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We consider advection of a passive scalaru(t,r ) by an incompressible large-scale turbulent flow.
In the framework of the Kraichnan model all PDF’s~probability distribution functions! for
the single-point statistics ofu and for the passive scalar differenceu(r1)2u(r2) ~for separations
r12r2 lying in the convective interval! are found. ©1999 American Institute of Physics.
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INTRODUCTION

We treat advection of a passive scalar fieldu(t,r ) by an
incompressible turbulent flow; the role of the scalar can
played by temperature or by pollutant density. The veloc
field is assumed to contain motions from some interval
scales restricted from below byLv . A steady situation with a
permanent random supply of the passive scalar is conside
We wish to establish statistics of the passive scalaru for
scales that are less than both the scaleLv and the pumping
scaleL, and larger than the diffusion scaler dif ~for definite-
ness we assume thatL,Lv!. Such a convective interval o
scales exists if the Peclet number Pe5L/r dif is large enough;
we will assume this condition. Since all scales from the c
vective interval are assumed to be smaller thanLv , we will
discuss advection by a large-scale turbulent flow. The pr
lem is of physical interest for dimensionalitiesd52,3, but
formally it can be treated for an arbitrary dimensionalityd of
space. Below we will treatd as a parameter. In particular, a
expressions will be true for a space of high dimensionalityd.

Description of the small-scale statistics of a passive s
lar advected by a large-scale solenoidal velocity field i
special problem in turbulence theory. This problem w
treated consistently from the very beginning and some rig
ous results have been obtained, which is quite unusual f
turbulence problem. Batchelor~see Ref. 1! examined the
case of an external velocity field being so slow that it do
not change during the time of the spectral transfer of
scalar from the external scale to the diffusion scale. Th
Kraichnan~see Ref. 2! obtained plenty of results in the op
posite limit of a velocity field delta-correlated in time. Th
pair correlation function of the passive scalar^u~r !u~0!& was
found to be proportional to the logarithm ln(L/r), and the pair
correlation function of the passive scalar difference^@u(r )
2u(0)#2& was found to be proportional to ln(r/rdif) in both
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cases. The assertions are really correct for any temporal
tistics of the velocity field~see Refs. 3 and 4!. Thus we are
dealing with the logarithmic case which is substantially si
pler than cases with power-like correlation functions usua
encountered in turbulence problems~see Refs. 5–7!.

Now about high-order correlation functions of the pa
sive scalar. As long as all distances between the points
much less thanL, the 2n-point correlation functions ofu are
given by their reducible parts~that is, are expressed via prod
ucts of the pair correlation function! up ton; ln(L/r), where
r is either the smallest distance between the points orr dif

depending on which is larger~see Ref. 4!. The reason for
such Wick decoupling is simply the fact that reducible pa
contain more logarithmic factors~which are considered a
the large ones! than non-reducible parts do. Consistent c
culations of the fourth-order correlation function of the pa
sive scalar atd52 ~see Ref. 8! confirm the assertion. There
fore, e.g., the single-point PDF ofu has a Gaussian core~that
describes the first moments withn, ln Pe! and a non-
Gaussian tail~that describes moments withn. ln Pe!. The
tail appears to be exponential~see Refs. 3 and 4!. The same
is true of the passive scalar differenceDu5u(r )2u(0),
where instead of ln Pe we should take ln(r/rdif). The tails do
not depend on ln Pe or on ln(r/rdif), and contain only coeffi-
cients that depend on the statistics of the advecting veloc

Correlation functions of the passive scalar can be writ
as averages of integrals of the pumping along Lagrang
trajectories~see, e.g., Ref. 9!. For example, the pair correla
tion function ^u~r !u~0!& is proportional to the average tim
needed for two points moving along Lagrangian trajector
to run from the distancer to the distanceL. Generally, cor-
relation functions of a passive scalar are determined by s
tral transfer via evolution of Lagrangian separations up to
scale L. For the large-scale velocity field, the Lagrangi
© 1999 American Institute of Physics
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dynamics is determined by the stretching matrixsab

5¹bva and, consequently, the statistics of the matrix de
mines correlation function of the passive scalar. For
ample, the coefficient of the logarithm in the pair correlati
function of the passive scalar isP2 /l ~see Refs. 1–4! where
P2 is the pumping rate ofu2 and l̃ is Lyapunov exponen
that is the average of the largest eigenvalue of the matrixŝ.
The coefficients in the exponential tails are more sensitiv
the statistics ofŝ; specifically, they depend on the dime
sionless parameterl̃t ~see Ref. 4! wheret is the correlation
time of ŝ. The motion of the fluid particles in the rando
velocity field resembles in some respects random walks,
one should remember that correlation lengths of both
advecting velocity and of the pumping are much larger th
scales from the convective interval we are interested in. T
the situation is opposite to one usually encountered in s
state physics, where, e.g., random potential is short-ra
correlated in space.

Since ln(L/r) is really not very large, it is of interest to
find all PDF’s for the single-point statistics ofu and for the
passive scalar differenceDu. It is possible to do this for the
Kraichnan short-correlated casel̃t!1 when the statistics o
ŝ can be regarded to be Gaussian. An attempt to do this
made in Refs. 10 and 11 in terms of the statistics of the m
eigenvalue of the matrixŝ. Unfortunately, the scheme work
only for the dimensionalityd52 where the matrixŝ has a
single eigenvalue. This was noted in Ref. 12 where also
correct coefficient in the exponential tails for an arbitra
dimensionality of spaced was found. Here, we develop
scheme enabling one to obtain all PDF’s for arbitraryd. The
scheme is also interesting from a methodological point
view. For example, its modification enables one to calcu
the statistics of local dissipation~see Ref. 13!.

The paper is organized as follows. In Sec. 1 we find
path integral representation for the simultaneous statistic
the passive scalar. In Sec. 2 we analyze the generating f
tional for correlation functions of the passive scalar in t
convective interval of scales. Using different approaches
obtain the functional and establish the applicability con
tions of our consideration. In Sec. 3 we find explicit expre
sions for the single-point PDF and for the PDF of the pass
scalar difference. In the Conclusion we briefly discuss
results obtained.

1. GENERAL RELATIONS

The dynamics of the passive scalaru advected by the
velocity field v is described by Eq.

