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A one-dimensional model with time-dependent random hopping is proposed to describe charge transport in
DNA. It permits the investigation of both diffusion of electrons and their tunneling between different sites in
DNA. The tunneling appears to be strongly temperature-dependent. Observations of a strong (exponential) as
well as a weak distance dependence of the charge transfer in DNA can be explained in the framework of our
model. © 2002 MAIK “Nauka/Interperiodica”.
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1 Electronic transport is the basis for a wide range of
important biological processes in DNA. Besides, the
phenomenon has a fundamental physical interest, since
the transport properties of biomolecules are expected to
differ considerably from those of macroscopic conduc-
tors. Lastly, very recently, material scientists have also
turned their attention to charge migration in DNA for the
development of DNA-based molecular technologies.

Although the first attempts to measure DNA con-
ductivity [1] and to present a theory of the phenomenon
[2] were made almost 40 years ago, the question con-
cerning charge transport through DNA remains unset-
tled, and there is an impressive quantity of unexplained
or partially explained data. Different publications fre-
quently report contradictory results. Two kinds of tech-
niques for acquiring information on charge transport in
DNA are used. First, direct or indirect electrical con-
ductivity measurements on micrometer-long DNA
ropes are performed [3–7]. Experimental results
obtained in this technique are ambiguous. DNA con-
ductivity σ was reported as almost metallic, of the
order 104 Ω–1 cm–1[3] (in a recent publication [4], the
authors claim they observed even proximity-induced
superconductivity in DNA) or semiconducting with
σ . 0.1 Ω–1 cm–1 [6]. Very recently, experimental tech-
niques have progressed to the point where the conduc-
tivity of individual 10-nm-long double-stranded mole-
cules was measured [7], and the result implies that
DNA is a good insulator. Clearly this frustrating situa-
tion with conductivity measurements means that there
are many relevant factors which can influence the
charge transport in DNA in different ways and which
are hardly controlled in real experiments. The second
technique, related to fluorescence quenching measure-
ments on DNA strands doped with donor and acceptor
molecules [8–23], seems more reliable, and it is our

1 This article was submitted by the authors in English.
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main concern here. In this technique, photoexcitation of
a donor associated with the stack of base pairs in some
fashion allows transfer of an electron to the stack. The
migrating electron is trapped finally at the acceptor site,
and charge transfer is monitored by the yield of a chem-
ical reaction accompanying the trapping process. The
transfer rate is usually assumed to be characterized by
a simple exponential law exp(–βx), where x is the
donor-acceptor separation. Fitting to this law gives val-
ues of β ranging from 0.1 Å–1 to 1.4 Å–1.

It is common knowledge that DNA can be treated as
a one-dimensional linear chain of stacked base pairs.
We believe that in the ground state every base pair con-
tains bound electrons only. Then the charge is carried
through DNA by excited electrons (or holes), which
can jump between the base pairs. Below, we propose a
simple model which, for our purposes, reflects basic
features of the electron transport in DNA. The picture
includes the following ingredients.

(i) The excited electron states at the base pairs are
separated by an energy spacing larger than the temper-
ature and therefore are hardly excited thermally.

(ii) Thermal motions of the DNA base pairs are elas-
tic vibrations with a characteristic frequency ωb.

(iii) Efficient charge transfer between neighboring
base pairs takes place for rare events.

(iv) The Coulomb interactions between the elec-
trons and holes can be neglected for describing the hop-
ping transport.

Let us explain point (iii) in more detail. For the static
equilibrium DNA helix charge, hopping is expected to
be negligibly small, since there is no significant elec-
tronic overlapping between adjacent base pairs. Never-
theless, sometimes, due to thermal fluctuations, exclu-
sively favorable configurations for hopping of the base
pairs occur, when efficient hopping is possible. If the
separation between the pairs is larger than the ampli-
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tude of their thermal vibrations, then the probability of
such events (which can be called “contacts”) is small.
Duration of the contact can be estimated as the charac-

teristic oscillation time .

