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High-order dynamical correlations of defeétgiantum vortices, discli-
nations, etg.in thin films are examined by starting from the Langevin
equation for the defect motion. It is demonstrated that the dynamical
correlation functions=,,, of the vorticity or disclinicity behave aB,,
~y?/r*" wherer is the characteristic scale ayds the renormalized
fugacity. Therefore below the Berezinskii—Kosterlitz—Thouless transi-
tion temperature th&,, are characterized by anomalous scaling expo-
nents. The behavior differs strongly from the normal I&y,~F%
obeyed by equal-time correlation functions; the unequal-time correla-
tion functions appear to be much larger. The phenomenon resembles
intermittency in turbulence. €1999 American Institute of Physics.
[S0021-364(99)00822-1

PACS numbers: 68.55.Ln

It is well known that defects such as quantum vortices, spin vortices, dislocations
and disclinations play an essential role in physics of low-temperature phases of thin films.
Berezinskit and then Kosterlitz and Thoulé'seecognized that two-dimensioné&2D)
systems have a class of phase transitions related to defects. The main idea of their
approach is that in 2D the defects can be treated as point objects interacting like charged
particles. The low-temperature phase corresponds to a fluid consisting of bound un-
charged defect—antidefect pairs, which is an insulator, whereas the high-temperature
phase contains free charged particles and can be treated as a plasma. Correspondingly, in
the low-temperature phase the correlation length is infinite, whereas in the high-
temperature phase it is finite. An enormous number of papers have been devoted to
different aspects of the problefsee, e.g., the surveys in Refs. 3-The scheme pro-
posed by Kosterlitz and Thouless can be applied to superfluid and hexatic films and
planar 2D magnets. It admits a generalization for crystalline filsee Refs. 8 and)9
There are also applications to superconductive materials, especially td hglpercon-
ductors(see, e.g., Ref. 10

The dynamics of films in the presence of such defects was considered in Refs. 11
and 12. In those papers a complete set of equations was formulated describing both the
motion of the defects and the hydrodynamic degrees of freedom. Then, to obtain macro-
scopic dynamical equations, an averaging over an intermediate scale was performed. In
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that procedure the “current density” related to the defects was replaced by an expression
proportional to the average “electric field” and to gradients of the temperature and of the
chemical potential. The resulting equations perfectly correspond to the problems solved
in those paperst!2 Unfortunately, in that procedure information concerning high-order
correlations of the defect motion is lost. That is the motivation for the present study, in
which we shall examine these high-order correlations.

The static properties of the system of vortex-like defects in thin films can be de-
scribed quite universally. The starting point of the description is the free enérgy
associated with the defects:

TIT=-, Bnin; In('xI XJ')—E Iny, 1)
3] a ]
where the subscripts] label defectsy; are the positions of the defects,= + 1 are the
“charges” of the defectsa is a cutoff parameter of the order of the size of the defect
core, and the coupling constagt and the fugacityy are dimensionles3-dependent
factors. Expressiofil) is correct for quantum vortices in superfluid films, for disclina-
tions in hexatic films, and for spin vortices in 2D planar magnets. For dislocations in
crystalline films, expressiofl) has to be modified slightl§/.

The presence of the pairs in the system leads to nontrivial “dielectric” properties of
the medium. As a result, the interaction between the charges is modified; the effect can be
described in terms of a scale-dependent coupling congtdief. 2. The dependence
can be found in the framework of the scheme proposed by KostEtExcluding pairs
with separations frona to r, we arrive at renormalized values of the paramefzendy
which obey the following renormalization-group equations:

dg dy
m=—cyz, WZ(Z—BW, (2

wherec is a numerical factor of order unity. In the low-temperature phase, the coupling
constantB tends to a constant on large scales. The asymptotic valgei®farger than

2; the critical valueB.=2 corresponds to the transition temperature. In the asymptotic
region, whereB can be treated asindependent, the renormalized fugacityremains
r-dependent. Its asymptotic behavior can easily be extracted frorREq.cr?2~ 4. We

see that in the low-temperature phaséends to zero as the scale increases. Thus the
inequalityy<<1 is satisfied for large scales in the low-temperature phase and probably in
some region of scales abovg.

We consider the correlation functions

Fon(ty, - toniXa, - oo Xon) =(p(ty,X1) - .. p(tan,X2n)) )
of the “charge density”

pOO=2 n8(X=x)). @

For superfluid films the “charge density(4) is proportional to the vorticityyv X v. In
statics, one gets the estimite

Fa(r)~y2(r)/r?, ©)
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wherer =|x;—X,|. For high-order equal-time correlation functions the normal estimate
F,n~F3 is valid under the conditiog<1."®

Following Ref. 11, we adopt the stochastic equation

dx;,  D| a7 07

- — 1n — |+&
dt T |axy 7B ox, S ©)

which determines the trajectory of thith vortex in a superfluid film. Here” is the free
energy (1), D is a diffusion coefficient,y is a dimensionless parameter, agdare
Langevin forces with the correlation function