] tu1v¹u2k¹2u5f. ~1.1!

Here, the term with the velocityv describes the advection o
the passive scalar, the next term is diffusive~k is the diffu-
sion coefficient!, and f describes a pumping source of th
passive scalar. Bothv(t,r ) and f(t,r ) are assumed to b
random functions oft and r . We regard the statistics of th
velocity and source to be independent. Therefore, all co
lation functions ofu are to be treated as averages over b
statistics.
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A. Simultaneous statistics

The sourcef is believed to possess Gaussian statis
and to bed-correlated in time. The statistics is entirely cha
acterized by the pair correlation function

^f~ t1 ,r1!f~ t2 ,r2!&5d~ t12t2!x~ ur12r2u!, ~1.2!

where we assume that the pumping is isotropic. The func
x(r ) is assumed to have a characteristic scaleL, which is the
pumping length. We will be interested in the statistics of t
passive scalar on scales much smaller thanL.

Simultaneous correlation functions of the passive sca
u can be represented as coefficients in the expansion ovy
of the generating functional

J ~y!5 K expH iyE drb~r !u~0,r !J L , ~1.3!

whereb is a function of the coordinates and angular brack
denote averaging over both the statistics of the pumpinf
and the statistics of the velocityv. The generating functiona
J (y) contains complete information about the simultaneo
statistics of the passive scalarq. Specifically, knowingJ (y)
one can reconstruct the simultaneous PDF of the passive
lar; the problem is discussed in Sec. 3.

If characteristic scales ofb in ~1.7! are much larger than
the diffusion scaler dif , then it is possible to neglect diffusio
when treating the generating functional~1.3!. Then the left-
hand side of Eq.~1.1! describes simple advection, and it
reasonable to consider a solution of Eq. in terms of Lagra
ian trajectories%(t) introduced by Eq.

] t%5v~ t,% !. ~1.4!

We label the trajectories withr , which are the positions o
the Lagrange particles att50: %(0,r )5r . Next, introducing
ũ(t,r )5u(t,%), we rewrite Eq.~1.1! as] tũ5f, which leads
to

u~0,r !5E
2`

0

dtf~ t,% !. ~1.5!

Here we have taken into account that att50 the functionsu
and ũ coincide. Starting with~1.5! and exploiting Gaussian
pumping statistics, we can average the generating functio
~1.3! explicitly over the statistics. The result is

J ~y!5K expF2
y2

2 E
2`

0

dt UG L , ~1.6!

U5E dr1dr2b~r1!b~r2!x~ u%12%2u!, ~1.7!

where angular brackets mean averaging over the statistic
the velocity field only.

Being interested in the single-point statistics ofu we
should takeb(r )5d(r ). But this is impossible since we
have neglected diffusion. We takeb(r )5dL(r ) instead,
where the functiondL(r ) tends to zero atLr .1 fast
enough, and is normalized by the condition

E drdL~r !51.
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Then the generating functional~1.6! will describe the statis-
tics of an object

uL5E drdL~r !u~r !, ~1.8!

smeared over a spot of sizeL21. If r difL!1, then the sta-
tistics of the object is not sensitive to diffusivity. On th
other hand, ifLL@1, then knowing the correlation function
of uL , we can reconstruct single-point statistics due to
logarithmic character of the correlation functions. To obta
single-point correlation functions one should substitute s
ply L→r dif

21 into the correlation functions ofuL . The above
inequalitiesLr dif!1 andLL@1 are compatible because o
Pe@1. If we are interested in the statistics of the pass
scalar differences in points with a separationr0 ~where
r 0@r dif! then instead ofdL(r ) we should take

b~r !5dL~r2r0/2!2dL~r1r0/2!. ~1.9!

Then the generating functional~1.6! will describe the statis-
tics of an object

DuL5uL~r0/2!2uL~2r0/2!. ~1.10!

Again, correlation functions of the passive scalar differen
can be found from correlation functions ofDuL after the
substitutionL→r dif

21.

B. Path integral

Below, we treat advection of the passive scalar by
large-scale velocity field, that is, we assume that the velo
correlation lengthLv is larger than the scales from the co
vective interval. Then for the scales one can expand the
ference

va~r1!2va~r2!5sab~ t !~r 1b2r 2b!, sab5¹bva .
~1.11!

Heresab(t) can be treated as anr -independent matrix field
Then Eq.~1.4! leads to

] t~%1,a2%2,a!5sab~ t !~%1,b2%2,b!. ~1.12!

A formal solution of Eq.~1.12! is

%1,a2%2,a5Wab~r 1,b2r 2,b!,

] tŴ5ŝŴ, Ŵ5I expS 2E
t

0

dt ŝ D , ~1.13!

where I denotes antichronological ordering. Note th
detŴ51; this property is a consequence of Trŝ50 and the
initial conditionŴ51 at t50. The Lagrangian difference in
~1.7! is now rewritten as

u%12%2u5A~r 1a2r 2a!Bab~r 1b2r 2b!, B̂5ŴTŴ,
~1.14!

where the subscriptT denotes a matrix transpose. Note th
detB̂51 since detŴ51.

The generating functionalT (y) ~1.6! can be explicitly
calculated in the Kraichnan case~see Ref. 2! when the sta-
tistics of the velocity isd-correlated in time. Then the veloc
e
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ity statistics is Gaussian and is entirely determined by
pair correlation function, which in the convective interval
written as

^va~ t1 ,r1!vb~ t2 ,r2!&5d~ t12t2!@V 0dab2K ab~r12r2!#,

~1.15!

K ab~r !5D~r 2dab2r ar b!1
~d21!D

2
dabr 2. ~1.16!

HereV 0 is a huger-independent constant andD is a param-
eter characterizing the amplitude of the strain fluctuatio
The structure of expression~1.16! is determined by the as
sumed isotropy and spacial homogeneity, and by the inc
pressibility condition¹v50. Then the statistics ofŝ is
Gaussian and is determined by the pair correlation funct
which can be found from Eqs.~1.15! and ~1.16!:

^sab~ t1!smn~ t2!&5D@~d11!damdbn2dandbm

2dabdmn#d~ t12t2!. ~1.17!

Note that the correlation function~1.17! is r -independent, as
it should be. We see from~1.17! that the parameterD char-
acterizes the amplitude ofŝ fluctuations.

