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We consider high-order correlation functions of the passive scalar in
the Kraichnan model. Using the instanton formalism, we find the scal-
ing exponenty,, of the structure function§, for n>1 under the ad-
ditional conditiond{,>1 (whered is the dimensionality of spageAt
n<n, (wheren,=d{,/[2(2—{,)]) the exponents aré,=({,/4)(2n
—n?/n.), while atn>n, they aren-independent?,= ,n./4. We also
estimate the-dependent factors i§,. © 1998 American Institute of
Physics[S0021-364(108)01319-X

PACS numbers: 47.27.Ak

Anomalous scaling is probably the central problem of the theory of turbulence. In
1941 Kolmogorov formulated his famous thebmyherein scaling behavior of different
correlation functions of velocity in a turbulent flow was predicted. Experimentally one
observes deviations from the scaling exponents proposed by Kolmogorov. It is recog-
nized that the deviations are related to rare strong fluctuations which make the main
contribution to the correlation functioRsThis phenomenon, called intermittency, is the
most striking peculiarity of developed turbulence.

One of the classic objects in the theory of turbulence is so-called passive scalar
advected by a fluid; the role of the scalar can be played by temperature or by the density
of pollutants. Correlation functions of the scalar in a turbulent flow possess a scaling
behavior which in the frame of the theory analogous to that of Kolmogorov was estab-
lished by Obukhov and Corrsthintermittency enforces deviations from the Obukhov
exponents that appear to be even stronger than the deviations from the Kolmogorov
exponents for the correlation functions of the veloéity.

A consistent theory of turbulence describing anomalous scaling has not been con-
structed yet because of difficulties associated with the strong coupling inherent to devel-
oped turbulence. This is a motivation for attempts to examine the intermittency phenom-
enon in the framework of different simplified models. The most popular model used for
this purpose is the Kraichnan model of the passive scalar adv&atibare the advecting
velocity is believed to be short-correlated in time. It allows one to examine the statistics
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of the scalar in more detail. The scalar in the Kraichnan model exhibits strong intermit-
tency even if such is absent in the advecting velocity. The fact was proved both
theoreticallj® and numerically. In the theoretical works the equation for thepoint
correlation functionF, was solved assuming that different parameters, such, a®

—{,, ord™1, are small. The order of the correlation functions that can be examined in
such a way is bound from above. There have been several attempts to find the scaling of
the correlation functions for larger. In the work by Kraichnal? a closure was assumed,
enabling him to findZ,, for any n. An alternative scheme was proposed in Ref. 11. An
attempt to solve the problem at largevas made in Ref. 12.

In the present work we develop a consistent formalism based on the path-integral
representation of the dynamical correlation functions of classical fiélflse basic idea,
which was set forth in Ref. 14, involves the possibility of using the saddle-point approxi-
mation in the path integral at large The saddle-point conditions are integro-differential
equations describing an object that, by analogy with the quantum field theory, we call
instanton. The instantonic method had already been successfully used in some
contextst>!® The formalism presented in this paper enables one to find correlation func-
tions of the passive scalar for arbitrany-1, providedd{,>1.

Advection of a passive scal@ by a velocity fieldv is described by the equation
3,0+V-VOo—kV20= ¢, 1)

wherek is the diffusion coefficient and is the source of the scalar. In a turbulent flow

v and ¢ are random functions of time and space coordinates. Then passive scalar corre-
lation functions are determined by the statisticy adind ¢. Usually, one treats simulta-
neous correlation functior’s,=(6(ry) . .. 6(r,)), since large-scale velocity fluctuations
destroy temporal correlations.

It is convenient to examine the anomalous scaling in terms of the structure functions

Su(n)=(lo(r/2)—o(=r/2)|"). )

One expects that in the convective interval of scales the structure functions reveal a
scaling behavioS,(r)x<rén. The exponentg, are of great interest since they reflect the
intermittency. In the frame of the Obukhov thedr,=(n/2)¢,. Thus the differences
(n/2)¢,— ¢, give the anomalous scaling exponents.

