In?LA) "L

yiiysing (2 32)

sing

Fory close to*iyg,y One must be careful, since then the
subtle analytic structure ofZ(y) will be relevant. As an
analysis ford=2 shows 7(y) has a system of poles along
the imaginary semiaxis starting fromiyg,4, and the pa-
rameter @*In>LA) ! determines the separation between the
poles. The poles correspond to bound states. The assertion
about the cut made in the previous subsection is related to
the restrictions of the saddle-point approximation which can-
not feel this fine pole structure; it yields the cut, which is a
picture averaged over the interpole distances. This averaged

We are interesting in the bound state described by this equ&icture is acceptable at the conditi@32).

tion. Solutions for¥(p) in the intervals =,0), (0,4,),

Note that the same criteriai2.32) justifies our assump-

(¢, ,) are exponential, and must be matched. The functiofion that the cloud described by is narrow during the rel-

V¥ (p) as a function op has two branch points at
Dd?(d>-1) y?P, Dd?(d?>—1)
24 27 24

p1= p2=

(2.29
coming from the regionsp,<¢, and ¢,>¢,, respec-
tively. When one of these branch points paspes0, ¥

starts to grow exponentially in time. This happens wlyen
passestiying, Moving along the imaginary axis.

The value of the generating functional is determined in

accordance with2.19 by the large-time behavior o¥ (t).

evant part of the evolution. Namely, the duration of the part
is determined by the time,;=p; * [see(2.29]. This is the
time that the cloud stays near the barrier. Foclose to
*iygng, the time can be estimated to bgi~Pa|Ysing |y
Fiysing- Then the diffusive widthyDdte,; of ¥ in the di-
rections¢, for a>1 is much less tham , precisely if(2.32
is satisfied. In principle the diffusive dynamicsdat 2 could
modify the noted fine pole structure g¢f; this problem re-
quires additional investigation.

The same procedure can be done for the passive scalar
differences. The cloud¥ should pass the region

This means that we should be interested in the behavior dt1<IN(L/ro) before it reaches the potential. Then it enters the

W(p) at smallp. The functionfd¢;¥(p) in (2.19 has a
pole atp=0 related to the asymptotic behavior

Fioren| - 2 Vggrmy 4|
Vp)=exp — 54 Vagz—1) %1/

region U=2P, with some finite diffusive width. One can
note, however, that this is irrelevant. The only characteristics
of the potential that are needed are its valbere 2P, in-
stead ofP,) and the length of the path inside [ivhich is
Ap1=In(ryA) instead of InLA)]. The evolution of¥# goes
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in the same way as in the case of single-point statistics. The expressior{3.8) enables one to find the following
Again, we get(2.14 and the criterion analogous {@.32. averages in accordance witB.3):

In this subsection we presented an analysis based on the
dynamical equatior(2.20 for the auxiliary object¥. The
results obtained can be reproduced also in alternative lan-
guage: for this we must introduce another auxiliary object,
the equation for which is stationary. The corresponding
scheme, which might be interesting from a methodological

2= 2P2 A
<9A>—d(d_—1)D n(LA),

4P
(A60)%)= grg—17p M(roA). (3.10

point of view, is sketched in the Appendix.

3. CALCULATION OF PDF

In this section we calculate the PDF% for the objects

The expression&3.10 can also be obtained by direct expan-
sion of Z(y) from (2.12) or (2.14). The universal tai(3.9) is
realized if

9,>(62dIn(LA), A6,>((A0y)2dIn(reA).
(3.11)

(1.8 and (1.10. The most convenient way to do so is by Since both logarithms are assumed to be large, we conclude

using the relation

} dy .

D)= f 5 ORIy D) AY), (3.0
whered is

ﬁzf drB(r)6(0yr). (3.2

Let us recall that knowingZ(), one can also restore the
moments ofd:

(3.3

The generating functional if3.1) is determined by

(91~ [ avloA).