Averaging over the statistics ofŝ can be replaced by a
path integral over unimodular matricesŴ(t) with a weight
exp(iI ). The effective actionI 5*dtL0 is determined by
~1.17!:

i L052
1

2d~d12!D
@~d11!Tr~ ŝTŝ !1Tr ŝ2#. ~1.18!

Then the generating functional~1.7! can be rewritten as the
following functional integral over unimodular matrices

J ~y!5E DŴ expF E
2`

0

dtS i L02
y2

2
U D G , ~1.19!

U5E dr1dr2b~r1!b~r2!x

3@A~r 1a2r 2a!Bab~r 1b2r 2b!#. ~1.20!

Here, we should substituteŝ5] tŴ(Ŵ)21 and recall the
boundary conditionŴ51 at t50.

Some words about the ‘‘potential’’U ~1.7! figuring in
~1.20!. The characteristic value ofr12r2 in the integral~1.7!
is of order L21 for b(r )5dL(r ). Since we assumeLL
@1, then for single-point statisticsU'P2 , where P2

5x(0), if B is not very large. In particular, it is correct a
moderate timesutu, sinceB̂51̂ at t50. With increasingutu the
argument ofx in ~1.20! grows andU tends to zero when the
argument ofx becomes greater thanL. For the passive scala
difference whenb is determined by~1.9! the situation is a bit
more complicated. ThenU is a difference of two contribu-
tions. The first contribution behaves as for single-point s
tistics. The second contribution containsx with the argument
determined byr12r2'6r0 . Then att50 the meaning of
the second contribution is determined again byP2 , but it
vanishes with increasingutu earlier than the first contribution

The path integral representation~1.19! indicates that we
reduced our problem to the quantum mechanics withd221
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degrees of freedom. Nevertheless to solve the problem
should perform an additional reduction of the degrees
freedom. The conventional way to do this is passing to
genvalues, say, of the matrixB̂ figuring in ~1.20! ~see, e.g.,
Ref. 14! and excluding angular degrees of freedom. Just
way was used by Bernard, Gawedzki and Kupiainen~see
Ref. 12!. Then the authors using known facts about the qu
tum mechanics associated with the eigenvalues~see, e.g.,
Ref. 15! have found the coefficient in the exponential tail
the single-point PDF ofu. Unfortunately this way is not very
convenient to find the whole PDF. To do this we will use
special representation of the matrixŴ in the spirit of the
nonlinear substitution introduced by Kolokolov~see Ref.
16!. That is the subject of the next subsection.

C. Choice of parametrization

To examine the generating functionalT (y) we use a
mixed rotational-triangle parametrization

Ŵ5R̂T̂, B̂T̂TT̂, ~1.21!

whereR̂ is an orthogonal matrix andT̂ is a triangular matrix:
Ti j 50 for i . j . The parametrization~1.21! is the direct gen-
eralization of the 2d substitution suggested in Ref. 17. No
that detT̂51 since detŴ51. Note also that the matrixB̂
introduced by~1.14! does not depend onR̂, as is seen from
~1.21!. That is a motivation to exclude the matrixR̂ from
consideration, integrating over the corresponding degree
freedom in the path integral~1.19!. A Jacobian appears in th
integration. To avoid an explicit calculation of the Jacobia
which needs a discretization over time and then an anal
of an infinite matrix ~see Ref. 10!, we use an alternative
procedure described below.

Let us examine the dynamics of the matrixT̂. It is de-
termined by the equation

] tTi j 5S i i Ti j 1 (
i ,k< j

~S ik1Ski!Tk j , ~1.22!

following from Eqs. ~1.13! and ~1.21!. Here we used the
notations

Ŝ5R̂TŝR̂. ~1.23!

Next introducing the quantities

Tii 5exp~r i !, Ti j 5exp~r i !h i j , if i , j , ~1.24!

we rewrite Eq.~1.22! as

] tr i5S i i , ~1.25!

] th i j 5~S i j 1S j i !exp~r j2r i !1 (
i ,k, j

~S ik1Ski!

3exp~rk2r i !hk j . ~1.26!

Comparing~1.13! with ~1.21!, one can find the following
expression forÂ5R̂T] tR̂:
e
f

i-

is

-

of

,
is

Ai j 5S i j if i . j , Ai j 52S j i if i , j . ~1.27!

One can easily check that the irreducible pair correlat
function ofS i j has the same form as fors i j @see Eq.~1.17!#:

^S i j ~ t1!Smn~ t2!&5D@~d11!d imd jn2d ind jm

2d i j dmn#d~ t12t2!. ~1.28!

Furthermore, the average value ofS i j is nonzero~see Ref.
10!:

^S i j &52D
d~d22i 11!

2
d i j . ~1.29!

Nonzero averages ofS i j are related to Lyapunov exponen
~not only the first one!, see Ref. 18~for our model see also
Ref. 19!. To obtain~1.29! one should take into account tha
the matrix R̂ propagates backward in time sinceR̂51 is
fixed at t50 and we treat negativet. Solving Eq. Â

5R̂T] tR̂ for R̂ on a small intervalt we get

R̂~ t2t!'R̂~ t !F12E
t2t

t

dt8Â~ t8!G .
Then with the same accuracy we get from Eq.~1.23!

Ŝ~ t2t!'R̂T~ t !ŝ~ t2t!R̂~ t !

2F Ŝ~ t2t!,E
t2t

t

dt8Â~ t8!G . ~1.30!

The average value ofŜ arises from the second term on th
right-hand side of~1.30!. The explicit form of the average
can be found using

K S i j ~ t2t!E
t2t

t

dt8Smn~ t8!L
5

D

2
@~d11!d imd jn2d ind jm2d i j dmn#. ~1.31!

Here we utilized Eq.~1.28! and replaced the integral

E
t2t

t

dt8d~ t2t2t8!

by 1/2. The reason is that the correlation function ofŝ actu-
ally has a finite correlation time, and therefored(t) ~repre-
senting this correlation function! should be replaced by a
narrow function symmetric undert→2t. Then we will get

1/2. ExpressingÂ via Ŝ from ~1.27! in ~1.30! and calculating
its average using~1.31! we get the answer~1.29!.