In the Kraichnan model and ¢ are independent random functiofiscorrelated in
time and described by Gaussian statistics. Therefore, the statistical properties of the fields
are entirely characterized by their pair correlation functions. For the pumping one has
(p(tq,r1) P(to,r2))=8(t1—t5) x(r12), whereyx(x) is a smooth function decaying on a
scaleL. The constang(0)=P, determines the pumping rate éf. For the velocity field
one has

(Valty,r)va(ta,r2)) = 8t = t){Vobap— Kap(ri—r2)}-

The quantity), is anr-independent constant which represents the contribution of large-
scale velocity fluctuations. Since a homogeneous advection does not inflgenome
should keep in the correlation function also a smadlependent correctioit, which is
assumed to possess some scaling properties:
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D ). 2=y ,

ICaB(r)=Er "' 50,3+ d_—l(r 5aﬁ—rarﬁ) , (3)
whereD is a constant characterizing the strength of the velocity fluctuations. One as-
sumes that fluctuations of the velocity are strong enough to ensure a large value of the
Peclet number, that &%~ ”>r3 Y~ «/D. Then there exists a convective interval of
scalesry<<r<<L. We will be interested in the scaling properties of correlation functions
of 8 only in this interval, assuming/r to be the largest parameter in the theory.

Within the Kraichnan model one can derive a closed equation for any correlation
functionF, (Refs. 5,8,1Y. The equation foF, can be solved.In the convective interval
S,(r)=2[F,(0)—Fy(r)]er?, which implies that{,=y. However, forn>2 the equa-
tions forF,, are too complicated to be solved exactly. In Refs. 7 and 8 the equations were
analyzed in the limits (2 v)<1 anddy>1. The analysis led to the answer

_ny 2-y

The first term in the right-hand side of E@G}) represents the normal scaling, and the
second term is just the anomalous scaling exponent. The calculations lead#cpte
correct if the anomalous contribution is much smaller than the normal one. To overcome
the restriction we proposed a procedure which will be described in detail elselfhere.
Below we sketch our scheme.

The diffusivity « does not enter the expressions for the structure functions in the
convective intervaf. However, it is not possible to put simpky=0, since the diffusion
provides an important regularization. Suppose that two infinitely close fluid particles do
not disperse without diffusion, and the average valuézd6 infinite, as is seen from Eq.

(6). Nevertheless, we pui= 0, approximating the structure functions as averages of the
powers of the smoothed difference

r
X+ =

5. ®)

19=f dx B(x)0(0x), ﬂz&A(x— %)—6A

where 8, (x) is a function which rapidly tends to zeromt- A ~>r4 and is normalized
by the conditionf dx §,(x) = 1. In the absence of diffusion, the regularization is provided
by the finite support of, .

In the diffusionless case E{l) can be solved in terms of Lagrangian trajectoses

0(O,r)=f_0xdt’ o[t ,s(t’,r)], as=Vv(t,s). (6)

The times here are negative due to causality rmiscsupposed to be the terminating point
of the trajectorys(t,r): s(t=0,)=r. Then we can obtain

o [dydd )
(191 [ S (exp— =iy o+n nfo)),. )

y2
F= ?J dtdrydry x(Ryp) B(r) B(ro), ®)
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where Ry,=|s(t,r;)—s(t,r,)|. The brackets in the right-hand side of E) denote
averaging over the statistics @f while the statistics ofp has already been taken into
account there.

Note thatF defined by Eq.(8) depends only on the absolute valuRg,(t) of
Lagrangian differences. Therefore, instead of averaging over the statisticered may
find an answer by averaging over statisticqRe$, which can be established starting from
the relation

¥ 1aRY= {17=RY5 *R1aa(V14—V24), (9)

which follows from Eq.(6). Using the statistical properties df and employing the
conventional procedur€, we find the effective action

0 D (o
|I:|f dtfdrldrzmlz(’y_l&tRzz“r‘D)_af dtfdrldrzdr3dr4Q12‘34m12m34
(10)

describing the statistics ¢t,,. Herem;,=m(t,r,r,) is the auxiliary field conjugate to
Ri,. The explicit expression for the functia@ is rather cumbersome. We will need it
only in the leading order in i

