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We consider high-order correlation functions of the passive scalar in
the Kraichnan model. Using the instanton formalism, we find the scal-
ing exponentszn of the structure functionsSn for n@1 under the ad-
ditional conditiondz2@1 ~whered is the dimensionality of space!. At
n,nc ~wherenc5dz2 /@2(22z2)#) the exponents arezn5(z2/4)(2n
2n2/nc), while atn.nc they aren-independent:zn5z2nc/4. We also
estimate then-dependent factors inSn . © 1998 American Institute of
Physics.@S0021-3640~98!01319-X#

PACS numbers: 47.27.Ak

Anomalous scaling is probably the central problem of the theory of turbulenc
1941 Kolmogorov formulated his famous theory1 wherein scaling behavior of differen
correlation functions of velocity in a turbulent flow was predicted. Experimentally
observes deviations from the scaling exponents proposed by Kolmogorov. It is r
nized that the deviations are related to rare strong fluctuations which make the
contribution to the correlation functions.2 This phenomenon, called intermittency, is th
most striking peculiarity of developed turbulence.

One of the classic objects in the theory of turbulence is so-called passive s
advected by a fluid; the role of the scalar can be played by temperature or by the d
of pollutants. Correlation functions of the scalar in a turbulent flow possess a sc
behavior which in the frame of the theory analogous to that of Kolmogorov was e
lished by Obukhov and Corrsin.3 Intermittency enforces deviations from the Obukh
exponents that appear to be even stronger than the deviations from the Kolmo
exponents for the correlation functions of the velocity.4

A consistent theory of turbulence describing anomalous scaling has not been
structed yet because of difficulties associated with the strong coupling inherent to d
oped turbulence. This is a motivation for attempts to examine the intermittency phe
enon in the framework of different simplified models. The most popular model use
this purpose is the Kraichnan model of the passive scalar advection,5 where the advecting
velocity is believed to be short-correlated in time. It allows one to examine the stat
6160021-3640/98/68(7)/6/$15.00 © 1998 American Institute of Physics



rmit-
both

d in
ling of
,

An

tegral

roxi-
ial

call
some
unc-

w
corre-
-
s

tions

eal a
he

fields
has

a

rge-

617JETP Lett., Vol. 68, No. 7, 10 Oct. 1998 E. Balkovsky and V. Lebedev
of the scalar in more detail. The scalar in the Kraichnan model exhibits strong inte
tency even if such is absent in the advecting velocity. The fact was proved
theoretically6–8 and numerically.9 In the theoretical works the equation for then-point
correlation functionFn was solved assuming that different parameters, such asz2 , 2
2z2 , or d21, are small. The order of the correlation functions that can be examine
such a way is bound from above. There have been several attempts to find the sca
the correlation functions for largern. In the work by Kraichnan10 a closure was assumed
enabling him to findzn for any n. An alternative scheme was proposed in Ref. 11.
attempt to solve the problem at largen was made in Ref. 12.

In the present work we develop a consistent formalism based on the path-in
representation of the dynamical correlation functions of classical fields.13 The basic idea,
which was set forth in Ref. 14, involves the possibility of using the saddle-point app
mation in the path integral at largen. The saddle-point conditions are integro-different
equations describing an object that, by analogy with the quantum field theory, we
instanton. The instantonic method had already been successfully used in
contexts.15,16 The formalism presented in this paper enables one to find correlation f
tions of the passive scalar for arbitraryn@1, provideddz2@1.

Advection of a passive scalaru by a velocity fieldv is described by the equation

] tu1v•¹u2k¹2u5f, ~1!

wherek is the diffusion coefficient andf is the source of the scalar. In a turbulent flo
v andf are random functions of time and space coordinates. Then passive scalar
lation functions are determined by the statistics ofv andf. Usually, one treats simulta
neous correlation functionsFn5^u(r1) . . . u(rn)&, since large-scale velocity fluctuation
destroy temporal correlations.

It is convenient to examine the anomalous scaling in terms of the structure func

Sn~r !5^uu~r /2!2u~2r /2!un&. ~2!

One expects that in the convective interval of scales the structure functions rev
scaling behaviorSn(r )}r zn. The exponentszn are of great interest since they reflect t
intermittency. In the frame of the Obukhov theory3 zn5(n/2)z2 . Thus the differences
(n/2)z22zn give the anomalous scaling exponents.

