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We analyse velocity fluctuations inside coherent vortices generated as a result of
the inverse cascade in the two-dimensional (2-D) turbulence in a finite box. As we
demonstrated in Kolokolov & Lebedev (Phys. Rev. E, vol. 93, 2016, 033104), the
universal velocity profile, established in Laurie et al. (Phys. Rev. Lett., vol. 113,
2014, 254503), corresponds to the passive regime of the flow fluctuations. This
property enables one to calculate correlation functions of the velocity fluctuations in
the universal region. We present the results of the calculations that demonstrate a
non-trivial scaling of the structure function. In addition the calculations reveal strong
anisotropy of the structure function.
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1. Introduction

The effects of the counteraction of (relatively fast) turbulence fluctuations with a
coherent (relatively slow) flow are one of the central problems of turbulence theory
(Townsend 1976). Usually the fluid energy is transferred from the slow large-scale
flow to turbulent pulsations (Frisch 1995). However, in some cases the energy can go
from small-scale fluctuations to the large-scale ones that can lead to the formation
of a non-trivial mean flow; see Boffetta & Ecke (2012). Even some basic problems,
such as to determine at what mean velocity turbulent fluctuations are sustained, are
still under intense investigations (Avila et al. 2011). There is still no consistent
theory for the mean (coherent) profile coexisting with turbulent fluctuations, so that
even the celebrated logarithmic law for the turbulent boundary layer is a subject
of controversy (Buschmann & Gad-el-Hak 2003). Here, we consider an important
case: two-dimensional (2-D) turbulence in a restricted box where large-scale coherent
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structures are generated from small-scale fluctuations excited by pumping. This
process occurs because in two dimensions the nonlinear hydrodynamic interaction
favours the energy transfer to larger scales (Kraichnan 1967; Leith 1968; Batchelor
1969).

Already, the first experiments on 2-D turbulence (Sommeria 1986) have shown
that, in a finite box with small bottom friction, the energy transfer to large scales
leads to the formation of coherent vortices. The first numerical simulations (Smith
& Yakhot 1993, 1994; Borue 1994) have also shown that coherent vortices appear
in 2-D turbulence. Subsequently, more detailed numerical simulations (Chertkov
et al. 2007) and experiments (Xia et al. 2009) have demonstrated that these vortices
have well-defined and reproducible mean velocity (vorticity) profiles. These profiles
are quite isotropic with a power-law radial decay of vorticity inside the coherent
vortex. In that region the profile depends neither on the boundary conditions (no-slip
in experiments, periodic in numerical simulations) nor on the type of the forcing
(random in numerical simulations versus parametric excitation or electromagnetic
forcing in experiments). The same flow profile is formed both in the statistically
stationary case where the mean flow level is stabilized by the bottom friction and in
the case where the average flow is still not stabilized and increases as time passes.

Laurie et al. (2014) reported results of intensive simulations of 2-D turbulence.
They demonstrated that the polar velocity profile of the vortex was flat over some
range of distances from the vortex centre, which we call the universal interval. The
mean vorticity in the interval is inversely proportional to the distance r from the
vortex centre. In the same paper a theoretical scheme based on conservation laws and
symmetry arguments was proposed to explain the flat velocity profile. The proposed
scheme predicted the value of the polar velocity U =

√
3ε/α (where ε is the energy

production rate and α is the bottom friction coefficient), which is found to be in
excellent agreement with the numerical simulations (Laurie et al. 2014).

In our previous work (Kolokolov & Lebedev 2016) we performed an analytical
investigation of the coherent vortex in the universal interval. As a result, we
established that the flat velocity profile corresponds to the passive regime of the flow
fluctuations where their self-interaction can be neglected. The passive regime admits
consistent analytical calculations that confirm the validity of the value U =

√
3ε/α

for the polar velocity. Besides, we have found expressions for the viscous core radius
of the vortex and for the border of the universal region where the flat velocity profile
is realized. The results reported in the work by Kolokolov & Lebedev (2016) explain
why no flat velocity profile was observed in early simulations (Smith & Yakhot 1993,
1994; Borue 1994) and imply that in some conditions a large number of coherent
vortices could appear instead of a few vortices in numerical simulation (Chertkov
et al. 2007; Laurie et al. 2014) and experiment (Xia et al. 2009).