1 _ _ _ _
Q12,34:Z R Ry, 2R3 7+ RE, "= Ri3 7= RS, 7) (Roa+ Ri,~ R~ R5y). (11)
Now, we can rewritg7) as a path integral
dy do ) )
(|19|”>=fWDRDmexp(lI—]-'—lyﬁJrn In|9)). (12

The definition ofR leads to the triangle inequalities
Ri2+ R3>Ry3, (13

to be satisfied for any three points. Actually, the inequalities are constraints that should be
imposed on the fieldR;, when integrating in Eg(12).

We calculate the integrdl2) in the saddle-point approximation, assuming the num-
ber n to be large enough. Here we will present only results of the calculations to be
described in Ref. 18.

At n<n;, where

ne=dy/(2(2-y)), (14
we obtain
nP,Cy \™fr)én
Snw(; D ”) (E) ’ (19
La=nyl2—(2—y)n?/(24d). (16)

The quantityC; in expressior(15) is a constant of order unity, whose value depends on
the shape of (that is on the details of the pumpingnd is consequently nonuniversal.
Note that ther-independent factor iil5) is determined by the single-point root-mean-
square value of the passive scalﬁl;]s~ P,LY/(Dvy). Comparing expressiofl6) with
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(4), we see that they coincide under the conditiogsl andd>1 that were implied in
our derivation. Surprisingly, the dependence of,, given by Eq.(4) is correct not only
in the limit n<n, but up ton=n., which is the boundary value f¢i5) and(16). In the
casen>n. the scaling exponents, appear to ber-independent and equal to the value
L.=dy?/(8(2—v)). The n-dependent numerical factors can be found in two limits:
—n¢.<n. andn>n,. At n>n. the structure functions are

nP,C, LV) ”’2( r )gc.

y D L

17

The quantityC, in Eq. (17) is again a nonuniversal constant of order unity.

The vicinity of the critical valuen=n, requires a separate consideration. The ex-
pression for the structure functions can be written as

(n_nC)Z PZCi Ly) nc/Z( r )gn

. D - (19

5| '
which implies the conditiodin—n.|<n.. The factorsC.. are nonuniversal constants of
order unity which are different for the casas<n;, and n>n.. The exponentg, in
expression(18) are determined by Eq16) at n<n. and {,={. at n>n.. The main
peculiarity that appears in expressid®) is its critical dependence|n—n,|", which is
saturated at very smatl.—n. The condition that determines the validity of E48) is

v In Lirsng/in—ny.

Let us discuss our results. We have foundnldependence of the structure function
exponents,, which grow with increasingh up to n=n. and then cease to vary. Our
results contradict to the schemes proposed in Refs. 10 and 11. Theyakidifferent
and smaller than the constant obtained in Ref. 12, which can be regarded as an estimated
upper bound. Eq16), valid atn<n., exactly corresponds to the log-normal statistits.

The log-normal answer can be obtained if one assumes that for a large fluctuation, giving
the main contribution t&, , the pumping is inessential and that the fluctuation is smooth
on the scale. Then, we find from Eq(1) that the passive scalar difference satisfies the
equationd, In(Ag)=—v-r/r2, where we replace® ¢ by A6/r. From here, as a conse-
guence of the central limit theorem, we immediately get the log-normal statistiéséfor

The saturation ah>n_. can be explained by the presence of quasi-discontinuous struc-
tures in the fieldd making the main contribution to the high-order correlation functions
of 6. Note also a similar nonanalytic behavior &f for Burgers’ turbulencé,which is
explained by presence of shocks in the velocity field. Although formally our scheme is
applicable only in the limidy> 1, this simple physical picture allows one to hope that
the main features of our results persist for arbitrary values of the parameters. This hope
is supported by Ref. 20, where a saturatiorf pfvas observed in numerical simulations

of the Kraichnan model ad=3.
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