(2.12 or (2.14. Being interested in the main exponential

dependence of the PDF'’s for the objetts8) and(1.10), we
can forget about preexponents. Then

d
AY) = f z—iexﬂ—iywq[l— VYY), (39

where for the single-point statistics and for the statistics ot{)

the passive scalar difference respectively

, _Ddd*-1) , Dd*d’-1) 35

sing 12P2 ' sing 24P2 ) .
d(d+1) d(d+1)

gq= 6 In(LA), i In(roA). (3.6

Since bothg defined by(3.6) are regarded to be much larger
than unity, the integral3.4) can be calculated in the saddle-
point approximation. The saddle-point value is

. ysing
=i ———. 3.
Yo T qlyZ 07 80
Then
2 2
ing
In.%(ﬁ)=q(1— 1+ ys.(;% ) (3.9
This expression leads to the exponential tail
|n?7)(ﬁ):_ysind 19|v (3.9

realized af9|>q/yng. The coefficientynq in (3.9 deter-
mined by(2.13 is in agreement with the result obtained in
Ref. 12.

that there exists a relatively wide region where the statistics
of 9 is approximately Gaussian; the region is determined by
the inequalities inverse t8.11).

Let us discuss the applicability conditions of the expres-
sion (3.9). First, if one calculates the passive scalar PDF by
the saddle point method, then the position of the saddle point
is determined by2.32) if

P
ﬁ<d2\/32|n2(LA).

The applicability domain of the saddle-point method over-
laps the region of validity of2.12) for the generation func-
tion Z(y). The above inequalities are correct fé ; for
A6, one must replace lIh(\) with In(ryA). Second, fluctua-
tions ofy have to be small compared to the distance between
Ysp @ndYging. This gives the same criteria3.12).

Let us stress that though formally our procedure is in-
correct aty=d?\/P,/D In}(LA) the answer will be the same:
the PDF will be determined by the exponential {&8il9). The
oint is that the character of the integi@.1) at such ex-
remely larged will be determined by the position of the
singular point of Z(y) nearest to the real axis. This is just
iYsing: l€ading to(3.9). To conclude, only the character of
the preexponent in A9¥) is changed at ¥
~d?\P,/D In(LA), whereas the principal exponential be-
havior of () remains unchanged there.

(3.12

4. CONCLUSION

The single-point statistics of the passive sc#land the
statistics of its difference\@ are traditional objects which
carry essential information about correlation functions of the
passive scalar in the convective interval. We examined the
passive scalar in the large-scale turbulent flow, where the
correlation functions logarithmically depend on scale. Since
the logarithms are actually not very large, it is useful to have
all the PDF's of@ andA6. That was the main purpose of our
investigation, which was performed in the context of the
Kraichnan model. The single-point PDF for the passive sca-
lar and the PDF for the passive scalar differences can be
obtained from(3.8) if we substitute/\—w(]ifl wherer g4 is the
diffusive length. Though both the advecting velocity and the
pumping force in the Kraichnan model are considered
S-correlated in time, we hope that our results are universal,
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that is, are true in the limit when the size of the convective 9 9 y2U

interval tends to infinity for arbitrary temporal behavior of 2p,)77km77kna77 ¢977 E- WE=O. (A4)
n

the velocity and pumping. The reason is that the spectral

transfer time grows with increasing convective interval, andThe boundary condition for EqA4) follows from the defi-

in the limit is much larger than the correlation times of the nition (A1): for large enougtp;,7; the potentialU=0 at

velocity and pumping. t=0 and also remains zero at finite timesTherefore the
We believe also that the analytic scheme proposed in ouhtegral (A1) must be equal to unity in the case. Thus

work could be extended for other problems related to thez (y,p,#) must tend to unity wherg, 7— .