It is worth noting that our passive approach developed here and in Kolokolov &
Lebedev (2016) is closely similar to the quasi-linear approximation that is widely used
in plasma theory and hydrodynamics; see, e.g. the textbook by Sturrock (1996) and the
paper by Srinivasan & Young (2012). In our case the successive analytic derivations
are supported by the large value of the mean velocity gradient in comparison with its
fluctuating counterpart.

In this paper we examine the spatial structure of the flow fluctuations. The passive
nature of the fluctuations admits a detailed analytical analysis. We find the pair
correlation functions of the velocity fluctuations in the universal interval at scales
less than the distance r from the vortex centre and larger than the pumping length.
There the correlation function possesses a definite scaling, and that scaling is strongly
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anisotropic. The structure function of the velocity in the range is a linear function
of the separation between the points. If the dissipation is strong enough, then it can
restrict this region of the linear profile from above. At the end of the paper we
discuss applicability conditions of the results and possible extensions of our scheme.

2. General relations

We consider the case where 2-D turbulence is excited in a finite box of size L by
an external forcing. It is assumed to be a random quantity with statistical properties
that are homogeneous in time and space. We assume also that correlation functions of
the pumping force are isotropic. The main object of our investigation is the stationary
(in the statistical sense) turbulent state caused by such forcing. To excite turbulence
the forcing should be stronger than dissipation related both to the bottom friction
and to the viscosity at the pumping scale. That implies that the characteristic velocity
gradient of the fluctuations produced by the forcing should be much larger than the
flow damping at the pumping scale. The velocity gradient is estimated as ε1/3k2/3

f ,
where ε is the energy flux (energy production rate per unit mass) and kf is the absolute
value of the characteristic wavevector of the pumping force. Thus we arrive at the
inequalities

ε1/3k2/3
f � α, νk2

f . (2.1)

Here α is the bottom friction coefficient and ν is the kinematic viscosity coefficient,
therefore νk2

f is the viscous damping rate at the pumping scale k−1
f . In simulations,

hyperviscosity is often used. In the case the inequalities (2.1) are still obligatory for
exciting turbulence, where νk2

f has to be replaced by the hyperviscous damping rate
at the pumping scale k−1

f .
If the inequalities (2.1) are satisfied then turbulence is excited in the box and

random pulsations of different scales are formed due to nonlinear hydrodynamic
interaction. The pumped energy flows to larger scales whereas the pumped enstrophy
flows to smaller scales (Kraichnan 1967; Leith 1968; Batchelor 1969). Thus two
cascades are formed: the energy cascade (inverse cascade) realized at scales larger
than the forcing scale k−1

f and the enstrophy cascade realized at scales smaller than
that scale. In an unbound 2-D system the inverse energy cascade is terminated by the
bottom friction at the scale

Lα = ε1/2α−3/2, (2.2)

where a balance between the energy flux ε and the bottom friction is achieved. The
enstrophy cascade is terminated by viscosity (or hyperviscosity) (Boffetta & Ecke
2012).

In a finite box the above two-cascade picture is realized if the box size L is larger
than Lα. Here we consider the opposite case L< Lα. Then the energy, transferred by
the nonlinearity to the box size L by the inverse cascade, is accumulated there, giving
rise to a mean (coherent) flow. We analyse the statistically stationary case where the
mean flow is already formed and stabilized by the bottom friction. To describe the
flow, we use the Reynolds decomposition, that is the flow velocity is presented as
the sum V+ v where V is the velocity of the coherent flow and v represents velocity
fluctuations on the background of the coherent flow. Let us stress that V is an average
over time; it possesses a complicated spatial structure.

As numerical simulation and experiment show, the coherent flow contains some
vortices separated by a hyperbolic flow. The characteristic velocity V of the coherent
motion can be estimated as V ∼

√
ε/α. This estimate is a consequence of the energy
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balance: in the stationary case the incoming energy rate ε is equal to the bottom
friction rate. The characteristic mean vorticity in the hyperbolic region is estimated as
Ω ∼ L−1√ε/α. However, inside the coherent vortices the mean vorticity Ω is much
higher than the estimate (Chertkov et al. 2007; Xia et al. 2009; Laurie et al. 2014).
The maximal value of the mean vorticity Ω is achieved in the viscous core of the
vortex. The radius of the core can be estimated as (ν/α)1/2 (Kolokolov & Lebedev
2016).