The expressions~1.25!, ~1.26!, ~1.28!, and~1.29! entirely
determine the stochastic dynamics ofr i andh i j . Using the
conventional approach~see Refs. 20–24! correlation func-
tions of these degrees of freedom can be described in te
of a path integral overr i ,h i j and over auxiliary fields which
we denote bymi and m in ( i ,n). This integral should be
taken with the weight exp(i*dtL), where the Lagrangian is
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L5 (
a51

d

maF] tra1D
d~d22a11!

2 G1
iD

2 Fd(
a

ma
2

2S (
a

maD 2G1 iDd(
i , j

exp~2r j22r i !m i j
2

12iDd (
i ,k, j

m i j m ik exp~2rk22r i !hk j

1(
i , j

m i j ] th i j 1 iDd (
i ,k,m,n

m imm inhkmhkn

3exp~2rk22r i !. ~1.32!

Since the matrixB̂ in accordance with~1.21! does not de-
pend onR̂ it is enough to know the statistics ofra andh i j to
determine the average~1.6!. Therefore, instead of~1.19! we
get

J ~y!5E DrDhDmDm expF E
2`

0

dtS i L2
y2

2
U D G .

~1.33!

Here U is determined by~1.20!, where the matrixB̂ is de-
termined by Eqs.~1.21! and ~1.24!.

Thus we obtained the expression for the generating fu
tional ~1.3! in terms of the functional~path! integral which is
convenient for the analysis presented in the subsequent
tion.

2. GENERATING FUNCTIONAL

Here we calculate the generating functional~1.3! for a
single-point statistics ofu that is of the object~1.8! corre-
sponding tob(r )5dL(r ), and also the statistics of the di
ference that is of the object~1.10! corresponding to~1.9!.
The starting point for the subsequent consideration is
expression~1.33!. There are different ways to examin
J (y). We will describe two schemes leading to the sa
answer but carrying in some sense complementary infor
tion. We also believe that consideration of the differe
schemes is useful from a methodological point of view.
modification of the second scheme is presented in the
pendix.

A. Saddle-point approach

The first way to obtain the answer for the generat
functional ~1.3! is by using the saddle-point approximatio
for the path integral~1.33!. The inequalities justifying the
approximation areLL@1 for the object~1.8! andLr @1 for
the object~1.10!.

As we will see, large values of the differencesr i2rk

( i ,k) will be relevant for us. Then fluctuations ofh andm
are suppressed and it is possible to neglect the fluctuati
Therefore we can omit the integration overh andm in ~1.33!,
substitutingh5m50 into ~1.32!. After that we obtain a re-
duced Lagrangian:
c-

ec-

e

e
a-
t

p-

s.

L r5 (
a51

d

maF] tra1D
d~d1122a!

2 G
1

iD

2 Fd(
a

ma
22S (

a
maD 2G . ~2.1!

Now, to obtainJ (y) one should integrate the exponent
~1.33! ~with L r! over ra and ma . To examine~2.1! it is
convenient to pass to new variablesfa5Oabrb and m̃a

5Oabmb , whereÔ is an orthogonal matrix. We make th
following transformation:

f15A 3

d~d221!
@~d21!r11~d23!r21...1~12d!rd#,

f25...,..., fd5
1

Ad
@r11r21...1rd#. ~2.2!

Then the expression~2.1! will be rewritten as

i L r5 i (
a51

d

m̃a] tfa2
Dd

2 (
a51

d21

m̃a
2

1 i
Dd

2
Ad~d221!

3
m̃1 . ~2.3!

The Lagrangian~2.3! is a sum over different degrees o
freedom. The dynamics off1 is ballistic, whereas the dy
namics offa for d.a.1 is purely diffusive. The condition
detT̂51 meansfd50, correspondingly the dynamics offd

determined by the Lagrangian~2.3! is trivial: ] tf t50. We
will see that times determining the main contribution to t
generating functional are large enough thatf1@fa for the
relevant region. Therefore, the potentialU ~1.20! depends
essentially only onf1 , and it is possible to integrate explic
itly over, fa and m̃a for a.1. After that we are left with
only one degree of freedom, which is described by
Lagrangian

i L15 im̃1S ] tf11
Dd

2
Ad~d221!

3 D 2
Dd

2
m̃1

2. ~2.4!

Neglecting allfa for a.1 and inverting transformation
~2.2! we obtain

r1'A3~d21!

d~d11!
f1 , ra'

d22a11

d21
r1 . ~2.5!

We will see below that the characteristic valuef1@1.
Therefore the characteristic value ofer1 is much larger than
otherera, and we conclude that the potentialU depends re-
ally only onr1 . For the case of the single-point statistics, t
characteristic value of the differencer12r2 in ~1.20! is L21.
Then it follows from ~1.21! and ~1.24! that the potentialU
decreases fromP2 to zero near the pointr15 ln(LL), which
is near the pointf15fL , where

fL5Ad~d11!

3~d21!
ln~LL!. ~2.6!

For the difference the potential increases from zero to 2P2 at
f15fR , where
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fR5Ad~d11!

3~d21!
ln

L

r 0
, ~2.7!

and then decreases from 2P2 to zero nearf15fL . The
expressions~2.6! and ~2.7! determine the characteristic va
ues off1 , which are actually large, sinceLL@1 or L/r 0

@1; this justifies our conclusions.
Now we can employ the saddle-point approximation:

ln J ~y!'E
2`

0

dtS i L12
y2

2
U DU

inst

, ~2.8!

where we should substitute solutions of the extremal con
tions, which we will call instantonic equations. The insta
tonic equations, which can be found from extremal con
tions for i L12y2U/2, are

] tf11
Dd

2
Ad~d221!

3
52 iDdm̃1 , ~2.9!

] tm̃15 i
y2

2

]U

]f1
. ~2.10!

Eqs. conserve the ‘‘energy’’

2 i
Dd

2
m̃1Ad~d221!

3
1

Dd

2
m̃1

21
y2

2
U. ~2.11!

The conservation law is satisfied sincei L12y2U/2 does not
explicitly depend ont. The ‘‘energy’’ ~2.11! is equal to zero,
since ast→2` the value ofm̃1 should tend to zero. This
property can be treated as the extremal condition wheni Lr

2y2U/2 is varied over the initial value off1 . Equating the
‘‘energy’’ ~2.11! to zero, we can expressm̃1 via f1 . Next,
since~2.11! is zero, the saddle-point value ofJ (y) ~2.8! can
be written asi *df1m̃1 , where the integral overf1 goes
from zero to infinity.