Now we discuss the correspondence of the assump-
tions listed above and experimental data. As a guide-
line, we use not only data known from the DNA litera-
ture but also the data obtained for a wide range of
organic linear chain polymers of stacked planar mole-
cules (for a review see [24]). The contacts are related to
mutual displacements and orientations of adjacent base
pairs. Probably, hopping matrix elements are mostly
sensitive to the relative rotations (twist fluctuations) of
the base pairs (see, e.g., [25]). The characteristic fre-
quency of these fluctuations, ωb, is usually estimated as
being in the region 1011–1012 s–1. A small probability of
the contacts is confirmed by experiment showing that
the characteristic electronic hopping time τ is larger

than ; in the experiments [8, 10, 17, 18] ωbτ = 102–
103. Our first assumption (i) requires ∆E > T, where ∆E
is the spacing, in the spectrum of electron excitations
for a base pair. The magnitude of ∆E can be measured
directly; for the experiments [8–23] ∆E > 500 K. There-
fore, the inequality is satisfied. Rough macroscopical
estimations at the Coulomb interaction Uc, as well as ab
initio molecular orbital calculations of Uc, give few meV
[26], and thus the Coulomb energy appears to be
smaller (though of the same order) than "ωb. We
believe that it is enough to justify neglecting the Cou-
lomb interaction.

The above reasoning leads to a one-dimensional
hopping Hamiltonian for the electrons:

(1)

Here ai and  are electronic annihilation and creation
operators at the site (i.e., the base pair) with the number
i, and ξi are the hopping amplitudes, which are time-
dependent quantities. The equations for the Heisenberg
operators ai are

(2)

We assume that different ξi possess independent sta-
tistics, since ξi are related to independent thermal pair
base fluctuations. The hopping matrix element ξi can
decompose into a constant part 〈ξ i〉 , which describes
the coherent charge carrier motion in a completely rigid
lattice, and a fluctuating part. Since the probability to
jump is appreciable during rare events, the coherent
part of ξ can be neglected in comparison with its fluc-
tuating part.

Note that theoretical models based on hopping
Hamiltonians similar to Eq. (1) are widely used to
describe charge transport in solid-state physics (see,
e.g., [27, 28]). For most problems, in this case the
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description corresponds to electron migration in a
steady energy landscape, including thermally activated
jumps over barriers and quantum tunneling through the
barriers. This is quite different from our case.

We assume that DNA molecules can be treated as
homogeneous ones. Though the molecules are con-
structed from four different nitrous bases, experimental
data [8–22], as well as numerical first principle calcula-
tions [26, 29, 30], show that the sequence of base pairs
is not a decisive factor determining electron transport in
DNA. Quantitatively, this condition can be formulated
as δE < "ωb, where δE is an energy spacing between the
(lowest excited) electron energy levels at different base
pairs. The values of δE, known mainly from numerical
electronic structure calculations [26, 29, 30], are of the
order of meV. Thus, δE is smaller than "ωb for ωb given
above, which justifies the picture. In addition, some
experiments (see, e.g., [23]) are performed for artificial
homogeneous DNA, where δE = 0. One expects that,
due to the hopping, electron diffusion occurs on large
time scales. For ξ, treated as white noise, it was demon-
strated in the papers [31, 32]. Though our case is essen-
tially different, there is good reason to believe that the
same behavior should be observed on time scales larger
than the hopping time τ.