3. Coherent vortex

Here we examine the flow inside the coherent vortex. We attach the origin of our
reference system to the vortex centre, which is determined as the point of maximum
vorticity. This definition corresponds to the procedures used in the works by Chertkov
et al. (2007), Xia et al. (2009) and Laurie et al. (2014) to establish the mean vortex
profile. The position of the vortex centre fluctuates: in the laboratory experiments it
fluctuates near a fixed position determined by the cell geometry. For the periodic set-
up (used in the numerical simulations) the vortex centre can shift significantly from
its initial position, and only the average relative position of the vortices is fixed. The
reference system is not inertial, and the velocity of the vortex centre is subtracted from
the flow velocity in the system. However, the flow vorticity in the reference system
coincides with that in the laboratory reference system.

As was established experimentally and numerically (Chertkov et al. 2007; Xia
et al. 2009; Laurie et al. 2014), in the chosen reference system the mean flow
possesses axial symmetry. Such flow can be characterized by the polar velocity U,
which depends on the distance r from the vortex centre. Then the mean vorticity is
calculated as Ω = ∂rU +U/r. To obtain an equation for the profile U(r), one has to
use the complete Navier–Stokes equation. Assuming that the average pumping force
is zero, one finds the Reynolds equation after averaging (Monin & Yaglom 1971).
Outside the viscous core where the viscous term is irrelevant we arrive at

αU =−
(
∂r +

2
r

)
〈uv〉, (3.1)

where v and u are the radial and polar components of the velocity fluctuations, and
angular brackets mean averaging over time.

To analyse the flow fluctuations inside the vortex, it is convenient to start from the
equation for the fluctuating vorticity $ ,

∂t$ + (U/r)∂ϕ$ + v∂rΩ +∇(v$ − 〈v$ 〉)= φ − Γ̂ $, (3.2)

which is obtained from the same Navier–Stokes equation. Here ϕ is the polar angle,
φ is the curl of the pumping force, v is the fluctuating velocity, and the operator
Γ̂ represents dissipation including some terms. Among the terms are the bottom
friction α and the viscosity term, −ν∇2. For the case of hyperviscosity the last
contribution to Γ̂ is replaced by (−1)p+1νp(∇

2)p where p is an integer. An additional
contribution to Γ̂ is related to the nonlinear interaction of the fluctuations. Though
the interaction is weak, it could be larger than α and −ν∇2 because of the smallness
of the contributions.
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4. Universal interval

Further we consider the region outside the vortex core where the coherent velocity
gradient is large enough,

U/r� ε1/3k2/3
f . (4.1)

In this case fluctuations in the interval of scales between the pumping scale k−1
f

and the radius r are strongly suppressed by the coherent flow. The inequality (4.1)
means that the mean velocity gradient U/r is larger than the gradient of the velocity
fluctuations in the region at all scales larger than k−1

f . Therefore the passive regime
is realized there, that is, the self-interaction of the velocity fluctuations is weak. The
interval of scales outside the vortex core where the inequality (4.1) is satisfied will
be called hereafter the universal interval of scales.

Moreover, the passive regime is realized for scales smaller than the pumping scale
k−1

f . Indeed, in the direct cascade the velocity gradients can be estimated as ε1/3k2/3
f ,

up to logarithmic factors that depend weakly on scale; see Kraichnan (1971, 1975)
and Falkovich & Lebedev (1994a,b, 2011). Therefore the inequality (4.1) means
domination of the coherent velocity gradient in the interval of scales where the direct
cascade would be realized. The passive regime can be consistently analysed. Then
one neglects the nonlinear term in (3.2), retaining a linear equation for the vorticity
fluctuation $ . The equation enables one to express $ in terms of the pumping φ
and then to calculate correlation functions of $ via the correlation functions of φ.

Further we focus on the case where the pumping φ is short-correlated in time and
has Gaussian statistics. Direct calculations (Kolokolov & Lebedev 2016) show that in
this case

〈uv〉 = ε/Σ, (4.2)

where Σ is the local shear rate of the coherent flow:

Σ = r∂r(U/r)= ∂rU −U/r. (4.3)

Expression (4.2) is derived for the condition Σ�Γf , where Γf is the damping of the
velocity fluctuations at the pumping scale. The validity of the condition is guaranteed
by the inequalities (2.1) and (4.1). Some additional condition νk2

f � α is needed for
validity of the expression (4.2); the inequality is assumed to be satisfied in our scheme.
(Note that the inequality is satisfied in numerical simulations (Laurie et al. 2014).)
The opposite case needs some additional analysis that is beyond the scope of our
work.