Substituting the expression form̃1 in terms off1 into
i *df1m̃1 , we get for the single-point statistics

ln J ~y!.
d~d11!

6 F12A11
12y2P2

Dd2~d221!
G ln~LL!.

~2.12!

Note that the expression~2.12! has~as a function ofy! two
branch pointsy56 iysing, where

ysing
2 5

Dd2~d221!

12P2
. ~2.13!

The same procedure can be done for the passive scala
ference, or, more precisely, for the object~1.10!. Taking into
account the presence of the jumps~2.6! and ~2.7! in the po-
tential U, we get an answer slightly different from~2.12!:

ln J ~y!.
d~d11!

6 F12A11
24y2P2

Dd2~d221!
G ln~r 0L!,

~2.14!

ysing
2 5

Dd2~d221!

24P2
. ~2.15!
i-
-
i-

if-

Note that~2.14! does not depend on the pumping scaleL, but
still depends on the cutoffL.

The characteristic value off1 is determined by the
quantity ~2.6! which is much larger than unity. Then it fol
lows from ~2.5! that exp(2rj22ri)!1, i . j , ~excluding a
short initial stage of evolution! and we see from~1.32! that
fluctuations of the fieldsh are suppressed in compariso
say, with ra . This justifies neglecting the fieldsh and m
leading to the reduced Lagrangian~2.1!. Next, the dynamics
of fa for a.1 is diffusive, and it follows from~2.3! that the
characteristic value offa can be estimated to beADdutu. As
follows from ~2.3!, ] tf1;Dd5/2, and we find from~2.6! the
instantonic lifetime

t lt5D21d22 ln~LL!, ~2.16!

which determines times producing nonzero contributions
the effective action. Atutu;t lt , the characteristic values o
fa for a.1 are of orderAln(LL)/d, and we conclude that

fa

f1
;

1

dAln~LD!
!1 ~2.17!

at timesutu;t lt . The inequality~2.17! justifies passing to the
Lagrangian~2.4!. The same arguments can be applied to
generating functional for the passive scalar difference;
only modification is in the substitution ln(LL)→ln(r0L).

There are also additional applicability conditions for t
results ~2.12! and ~2.14!. To establish the conditions, on
should go beyond the main order of the saddle-point appr
mation. It will be more convenient for us to develop an a
ternative scheme, which enables one to find the conditi
more simply. That is the subject of the next subsection.

B. Schrö dinger equation

Here we present another way to get the answers~2.12!
and ~2.14!. As before, we start with the path integral repr
sentation~1.33! for the generation functionalJ (y).

Unfortunately it is impossible to get a closed equati
for J (y). To avoid the difficulty we introduce an auxiliar
quantity

C~ t,y,r0 ,h0!5E DrDhDmDm expF E
2t

0

dt8

3S i L2
y2

2
U D GU

r~2t !5r0 ,h~2t !5h0

. ~2.18!

It follows from the definition~2.18! that

J ~y!5 lim
t→`

E ) dradh i j C~ t,y,r,h!. ~2.19!

Eq. for the functionC can be obtained from the expressio
~1.32! and the definition~2.18!:
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] tC5
Dd

2 F(
i 51

d
]2

]r i
22

1

d S (
i 51

d
]

]r i
D 2

2(
i 51

d

~d22i 11!
]

]r i
12(

i , j
exp~2r j22r i !

3
]2

]h i j
2 14 (

i ,k, j
exp~2rk22r i !

]

]h i j

3
]

]h ik
hk j12 (

i ,k,m,n
exp~2rk22r i !

3
]

]h im

]

]h in
hkmhknGC2

y2U

2
C. ~2.20!

We see that Eq.~2.20! for C resembles the Schro¨dinger
equation. The initial condition for the equation can be fou
directly from the definition~2.18!:

C~ t50,y,r,h!5) d~ra!d~h i j !. ~2.21!

The value ofJ , in accordance with~2.19!; is determined by
the integral ofC overh andr. This integral is equal to unity
at t50, and then varies with increasing timet due toUÞ0,
since only the term withU in ~2.21! breaks the conservatio
of the integral. Thus, to findJ we must establish the evolu
tion of the functionC from t50 to larget.

Below we concentrate on the single-point statistics. T
scheme can obviously be generalized for the passive sc
difference.

Let us first describe the evolution qualitatively. The in
tial condition ~2.21! shows that att50 the functionC is
concentrated at the origin. Then it undergoes spreading in
directions, except forr11...1rd , since the operator on th
right-hand side of~2.20! commutes withr11...1rd . This
is a consequence of the condition detT̂51 ~to be satisfied!,
which implies that during evolutionr11...1rd50. This
means that a solution of~2.20! is C}d(r11...1rd). The
functionC is smeared diffusively with time, and also mov
as a whole in some direction, which is determined by
term with the first derivative in~2.20!. The rate of ballistic
motion is

^] tr i&5D
d~d22i 11!

2
. ~2.22!

ThereforeC describes a cloud, the center of which mov
according to the law

r i5D
d~d22i 11!

2
t. ~2.23!

Effective diffusion coefficients for theh’s decrease with in-
creasingt, since in accordance with~2.23! the differences
rk2r i , figuring in ~2.20!, are negative and grow in absolu
value. Therefore diffusion overh stops when the characte
istic values ofr i2rk becomes greater than unity. Note th
the ‘‘frozen’’ values ofh do not depend ony, sinceU can be
considered uniform during the initial stage of evolution. A
ter that theh’s are frozen, diffusion continues only over th
d

e
lar

all

e

s

t

r’s. If the cloud is inside the region whereU.P2 , then
evolution of the cloud is not influenced byU. After a period
of time t lt ~2.16!, the cloud reaches a barrier, where the p
tential U decreases fromP2 to 0. The subsequent histor
depends on the value ofy. For moderatey the cloud passes
this barrier and continues to move at the same rate. A
this, the integral ofC will not change in time, and its value
will determine the generating functionalJ (y). Naive esti-
mates yield lnJ (y)52y2 t lt /2, which reproduces the pai
correlation function ofu.