(& a(t) €} p(t2))=2D 8 8,56(t1—t5). (7)

Equation(6) can be derived in the spirit of the procedure proposed by Hall and Vinen for
a 3D superfluidsee Ref. 18 Hubel’ argued that the same equation is correct for spin
vortices in planar 2D magnets. We believe that j6£ 0, Eq. (6) is applicable to the
dynamics of disclinations in hexatic films such as membranes, freely suspended films,
and Langmuir films. We should also take into account annihilation and creation pro-
cesses. They are characterized by a creationRétg, which is the probability density

for a defect—antidefect pair with separatioto be created per unit time per unit area, and

by an annihilation rate€R(r), which is the probability for a defect—antidefect pair to
annihilate per unit time if the pair is separated by a distandsctually R(r) andR(r)

are nonzero only if is of the order of the core size

To examine the correlation functiot3) we use the Doi techniqd@,which enables
one to treat systems of classical particles in which creation and annihilation processes
occur. The Doi technique is formulated in terms of creatjoand annihilationy opera-
tors which satisfy the same commutation rules as do those for Bose particles; we must
introduce the fieldg/.. and fpi corresponding to defects and antidefects, respectively. An
effective Hamiltonian can be written in terms of the fields. Then one can formulate a
conventional diagrammatic expansion in term&pR, 3, and the propagators of defects.
Extracting blocks with small separations between the defects, one can pass to renormal-
ized quantities. Details of the procedure will be published elsewiierzre we only
present the results. The fugacity is expressed in terms of the renormalized values of the
creation and annihilation rates as

J— y2

R(x)=";R(x). 8

r

The renormalized value of the annihilation rate is

R(X)=8mB45(X). 9

The renormalized values @ andy obey the same renormalization-group equati@)s
as in statics. Fob and y we get the following renormalization-group equations:

dD 5 dy

- N2
din(ria) Y din(ria) Y

which are analogous to the equati@ for 8. We conclude that the corrections@oand
v are small(and irrelevant due to the small value of the fugacity.

(10)
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FIG. 1. Two trajectories passing through given points.

Next, we can examine the correlation functidBg rewriting the charge density)
as

P:l’\ﬂ+¢+_;ﬁ—¢—- 1D

One should distinguish between contributions related to different nunkbefrslefect—
antidefect pairs passing through the poixgsat given times,,. They can be estimated
as

Fon~y2(ror, ", (12)

where we assume that all spatial separations are of the ordgranfd all time intervals

are of the order ofi/D. We see that the ratio ifil2) contains the Rth power of a
dimensionless small parameterThus we conclude that the leading contributiorFtg,

is due to a single defect—antidefect pair, which corresponds=t&. The situation is
illustrated in Fig. 1. Though the contribution associated with a number of defect—
antidefect pairs contains an additional huge entropy factor, it has also an additional small
factor associated with the small probability of observing defect—antidefect pairs with
separations larger than the core radius; the smallness is due to the strong Coulomb
attraction. In the large-scale limit whef is saturated we havepocr 4" D728 f

some spatial separations amdmg—rj| and/or some time intervals differ strongly, then
one can formulate some simple rules. For example, if one of the time intervaismuch

larger than all values dfi—rjlle, then the correlation function behavesFag,« r #.

For the pair correlation function we have the same estinfjtas in statics. The
high-order correlation functions are much larger than their normal estimates in terms of
the pair correlation function. Namely, in accordance with Egsand(12) we have

Fon/F3~y 27251, (13

Let us explain in terms of our scheme the origin of the estinfate~ F} for the equal-

time correlation functions. This estimate correspondk=m in Eq. (12). The reason is

that two defects cannot pass simultaneously througlpd@nts, and at least=n defect—
antidefect pairs must be taken in order to obtain a nonzero contribution to the equal-time
correlation functiorf,,,. The situation is illustrated in Fig. 2. Thus we have two different
regimes: for equal-time and for unequal-time correlation functions. To establish the
boundary between the regimes we should consider small time intervals in which the
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FIG. 2. Possible and impossible trajectories passing through four points at a given moment in time.

single-pair contribution is finite but small. The smallness is associated with diffusive
“smearing.” The characteristic time over which the simultane6egual-time regime
passes into the nonsimultaneotsnequal-tim¢ regime can be estimated fromt
~r2/|In[y(r)]|, wherer is the characteristic spatial separation.

The effect considered resembles intermittency in turbulgisee, e.g., Ref. 20
which leads to large-dependent factors in the ratios likg3) in the velocity correlation
functions of a turbulent flow. However, in the case of defects the largependent
factors are related to the ultraviolet cutoff parameter, whereas for intermittency in turbu-
lence the larger-dependent factors are related to the infrafpdmping scale. Our
situation is thus closer to the inverse casce#d® Ref. 21 realized on scales much larger
than the pumping length. Our results can also be compared with nontrivial tails of prob-
ability distribution functions in the physics of disorder materi@se, e.g., Refs. 22 and
23).
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