Substituting expression (4.2) into (3.1), one finds a solution

U =
√

3ε/α, Σ =−U/r, (4.4a,b)

for the mean profile. Thus we arrive at the flat profile of the polar velocity found in
Laurie et al. (2014) and confirmed analytically in Kolokolov & Lebedev (2016). It is
characteristic of the universal region.

The left-hand side of the inequality (4.1) diminishes as r grows. Therefore it is
broken at some r∼ Ru. Substituting expression (4.4) into (4.1), one obtains

Ru = L1/3
α k−2/3

f = ε1/6α−1/2k−2/3
f . (4.5)

The scale Ru determines the boundary of the region where flow fluctuations are
passive. It could be treated as the vortex size if Ru is less than the box size, as
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in numerical simulations (Laurie et al. 2014) where the universal region is well
separated from the outer region, which is not completely passive. The case Ru & L is
characteristic of the numerical simulations (Chertkov et al. 2007; Frishman, Laurie
& Falkovich 2016) and the experiment (Xia et al. 2009); in this case the passive
regime is realized everywhere in the box. Even in this case the equations determining
the global structure of the condensate are essentially nonlinear. Solutions of this
equations can undergo instabilities and bifurcations of various types as the friction
parameter α and the geometry of the system vary. For example, it is found in
Frishman et al. (2016) that diminishing α in the rectangular geometry leads to a rise
of the new vortex. Note that the global structure of the mean flow is a subject of
special investigation that is beyond the scope of our article.

5. Vorticity fluctuations

Since the flow fluctuations inside the universal region are passive we can use the
linearized version of (3.2),

∂t$ + (U/r)∂ϕ$ + v∂rΩ + Γ̂ $ = φ. (5.1)

Since the pumping is assumed to be short-correlated in time, its statistics is
determined by the pair correlation function

〈φ(t, k)φ(t′, k′)〉 = 2(2π)2εδ(k+ k′)δ(t− t′)k2χ(k) (5.2)

for the space Fourier transform of φ. The function χ(k) has a profile with the
characteristic pumping wavevector kf and is normalized:∫

d2k
(2π)2

χ(k)= 1. (5.3)

Then ε is the energy (per unit mass, per unit time) pumped into the system, i.e. the
energy flux.

We analyse the fluctuations near a radius r= r0 with scales much smaller than the
radius. Then the shear approximation for the mean velocity can be used. We pass to
the reference system rotating with the angular velocity Ω(r0) and expand all terms in
(5.1) in xr= r− r0 and xϕ = r0ϕ. We assume that the parameter (kf r)−1 is small. Then
the term v∂rΩ in (5.1) can be discarded and we end up with the following equation:

∂t$ +Σxr∂2$ + Γ̂ $ = φ. (5.4)

Here Σ is the local shear rate (4.4) in the universal region Σ ∝ r−1. Let us rewrite
the evolution equation (5.4) for the spatial Fourier components of the vorticity $k:

∂t$(k)−Σkϕ∂$(k)/∂kr + Γ (k)$(k)= φ(t, k), (5.5)

where the components kr, kϕ of the wavevector k correspond to the variables xr, xϕ .
Solving the evolution equation (5.5), one obtains a formal solution

$(t, k) =
∫ t

dτ φ[τ , kr +Σ(t− τ)kϕ, kϕ]

× exp
{
−

∫ t

τ

dτ ′ Γ
[√

(kr +Σ(t− τ ′)kϕ)2 + k2
ϕ

]}
. (5.6)
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Now we can find the simultaneous pair vorticity correlation function for the Fourier
transform from (5.2):

〈$(t, k)$(t, k′)〉 = 2(2π)2εδ(k+ k′)
∫
∞

0
dτ q2χ(q) exp

[
−2
∫ τ

0
dτ ′ Γ (q′)

]
. (5.7)

Here
q= (kr +Στkϕ, kϕ), (5.8)

and q′ differs from q by a substitution τ→ τ ′. The factor δ(k+ k′) in the expression
(5.7) reflects space homogeneity that is not destroyed by a shear flow.