passive scalar statistics. Note as an example Ref. 13 where a Let us rewrite Eq(A4) in terms of the variable€.2):
modification of the scheme enabled one to find the statistics

of the passive scalar dissipation. It is also useful for investi- (I'y+y(E;+£&)=0, E=E;+¢, (A5)
gating the large-scale statisti¢gen scales larger that the ) — )
pumping length of the passive scalar see Ref. 25. We also & _ J i d(d"-1) i_ ﬂ (A6)
hope that it is possible to go beyond the case of the large- ﬁf d¢, Dd’
scale VeLOF'WRf'?'d gzmgfga perturbation technique of the type d—1 )
proposed in Refs. . = 22 a¢2 +22 XA 20— 2p1) —— —
We are grateful to E. Balkovsky, M. Chertkov, G. Falk- =K ik
ovich, K. Gawedzki and M. Olshanetsky for useful discus- Jd 9
sions. This work was supported in part by the Einstein and +4i<§k:<n eXp(sz—zPi)”knﬁ I
Minerva Centers at the Weizmann Institute, by grants from e
the Minerva Foundation, Germany and the Israel Science J
Foundation, by the Russian Fund for Fundamental Research +2i<k2mn eXp2pi— ZP')”km”knanlm I
(I. K., M. S., Grant 98-02-17814 by Soros FoundatiofM. '
S., Grant a98-674and by INTAS (M. S., Grant 96-045)7 (A7)

within the ICFPM program. Here U as a function of¢; is equal toP, inside a region

restricted by¢, and ¢1 (where ¢, are functions of vari-

ablesg,,...,¢4,7) and tends to zero outside the region. We

solve Eq.(A5) using perturbation theory ovér, £ Then the

zero-order equation is
Here we present an alternative way to obtain the results .

(2.12 and(2.14. We use an auxiliary quantity. I'E,=0.

APPENDIX

(A8)

Equation (A8) can easily be solved ap, <¢,<¢y ; the

=(v.p0.70)= | Zpmormon answer is

p(0)=pgy.,7(0)= g
(A1)

o [ a2

SO

J(Y)=E(y,0,0).

The functionZ can be also defined as

(A2)

=(v.p0.70)=lim [ 1 dputmy Witypm), (A9

t—oo
where V¥ is governed by Eq(2.20 with initial condition
P(t=0y,p,7)=8(p—po) 8(n— 71y). The equation forZ
can be found from Eqg1.32 and(Al):

d 02 d 2 d J
+ d—2i+1)—

R D op e I Ret
2

+22 exp2p;—2p;) 772+4.<E<, exp(2py
1)

J
exp 2
pl)nkjan Er i<k2m’n P(2px

AN

1= > exp{ —(
yP,
N+ )
Dd

—d1)}, (A9)

where = \/d(d?—1)/12Dd\ is the rate of the cloud mo-
tion along thep, direction. The resul{A9) can be obtained
using the inequality\/)\2+y2P2/D InLA>1. The deriva-
tive 95,/d¢,=0 at p,<¢, . However,E,# 1 in this re-
gion. This is due to the following fact: this region corre-
sponds to the evolution oF when its initial position is to the
left of potential U [see (A3)]. During evolution, cloud¥
passes the region df and its integral ovep, n changes.
Then E is not equal to 1. Only when the distance between
the initial position and potential is of order?hA will the
diffusion of the cloud lead to smallness of the partiothat
passes the potentiél, andE becomes closer to unity. Thus,
function E has a long tail from the potential pointing toward
negative¢,, where it is not equal to 1. The procedure of
finding E from Eq. (A8) corresponds to the geometrical op-
tics approximation(taking into account only derivatives in
propagation direction; this allows one to get the fact of
propagatioh This tail of £ in this approximation is none

I

A2+y2P,/Dd—\)
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other than the shadow of potentidl Higher orders of per-
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diffraction corrections.
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side and solve the equatiof.; is some exponential function
with scale of the order 1. Thep=E,~ZE;. Note thatyE, is
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2
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