Special consideration is needed ifuyu@ysing, or if y is
close to6 iysing, whereysing is defined by~2.13!. Just this
region determines the PDF’s and is consequently of spe
interest. Note thaty56 iysing corresponds to the appearan
of a bound state near the pumping boundary~whereU de-
creases fromP2 to zero!. If y@ysing, then the front of the
cloud reaches the jump of the potential much earlier thant lt .
The remainder of the cloud~inside the potential well! is
damped due to the term withy, and does not contribute to
J (y). If uyu@ysing thenJ (y)@exp(2y2 tlt/2); the asymptot-
ics of J (y) is actually exponential in the case.
uy6 iysingu!ysing then the cloud stays near the pumpin
boundary for a long time, that is the shape ofC inside the
regionU.P2 varies in time comparatively slowly. Further
more, a part ofC percolates out to the region whereU.0,
and the integral ofC grows with increasingutu. As y ap-
proachesiysing, this stage lasts longer. One can say that
back of the cloudC gives the right answer forJ (y). The
important point is that ify is not very close toiysing then
during the timeC leaves the potential, the width ofC in
terms of diffusive degrees of freedom is much less th
ln LL. This means that the functionC is really narrow,
which justifies our consideration.

For a quantitative analysis it is convenient to pass to
variablesf i ~2.2!. Since theh-dependence ofC is frozen
after the initial evolution, it is possible to obtain an equati
for the integral ofC over h:

C̃~f1 ,...,fd21!5E dfd) dh i j C, ~2.24!

where we also included an integration overfd to remove the
factor d(r11...1rd). Eq. for the function~2.24! is

] tC̃5
Dd

2 F (
i 51

d21
]2

]f i
22Ad~d221!

3

]

]f1
GC̃2

y2Ũ

2
C̃,

~2.25!

where Ũ is function of fa only which can be found by
substituting intoU the ‘‘frozen’’ values ofh’s. Qualitatively
Ũ has the same structure asU itself. One can conclude from

~2.25! that the cloud described byC̃ moves ballistically in
the f1 direction and spreads along other directions. We
going to treat the situation when the cloud remains narr
during the relevant part of the evolution. Then one can in

grateC̃ over allf i , i .1 in a similar way as in the case wit
h’s, and get a 1d equation for

C̄~f1!5E )
2

d21

df iC̃.
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The functionC satisfies Eq.

] tC̄5
Dd

2 F ]

]f1
2Ad~d221!

3
G ]

]f1
C̄2 y2U2 C̄.

~2.26!

The initial condition for Eq.~2.26! is C̄(t50)5d(f1). The
potentialŪ is obtained fromŨ by the substitutionfa→0 for
a.0. In fact, for the direction~2.23! the potentialŪ depends
only on r1 . The barrier is reached whenr1. ln LL. Passing
to the variablesf i , we conclude that the potentialŨ dimin-
ishes fromP2 at f1,fL to zero atf1.fL , wherefL is
defined by~2.6!.

The character of the solution of Eq.~2.26! can be ana-

lyzed semiqualitatively in terms of the widthl of C̄ overf1

and its amplitudeh. WhenC̄ reaches the pumping boundar
it stops there for a period of time. Then the widthl and the
amplitudeh are governed by the equations

dl

dt
52Ddl1

Dd

l
,

dh

dt
52

Ddh

l 2 2
y2P2h

2
, ~2.27!

wherel5Ad(d221)/12, Ddl is the rate of cloud motion
along thef1 direction ~whenU5const!, andDd is the dif-
fusion coefficient for thef1 direction. One can estimat
from the first equation the widthl;1/l. Then from the sec-
ond equation the heighth decreases or grows in time depen
ing ony. The characteristicy where the regime changes is
the order uysingu2;Ddl2/P2 . We show this by consisten
calculations.

Equation~2.26! can be solved analytically, e.g., by th
Laplace transform over timet. Taking the Laplace transform
one gets

pC̄~p!2d~f1!5
Dd

2 F ]

]f1
2Ad~d221!

3
G ]

]f1
C̄~p!

2
y2

2
Ū~f1!C̄~p!. ~2.28!

We are interesting in the bound state described by this e
tion. Solutions forC(p) in the intervals (2`,0), (0,fL),
(fL ,`) are exponential, and must be matched. The func
C(p) as a function ofp has two branch points at

p152
Dd2~d221!

24
2

y2P2

2
, p252

Dd2~d221!

24
,

~2.29!

coming from the regionsf1,fL and f1.fL , respec-
tively. When one of these branch points passesp50, C
starts to grow exponentially in time. This happens whey
passes6 iysing, moving along the imaginary axis.

The value of the generating functional is determined
accordance with~2.19! by the large-time behavior ofC(t).
This means that we should be interested in the behavio
C(p) at smallp. The function*df1C(p) in ~2.19! has a
pole atp50 related to the asymptotic behavior

C̄~p!}expS 2
2p

Dd
A 3

d~d221!
f1D ,
a-

n

of

at f1.fL and smallp; the behavior can be found from
~2.28!. The residue of*df1C(p) at the pole determines
J (y). To find the residue we must analyze the behavior
C(p) at 0,f1,fL . At small p there are two contributions
to C, proportional to

expH SAd~d221!

12
6Ad~d221!

12
1

y2P2

Dd Df1J ,

~2.30!

as follows from~2.28! at p50. Therefore the residue, whic
is determined by the integral*df1C(p) over the region
f1.fL , is proportional to

expH SAd~d221!

12
1Ad~d221!

12
1

y2P2

Dd DfLJ .

~2.31!

Substituting~2.6! here, we reproduce~2.12!.
Let us now establish the applicability condition for th

above procedure. The expression~2.31! implies that the ex-
ponent with the minus sign in~2.30! makes a negligible con
tribution to C(p) at f15fL . The condition is satisfied if

uy21ysing
2 ufL

2 @
Dd

P2
.

Substituting~2.6! and ~2.13! here, we obtain

Uy6 iysing

ysing
U@~d4 ln2 LL!21. ~2.32!