Let us consider scales larger than k−1
f , that is wavevectors k � kf . With this

condition the main contribution to the integral (5.7) is gained from times τ ∼ kf /(Σkϕ).
In the case |kϕ| � Γf kf /Σ the dissipation is irrelevant and the last exponential factor
in (5.7) can be replaced by unity. Here, as above, Γf is the flow damping at the
pumping scale. Passing then to the integration over the wavevector (5.8), one obtains

〈$(t, k)$(t, k′)〉 = δ(k+ k′)
2(2π)2εqf

Σ |kϕ|
, (5.9)

qf =

∫
∞

0
dq1 q2χ(q). (5.10)

Here, we replaced the lower integration limit |kr| in the integral (5.10) by zero, since
the main contribution to the integral comes from q∼ kf � kr. The wavevector qf is of
the order of the inverse pumping length.

There can exist an interval of the wavevectors r−1 < |kϕ| < Γf kf /Σ where the
dissipation is relevant. Then the exponential factor in (5.7) related to dissipation is
relevant. The factor can be estimated as exp(−Γf τ), where the time τ is needed
to enhance kϕ to kf , that is τ ∼ kf /(Σkϕ). Thus we come to the suppression
factor exp(−A), A ∼ Γf kf /(Σ |kϕ|). Therefore the vorticity correlations are strongly
suppressed in the region of wavevectors |kϕ| < Γf kf /Σ . In real space, that means
decay exp(−B) at |xϕ|>Σ/(Γf kf ) where B∼ Γ 1/2

f k1/2
f |xϕ|1/2Σ−1/2.

6. Velocity correlation functions

Knowing the vorticity correlation function, one can calculate the velocity correlation
functions using the relation

vα(k)= iεαβ
kβ
k2
$(k), (6.1)

valid for the Fourier transforms. If kf � |kϕ| � Γf kf /Σ and kf � |kr|, then one finds
from (5.9), (6.1)

〈v(k)v(k′)〉 = 2(2π)3δ(k+ k′)
qf ε

Σ

|kϕ|
k4 , (6.2)

〈u(k)u(k′)〉 = 2(2π)3δ(k+ k′)
qf ε

Σ

k2
r

k4
|kϕ|

, (6.3)

〈v(k)u(k′)〉 =−2(2π)3δ(k+ k′)
qf ε

Σ

krkϕ
k4
|kϕ|

. (6.4)

If r−1 < |kϕ|<Γf kf /Σ then the expressions are strongly suppressed due to dissipation.
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It follows from the expressions (6.2), (6.4) that the averages 〈v2
〉 and 〈u2

〉 are
determined by the infrared integrals. Therefore

〈v2
〉, 〈u2
〉 ∼

kf ε

Σ
r if Γf kf r�Σ, (6.5)

〈v2
〉, 〈u2
〉 ∼

ε

Γf
if Γf kf r�Σ. (6.6)

The average 〈uv〉 needs an additional analysis (Kolokolov & Lebedev 2016). This
analysis shows that the quantity is determined by expression (4.2).

Note that we work in the reference system attached to the (moving) vortex centre.
Therefore, comparing the expressions (6.5), (6.6) with the numerical simulations
(Laurie et al. 2014), one has to take into account the global soft mode of fluctuations
related to translations of the vortex. As a result 〈u2

〉, 〈v2
〉 extracted from the numerical

simulations do not go to zero as r→ 0. Note that the soft mode does not contribute
to the structure function inside the vortex.

A special problem is calculation of 〈u2
0〉 where u0 is the zeroth angular harmonic of

the fluctuating polar velocity. There is no advection term related to the average flow in
the equation for u0. Therefore the quantity 〈u2

0〉 is determined solely by the damping.
Strictly speaking, the calculation of 〈u2

0〉 is outside our shear approximation. However,
our logic can be easily extended to this case to obtain

〈u2
0〉 ∼

ε

kf rΓf
. (6.7)

An explanation of this expression is based on the expression

〈u2
0〉 =

∫
dϕ
2π
〈u(r1)u(r2)〉, (6.8)

where the points 1 and 2 are separated by the same distance r from the vortex centre
and ϕ is the angle between the vectors r1 and r2. The factor ε/Γf is the contribution
to 〈u2

0〉 caused by the pumping that is effective if ϕ . (kf r)−1. The contribution (6.7)
should be taken into account besides (6.5); the latter is related to the sum of non-zero
angular harmonics. In the case (6.6) the contribution (6.7) is small in comparison with
one related to non-zero harmonics.