Below, we examine the particular case related to the
fluorescence measurements reported in the papers [8–
23]. The donors are photoexcited, and effects related to
the excited electron motion to the acceptors are moni-
tored. The energetic gaps δEd and δEa between the
donor and the acceptor and the base pairs between them
are crucial for the hopping rate. The values of δEd and
δEa (known mainly from ab initio numerical calcula-
tions [15, 26, 29, 30]) can be estimated as 102 meV. We
see that the inequalities δEd, δEa @ "ωb are satisfied.
The electron is always bound to the acceptor site more
strongly than to a standard base pair, which is δEa > 0.
As for the donors, the sign of δEd can be either positive
or negative. If δEd is negative, then the scheme of the
electronic charge transfer from the donor to the accep-
tor is quite simple. Initially, the electron leaves the
donor, jumping to the neighbor site, and then jumps
between the standard base pairs, finally being trapped
at the acceptor. The case δEd > 0 is more complicated.
In order to have a driving force for the donor–acceptor
charge transfer process, the final state with the charge
bound to the acceptor should be energetically favor-
able; that is, the inequality δEa > δEd has to be satisfied.
However, there are some base pairs in-between which
play the role of the potential barrier for the electron.
Therefore, there are two possibilities for the electron to
reach the acceptor. The first possibility is for it to jump
initially from the donor to the neighboring site and then
to move to the acceptor by multistep hopping over the
standard base pairs. The second possibility is by unistep
(direct) quantum tunneling from the donor to the accep-
tor through the barrier.
JETP LETTERS      Vol. 75      No. 1      2002
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Since δEd @ "ωb, the probability for the electron to
jump from the donor to the neighboring base pair due
to the dynamics of ξ is negligible. At δEd > 0, such a
jump is possible if the electron absorbs a high-fre-
quency phonon with the frequency ωph ~ ωd (=δEd/").
Correspondingly, at δEd < 0, the electron jump from the
donor is accompanied by emitting high frequency
phonons. Such dynamical vibrations with periods as
short as tens of femtoseconds (i.e., phonons with ωph ~
1014 s–1) were reported in the literature [33–35]. Since
"ωph > T, occupation numbers of such phonons are
small. Thus, for δEd > 0, the probability for the electron
to jump from the donor to the neighboring site contains
two small factors: the probability of the contact and the
probability of absorbing the high frequency phonon.
This corresponds to the experimental situation where
only a small fraction of the electrons are transported
from the donor to the acceptor.

When the electron leaves the donor, it starts to jump
between the donor and the acceptor. It can return to the
donor or arrive at the acceptor. If δEd < 0, then the prob-
ability to return to the donor is negligible. We assume
that even at δEd > 0 the probability of the electron to
jump to the donor or to the acceptor is smaller than the
probability to jump to the standard base pair. There are
two reasons for this assumption. First, the donors and
the acceptors have chemical structures different from
the standard base pairs, which hinders the contacts.
Second, the jump has to be accompanied by phonon
emission, which diminishes its probability. The same is
valid for the acceptor. Thus, before being finally
trapped at the acceptor site, the electron jumps many
times back and forth over the base pairs between the
donor and the acceptor, “smeared out” homogeneously
over all the intermediate base pairs. Then the relative
probability for the electron to arrive at the acceptor is
determined by the ratio of the probabilities for the elec-
tron to jump to the donor and to the acceptor from adja-
cent base pairs. This relative probability appears to be
independent of the separation x between the donor and
the acceptor. That explains why the rate of charge trans-
fer sometimes is almost insensitive to the relative load-
ing of donors and acceptors (see, e.g., [36, 37]). The
above picture implies that the total donor–acceptor
charge transfer time should be larger than the electronic
hopping time τ, and this conforms to experimental data
(see, e.g., [8]).

Now we consider the quantum tunneling for an elec-
tron strongly attached to the donor, which is the case for
δEd > 0. Though the potential barrier depends on time,
at the condition δEd @ "ωb, the probability of the elec-
tron tunneling from the donor to the acceptor can be
calculated using the adiabatic approximation. To exam-
ine the tunneling process, one should consider the
quasi-stationary electron state bound at the donor. In
the context of our picture, we assume ξ ! ωd. Then the
JETP LETTERS      Vol. 75      No. 1      2002
energy of the bound state is close to –δEd. Substituting
∂t by iωd in Eq. (2), one obtains for the state

(3)

where we used the condition ξ ! ωd. Then, the proba-
bility for the electron to be at the site n is determined by
the average

(4)

Quantum averaging and averaging over the statistics
are performed upon deriving Eq. (4). In addition, at the

derivation we substituted  ≈ 1, which is justified

by  ! 1. Note that probability (4) is determined
by the simultaneous statistics of ξ. Remember that dif-
ferent ξj are assumed to be statistically independent.
Therefore, the average on the right-hand side of Eq. (4)
is a product of 〈|ξ j |2〉 . For standard pairs, the quantities
can be regarded as site-independent ones. Therefore,
the probability of the electron being at the nearest site

to the acceptor is proportional to 〈|ξ|2〉n/ , where n is
the number of the standard pairs between the donor and
the acceptor.