In the Kraichnan modelv andf are independent random functionsd-correlated in
time and described by Gaussian statistics. Therefore, the statistical properties of the
are entirely characterized by their pair correlation functions. For the pumping one
^f(t1 ,r1)f(t2 ,r2)&5d(t12t2)x(r 12), wherex(x) is a smooth function decaying on
scaleL. The constantx(0)[P2 determines the pumping rate ofu2. For the velocity field
one has

^va~ t1 ,r1!vb~ t2 ,r2!&5d~ t12t2!$V0dab2Kab~r12r2!%.

The quantityV0 is anr -independent constant which represents the contribution of la
scale velocity fluctuations. Since a homogeneous advection does not influenceSn , one
should keep in the correlation function also a smallr -dependent correctionK, which is
assumed to possess some scaling properties:
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Kab~r!5
D

d
r 2gF r 2dab1

22g

d21
~r 2dab2r ar b!G , ~3!

whereD is a constant characterizing the strength of the velocity fluctuations. One
sumes that fluctuations of the velocity are strong enough to ensure a large value
Peclet number, that isL22g@r d

22g;k/D. Then there exists a convective interval
scalesr d!r !L. We will be interested in the scaling properties of correlation functi
of u only in this interval, assumingL/r to be the largest parameter in the theory.

Within the Kraichnan model one can derive a closed equation for any correl
functionFn ~Refs. 5,8,17!. The equation forF2 can be solved.5 In the convective interval
S2(r )52@F2(0)2F2(r )#}r g, which implies thatz25g. However, forn.2 the equa-
tions forFn are too complicated to be solved exactly. In Refs. 7 and 8 the equations
analyzed in the limits (22g)!1 anddg@1. The analysis led to the answer

zn5
ng

2
2

22g

2~d12!
n~n22!. ~4!

The first term in the right-hand side of Eq.~4! represents the normal scaling, and t
second term is just the anomalous scaling exponent. The calculations leading to~4! are
correct if the anomalous contribution is much smaller than the normal one. To over
the restriction we proposed a procedure which will be described in detail elsewh18

Below we sketch our scheme.

The diffusivity k does not enter the expressions for the structure functions in
convective interval.2 However, it is not possible to put simplyk50, since the diffusion
provides an important regularization. Suppose that two infinitely close fluid particle
not disperse without diffusion, and the average value ofu2 is infinite, as is seen from Eq
~6!. Nevertheless, we putk50, approximating the structure functions as averages of
powers of the smoothed difference

q5E dx b~x!u~0,x!, b5dLS x2
r

2D2dLS x1
r

2D , ~5!

wheredL(x) is a function which rapidly tends to zero atr .L21@r d and is normalized
by the condition*dx dL(x)51. In the absence of diffusion, the regularization is provid
by the finite support ofdL .

In the diffusionless case Eq.~1! can be solved in terms of Lagrangian trajectoriess:

u~0,r!5E
2`

0

dt8 f@ t8,s~ t8,r !#, ] ts5v~ t,s!. ~6!

The times here are negative due to causality andr is supposed to be the terminating poi
of the trajectorys(t,r ): s(t50,r )5r . Then we can obtain

^uqun&5E dy dq

2p
^exp~2F2 iyq1n lnuqu!&v , ~7!

F5
y2

2 E dt dr1 dr2 x~R12!b~r1!b~r2!, ~8!
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where R125us(t,r1)2s(t,r2)u. The brackets in the right-hand side of Eq.~7! denote
averaging over the statistics ofv, while the statistics off has already been taken int
account there.

Note thatF defined by Eq.~8! depends only on the absolute valuesR12(t) of
Lagrangian differences. Therefore, instead of averaging over the statistics ofv one may
find an answer by averaging over statistics ofR12, which can be established starting fro
the relation

g21] tR12
g 5z12[R12

g22R12a~v1a2v2a!, ~9!

which follows from Eq. ~6!. Using the statistical properties ofz and employing the
conventional procedure,13 we find the effective action

iI5 i E
2`

0

dt E dr1 dr2 m12~g21] tR12
g 1D !2

D

d E2`

0

dt E dr1 dr2 dr3 dr4 Q12,34m12m34

~10!

describing the statistics ofR12. Herem12[m(t,r1 ,r2) is the auxiliary field conjugate to
R12. The explicit expression for the functionQ is rather cumbersome. We will need
only in the leading order in 1/d:

Q12,345
1

4
R12

g22R34
g22~R23

22g1R14
22g2R13

22g2R24
22g!~R23

2 1R14
2 2R13

2 2R24
2 !. ~11!