The average 〈u2
0〉 was calculated previously in the paper by Falkovich (2016), where

the contribution related to the pumping was ignored and the nonlinear effects were
taken into account instead. This approach is correct outside the universal region, at
r> Ru where Ru is determined by expression (4.5). At the border, where r∼ Ru, our
estimate (6.7) coincides with one obtained in Falkovich (2016).

It is worthwhile to characterize scales where the expressions (6.2)–(6.4) are correct
by the velocity structure functions. One finds

S11(xr, xϕ) = 〈[v(xr, xϕ)− v(0, 0)]2〉

=
2qf ε

Σπ

∫
d2k
|kϕ|
k4 (1− eikrxr+ikϕxϕ ), (6.9)

which is correct if k−1
f � |xr, xϕ| � r, k−1

f Σ/Γf . Infrared divergence in the integral
(6.9) can be regularized by substituting k2

ϕ→ k2
ϕ + µ

2, where µ∼ 1/r. The result of
the integration can be expressed via the function

J (z)=
∫
∞

0
dq

e−z

q2 +µ2
≈

π

2µ
+ z[Γf − 1+ ln(µz)]. (6.10)
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Particularly, one finds

S11 =
2qf ε

Σ
Re
[

π

2µ
−J + xr∂1J

]
, (6.11)

where J =J (xr − ixϕ), Calculating the expression (6.11), one finds

S11 ≈
2qf ε

Σ

[
|xr| + xϕ arctan

(
xϕ
|xr|

)]
. (6.12)

Analogous expressions can be found for other components of the structure function:

S22 =
〈
[u(xr, xϕ)− u(0, 0)]2

〉
≈

2qf ε

Σ

[
xϕ arctan

(
xϕ
|xr|

)
− 2|xr| ln

(
µ

√
x2

r + x2
ϕ

)]
,

(6.13)

and

S12 = 〈[v(xr, xϕ)− v(0, 0)][u(xr, xϕ)− u(0, 0)]〉 ≈−
2qf ε

Σ
xr arctan

(
xϕ
|xr|

)
. (6.14)

In the region |xr|, |xϕ| � k−1
f Σ/Γf the pair correlation functions are strongly

suppressed and the structure functions are determined by the single-point averages.

7. Discussion

We analysed correlations of the velocity fluctuations inside a coherent vortex
generated as a result of the inverse cascade in a finite 2-D cell. Our attention was
concentrated on the universal region inside the vertex where the mean velocity has
a flat profile. We analysed the fluctuations at a distance r from the vortex core and
with scales less than r. The amplitude of the velocity fluctuations grows as the scale
grows, as in the traditional inverse cascade. However, the expressions (6.12)–(6.14)
demonstrate a linear profile, which is different from the 2/3 power law in the
traditional inverse cascade. Let us stress also that in our case the fluctuations are
strongly anisotropic. Note also that in some conditions viscous dissipation can come
into play, which leads to suppression of the fluctuations at the largest scale (below r).

We performed our calculations in the reference system where the origin is attached
to the vortex centre and rotating with angular velocity Ω dependent on the radius r
and coinciding with the angular velocity of the mean flow at the distance r. In this
reference system the correlation time of the pumping attached to the bottom of the
cell cannot be larger than Ω−1. That justifies our approach (where the pumping is
assumed to be short-correlated in time) since the angular velocity Ω is the largest
characteristic rate in the universal region. Note also that use of the rotating reference
system implies an implicit angular averaging of the correlation functions (besides the
averaging over time).

The universal region is restricted from above by the radius (4.5). At larger distances
from the vortex centre the flow fluctuations are not completely passive, and our
scheme is, strictly speaking, incorrect. In this case the traditional inverse cascade is
realized on scales smaller than l, where l ∼ ε1/2Σ−3/2 is determined by the balance
between the effective shear rate Σ of the mean flow and the characteristic velocity
gradient in the inverse cascade. However, the flow fluctuations are passive at scales
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larger than l. That is the region where our scheme is applicable. And the only
difference is that the role of the pumping length is played just by the scale l.

Probably, our results can be extended to some types of three-dimensional turbulent
flows. Note, as an example, the turbulence excited at the fluid surface (von Kameke
et al. 2011; Francois et al. 2014) where the inverse cascade is observed. This will be
the subject of future investigations.
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