For y close to6 iysing one must be careful, since then th
subtle analytic structure ofJ (y) will be relevant. As an
analysis ford52 showsJ (y) has a system of poles alon
the imaginary semiaxis starting from6 iysing, and the pa-
rameter (d4 ln2 LL)21 determines the separation between t
poles. The poles correspond to bound states. The asse
about the cut made in the previous subsection is relate
the restrictions of the saddle-point approximation which c
not feel this fine pole structure; it yields the cut, which is
picture averaged over the interpole distances. This avera
picture is acceptable at the condition~2.32!.

Note that the same criterion~2.32! justifies our assump-
tion that the cloud described byC is narrow during the rel-
evant part of the evolution. Namely, the duration of the p
is determined by the timetexit5p1

21 @see~2.29!#. This is the
time that the cloud stays near the barrier. Fory close to
6 iysing, the time can be estimated to betexit

21;P2uysinguuy
7 iysingu. Then the diffusive widthADdtexit of C in the di-
rectionsfa for a.1 is much less thanfL precisely if~2.32!
is satisfied. In principle the diffusive dynamics atd.2 could
modify the noted fine pole structure ofJ ; this problem re-
quires additional investigation.

The same procedure can be done for the passive sc
differences. The cloud C should pass the region
r1, ln(L/r0) before it reaches the potential. Then it enters
region Ū52P2 with some finite diffusive width. One can
note, however, that this is irrelevant. The only characteris
of the potential that are needed are its value~here 2P2 in-
stead ofP2! and the length of the path inside it@which is
Dr15 ln(r0 L) instead of ln(LL)#. The evolution ofC goes
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in the same way as in the case of single-point statist
Again, we get~2.14! and the criterion analogous to~2.32!.

In this subsection we presented an analysis based on
dynamical equation~2.20! for the auxiliary objectC. The
results obtained can be reproduced also in alternative
guage: for this we must introduce another auxiliary obje
the equation for which is stationary. The correspond
scheme, which might be interesting from a methodologi
point of view, is sketched in the Appendix.

3. CALCULATION OF PDF

In this section we calculate the PDF’sP for the objects
~1.8! and ~1.10!. The most convenient way to do so is b
using the relation

P ~q!5E dy

2p
exp~2 iyq!J ~y!, ~3.1!

whereq is

q5E drb~r !u~0,r !. ~3.2!

Let us recall that knowingP ~q!, one can also restore th
moments ofq:

^uqun&5E dququnP ~q!. ~3.3!

The generating functional in~3.1! is determined by
~2.12! or ~2.14!. Being interested in the main exponenti
dependence of the PDF’s for the objects~1.8! and~1.10!, we
can forget about preexponents. Then

P ~q!5E dy

2p
exp~2 iyq1q@12A11y2/ysing

2 # !, ~3.4!

where for the single-point statistics and for the statistics
the passive scalar difference respectively

ysing
2 5

Dd2~d221!

12P2
, ysing

2 5
Dd2~d221!

24P2
, ~3.5!

q5
d~d11!

6
ln~LL!, q5

d~d11!

6
ln~r 0L!. ~3.6!

Since bothq defined by~3.6! are regarded to be much larg
than unity, the integral~3.4! can be calculated in the saddl
point approximation. The saddle-point value is

ysp5 i
ysing

11q2/ysing
2 q2 . ~3.7!

Then

ln P ~q!.qS 12A11
ysing

2 q2

q2 D . ~3.8!

This expression leads to the exponential tail

ln P ~q!.2ysinguqu, ~3.9!

realized atuqu@q/ysing. The coefficientysing in ~3.9! deter-
mined by~2.13! is in agreement with the result obtained
Ref. 12.
s.

he

n-
t,
g
l

f

The expression~3.8! enables one to find the following
averages in accordance with~3.3!:

^uL
2 &5

2P2

d~d21!D
ln~LL!,

^~DuL!2&5
4P2

d~d21!D
ln~r 0L!. ~3.10!

The expressions~3.10! can also be obtained by direct expa
sion ofJ (y) from ~2.12! or ~2.14!. The universal tail~3.9! is
realized if

uL@A^uA
2&d ln~LL!, DuL@A^~DuL!2&d ln~r 0L!.

~3.11!

Since both logarithms are assumed to be large, we conc
that there exists a relatively wide region where the statis
of q is approximately Gaussian; the region is determined
the inequalities inverse to~3.11!.

Let us discuss the applicability conditions of the expre
sion ~3.8!. First, if one calculates the passive scalar PDF
the saddle point method, then the position of the saddle p
is determined by~2.32! if

q!d2AP2

D
ln2~LL!. ~3.12!

The applicability domain of the saddle-point method ov
laps the region of validity of~2.12! for the generation func-
tion J (y). The above inequalities are correct foruL ; for
DuL one must replace ln(LL) with ln(r0 L). Second, fluctua-
tions ofy have to be small compared to the distance betw
ysp andysing. This gives the same criterion~3.12!.

Let us stress that though formally our procedure is
correct atq*d2AP2 /D ln2(LL) the answer will be the same
the PDF will be determined by the exponential tail~3.9!. The
point is that the character of the integral~3.1! at such ex-
tremely largeq will be determined by the position of th
singular point ofJ (y) nearest to the real axis. This is ju
iysing, leading to~3.9!. To conclude, only the character o
the preexponent in P ~q! is changed at q
;d2AP2 /D ln2(LL), whereas the principal exponential b
havior of P ~q! remains unchanged there.

4. CONCLUSION

The single-point statistics of the passive scalaru and the
statistics of its differenceDu are traditional objects which
carry essential information about correlation functions of
passive scalar in the convective interval. We examined
passive scalar in the large-scale turbulent flow, where
correlation functions logarithmically depend on scale. Sin
the logarithms are actually not very large, it is useful to ha
all the PDF’s ofu andDu. That was the main purpose of ou
investigation, which was performed in the context of t
Kraichnan model. The single-point PDF for the passive s
lar and the PDF for the passive scalar differences can
obtained from~3.8! if we substituteL→r dif

21 wherer dif is the
diffusive length. Though both the advecting velocity and t
pumping force in the Kraichnan model are consider
d-correlated in time, we hope that our results are univer
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that is, are true in the limit when the size of the convect
interval tends to infinity for arbitrary temporal behavior
the velocity and pumping. The reason is that the spec
transfer time grows with increasing convective interval, a
in the limit is much larger than the correlation times of t
velocity and pumping.