Now, we can rewrite~7! as a path integral

^uqun&5E dy dq

2p
DRDm exp~ iI2F2 iyq1n lnuqu!. ~12!

The definition ofR leads to the triangle inequalities

R121R23.R13, ~13!

to be satisfied for any three points. Actually, the inequalities are constraints that sho
imposed on the fieldR12 when integrating in Eq.~12!.

We calculate the integral~12! in the saddle-point approximation, assuming the nu
ber n to be large enough. Here we will present only results of the calculations t
described in Ref. 18.

At n,nc , where

nc5dg/~2~22g!!, ~14!

we obtain

Sn;S n

g

P2C1

D
LgD n/2S r

L D zn

, ~15!

zn5ng/22~22g!n2/~2d!. ~16!

The quantityC1 in expression~15! is a constant of order unity, whose value depends
the shape ofx ~that is on the details of the pumping! and is consequently nonuniversa
Note that ther -independent factor in~15! is determined by the single-point root-mea
square value of the passive scalaru rms

2 ;P2Lg/(Dg). Comparing expression~16! with
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~4!, we see that they coincide under the conditionsn@1 andd@1 that were implied in
our derivation. Surprisingly, then dependence ofzn given by Eq.~4! is correct not only
in the limit n!nc but up ton5nc , which is the boundary value for~15! and~16!. In the
casen.nc the scaling exponentszn appear to ben-independent and equal to the valu
zc5dg2/(8(22g)). The n-dependent numerical factors can be found in two limitsn
2nc!nc andn@nc . At n@nc the structure functions are

Sn;S n

g

P2C2

D
LgD n/2S r

L D zc

. ~17!

The quantityC2 in Eq. ~17! is again a nonuniversal constant of order unity.

The vicinity of the critical valuen5nc requires a separate consideration. The
pression for the structure functions can be written as

Sn;S ~n2nc!
2

gnc

P2C6

D
LgD nc/2S r

L D zn

, ~18!

which implies the conditionun2ncu!nc . The factorsC6 are nonuniversal constants o
order unity which are different for the casesn,nc and n.nc . The exponentszn in
expression~18! are determined by Eq.~16! at n,nc and zn5zc at n.nc . The main
peculiarity that appears in expression~18! is its critical dependence}un2ncunc, which is
saturated at very smallnc2n. The condition that determines the validity of Eq.~18! is
g ln L/r@nc /un2ncu.

Let us discuss our results. We have found then dependence of the structure functio
exponentszn which grow with increasingn up to n5nc and then cease to vary. Ou
results contradict to the schemes proposed in Refs. 10 and 11. The valuezc is different
and smaller than the constant obtained in Ref. 12, which can be regarded as an es
upper bound. Eq.~16!, valid atn,nc , exactly corresponds to the log-normal statistics19

The log-normal answer can be obtained if one assumes that for a large fluctuation,
the main contribution toSn , the pumping is inessential and that the fluctuation is smo
on the scaler . Then, we find from Eq.~1! that the passive scalar difference satisfies
equation] t ln(Du)52v–r /r 2, where we replaced¹u by Du/r . From here, as a conse
quence of the central limit theorem, we immediately get the log-normal statistics forDu.
The saturation atn.nc can be explained by the presence of quasi-discontinuous s
tures in the fieldu making the main contribution to the high-order correlation functio
of u. Note also a similar nonanalytic behavior ofzn for Burgers’ turbulence,2 which is
explained by presence of shocks in the velocity field. Although formally our schem
applicable only in the limitdg@1, this simple physical picture allows one to hope th
the main features of our results persist for arbitrary values of the parameters. This
is supported by Ref. 20, where a saturation ofzn was observed in numerical simulation
of the Kraichnan model atd53.
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