The jump of the electron from the bound state to the
acceptor is accompanied by phonon emission. How-
ever, the only x-dependent factor in the probability of
the process is related to the average charge occupation
number of a site n near the acceptor, which was estab-
lished above. Thus, for the probability we obtain the
exponential law exp(–βx) with

(5)

Here, ξ is the hopping probability for the standard base
pairs and a =3.4 Å is the distance between the base
pairs in DNA. Note that ωd depends on the donor type,
whereas the average 〈|ξ|2〉  is mainly related to base pair
vibrations. It follows from the above consideration that
the exponential law implies the condition β > a–1. This
conclusion is in agreement with most published exper-
imental data. As reported in [21], the value β = 0.1 Å–1

(thus smaller than a–1) is probably related to an attempt
to fit a complex behavior (including two processes: dif-
fusion and tunneling) by a simple exponential law.

Let us stress that the quantum tunneling analyzed
above is not the standard (static) tunneling described in
textbooks. We have to deal with dynamic tunneling,
which will be effective only when, due to fluctuations
of ξ, there occurs some kind of bridge from the donor
to the acceptor. We found that the exponential law is in
fact explained by the small probability of having such a
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bridge, which is realized when many contacts between
base pairs occur simultaneously. In addition, the proba-
bility of this kind of tunneling is strongly dependent on
the temperature via 〈|ξ|2〉 . It is natural to assume that it
exponentially depends on the relative displacement u of
the neighboring base pairs. Then (in the harmonic
approximation), ln〈|ξ|2〉  contains a term, proportional to
〈u2〉 , which is proportional to the temperature T. Thus,
we arrive at the expression

(6)

where c1 and c2 are temperature-independent factors.
They can be extracted from the paper [20]: c1 ≈ 4, c2 ≈
0.01 K–1. The values are in agreement with rough esti-

mates c1 ~ a/b, c2 ~ kB/M b2, where kB is the Boltz-
mann constant, M is the base pair mass, and b is the
electronic penetration length. It can be estimated as b ~

"/  ~ 1 Å, where m is the effective electron mass
and E is its binding energy at the base pair.

To conclude, for the electron which is strongly
bound to the donor, we established two different charge
transfer mechanisms: diffusion and tunneling. Diffu-
sion leads to a charge transfer probability independent
of the donor–acceptor distance x. However, the proba-
bility contains the small factor related to the electron
jump from the donor to a neighboring site. The tunnel-
ing leads to the exponential dependence of the proba-
bility on x (with the temperature-dependent length β–1).
Therefore, it is not efficient for large distances. Thus,
the exponential law has to be observed for small dis-
tances x, whereas for large distances the charge transfer
rate has to be independent of the donor–acceptor dis-
tance. Just this kind of behavior was reported very
recently [23]. For the case of an electron weakly bound
to the donor, the hopping should always dominate over
quantum tunneling. This explains why the rate of
charge transfer sometimes does not behave exponen-
tially even for small x [36, 37].

Note that in some cases the interaction of light, ion-
izing radiation, or chemically active reagents with
DNA can result in the loss of an electron at a specific
site with the formation of a hole. In this case, the charge
transport through DNA can be provided by holes (see,
e.g., [14]). The key issues for positive charge carrier
transport are the same as for the electrons. As far as the
physical picture of charge transport is concerned it is
essentially the same for both kinds of carriers, and it
can be described in the framework of the same
approach.
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