We believe also that the analytic scheme proposed in
work could be extended for other problems related to
passive scalar statistics. Note as an example Ref. 13 wh
modification of the scheme enabled one to find the statis
of the passive scalar dissipation. It is also useful for inve
gating the large-scale statistics~on scales larger that th
pumping length! of the passive scalar see Ref. 25. We a
hope that it is possible to go beyond the case of the la
scale velocity field using a perturbation technique of the ty
proposed in Refs. 26–28.

We are grateful to E. Balkovsky, M. Chertkov, G. Fal
ovich, K. Gawedzki and M. Olshanetsky for useful discu
sions. This work was supported in part by the Einstein a
Minerva Centers at the Weizmann Institute, by grants fr
the Minerva Foundation, Germany and the Israel Scie
Foundation, by the Russian Fund for Fundamental Rese
~I. K., M. S., Grant 98-02-17814!, by Soros Foundation~M.
S., Grant a98-674! and by INTAS ~M. S., Grant 96-0457!
within the ICFPM program.

APPENDIX

Here we present an alternative way to obtain the res
~2.12! and ~2.14!. We use an auxiliary quantity.

J~y,r0 ,h0!5E DrDhDmDm

3expF E
2`

0

dtS i L2
y2

2
U D GU

r~0!5r0 ,h~0!5h0

,

~A1!

so

J ~y!5J~y,0,0!. ~A2!

The functionJ can be also defined as

J~y,r0 ,h0!5 lim
t→`

E ) dradh i j C~ t,y,r,h!, ~A3!

where C is governed by Eq.~2.20! with initial condition
C(t50,y,r,h)5d(r2r0)d(h2h0). The equation forJ
can be found from Eqs.~1.32! and ~A1!:

F(
i 51

d
]2

]r i
2 2

1

d S (
i 51

d
]

]r i
D 2

1(
i 51

d

~d22i 11!
]

]r i

12(
i , j

exp~2r j22r i !
]2

]h i j
2 14 (

i ,k, j
exp~2rk

22r i !hk j

]

]h i j

]

]h ik
12 (

i ,k,m,n
exp~2rk
e

al
d

ur
e
e a
s

i-

o
e-
e

-
d

e
ch

ts

22r i !hkmhkn

]

]h im

]

]h in
GJ2

y2U

Dd
J50. ~A4!

The boundary condition for Eq.~A4! follows from the defi-
nition ~A1!: for large enoughr i ,h i the potentialU50 at
t50 and also remains zero at finite timest. Therefore the
integral ~A1! must be equal to unity in the case. Thu
J(y,r,h) must tend to unity wherer,h→`.

Let us rewrite Eq.~A4! in terms of the variables~2.2!:

~ Ĝ11g~J11j!50, J5J11j, ~A5!

Ĝ15
]2

]f1
2 1Ad~d221!

3

]

]f1
2

y2U

Dd
, ~A6!

ĝ5 (
i 52

d21
]2

]f i
2 12(

i ,k
exp~2rk22r i !

]2

]h ik
2

14 (
i ,k,n

exp~2rk22r i !hkn

]

]h in

]

]h ik

12 (
i ,k,m,n

exp~2rk22r i !hkmhkn

]

]h im

]

]h in
.

~A7!

Here U as a function off1 is equal toP2 inside a region
restricted byfL

2 and fL
1 ~wherefL

6 are functions of vari-
ablesf2 ,...,fd ,h! and tends to zero outside the region. W
solve Eq.~A5! using perturbation theory overĝ, j. Then the
zero-order equation is

Ĝ1J150. ~A8!

Equation ~A8! can easily be solved atfL
2,f1,fL

1 ; the
answer is

J1.
2l

Al21
y2P2

Dd
1l

exp$2~Al21y2P2 /Dd2l!

3~fL
12f1!%, ~A9!

wherel5Ad(d221)/12,Ddl is the rate of the cloud mo
tion along thew1 direction. The result~A9! can be obtained
using the inequalityAl21y2P2 /Dd ln LL@1. The deriva-
tive ]J1 /]f150 at f1,fL

2 . However,J1Þ1 in this re-
gion. This is due to the following fact: this region corre
sponds to the evolution ofC when its initial position is to the
left of potential U @see ~A3!#. During evolution, cloudC
passes the region ofU and its integral overr, h changes.
Then J is not equal to 1. Only when the distance betwe
the initial position and potential is of order ln2 LL will the
diffusion of the cloud lead to smallness of the part ofC that
passes the potentialU, andJ becomes closer to unity. Thus
functionJ has a long tail from the potential pointing towar
negativef1 , where it is not equal to 1. The procedure
finding J from Eq. ~A8! corresponds to the geometrical o
tics approximation~taking into account only derivatives in
propagation direction; this allows one to get the fact
propagation!. This tail of J in this approximation is none



d

Th

t

e

E

n

m-

ni-

ev-

ids

v-

ids

with

516 JETP 88 (3), March 1999 Kolokolov et al.
other than the shadow of potentialU. Higher orders of per-
turbation theory over the transverse derivatives correspon
diffraction corrections.

Now let us consider the correctionj. Eq. for it looks like
(G11ĝj52ĝJ1 . Again let us neglectĝ on the left-hand
side and solve the equation.J1 is some exponential function
with scale of the order 1. ThenĝJ1;J1 . Note thatĝJ1 is
almost equal to zero atf1.fL

1 . To estimatej one must
construct the Green functionG(f1uf0) for operatorG1 :

G~0uf0!.
1

2l
expS 2SAl21

y2P2

Dd
2l Df0D

3S 12C expS 22Al21
y2P2

Dd
~fL

12f0! D D ,

~A10!

where

C5~Al21y2P2 /Dd2l!/~Al21y2P2 /Dd1l!.

The unity in the parentheses in~A10! gives the correction for
J, which has the same exponential factor asJ1 . Thus j
does not change the answer, to logarithmic accuracy.
second term in the parentheses gains whilef0 is close to
fL

1 . This is due to the nonzero width of the cloudJ and to
the dependence oft lt on other variables. Again, it does no
change the exponent.

To get J from J we in accordance with~A2! have to
substitute zero values ofr and h into J. Then f150 and
fL

15fL wherefL is defined by~2.6!. Substituting the val-
ues into~A9! we reproduce~2.12!. The case of the passiv
scalar differences can be considered in a similar way.
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