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High-order dynamical correlations of defects~quantum vortices, discli-
nations, etc.! in thin films are examined by starting from the Langevin
equation for the defect motion. It is demonstrated that the dynamical
correlation functionsF2n of the vorticity or disclinicity behave asF2n

;y2/r 4n, wherer is the characteristic scale andy is the renormalized
fugacity. Therefore below the Berezinskii–Kosterlitz–Thouless transi-
tion temperature theF2n are characterized by anomalous scaling expo-
nents. The behavior differs strongly from the normal lawF2n;F2

n

obeyed by equal-time correlation functions; the unequal-time correla-
tion functions appear to be much larger. The phenomenon resembles
intermittency in turbulence. ©1999 American Institute of Physics.
@S0021-3640~99!00822-1#

PACS numbers: 68.55.Ln

It is well known that defects such as quantum vortices, spin vortices, disloca
and disclinations play an essential role in physics of low-temperature phases of thin
Berezinskii1 and then Kosterlitz and Thouless2 recognized that two-dimensional~2D!
systems have a class of phase transitions related to defects. The main idea o
approach is that in 2D the defects can be treated as point objects interacting like ch
particles. The low-temperature phase corresponds to a fluid consisting of boun
charged defect–antidefect pairs, which is an insulator, whereas the high-tempe
phase contains free charged particles and can be treated as a plasma. Correspond
the low-temperature phase the correlation length is infinite, whereas in the
temperature phase it is finite. An enormous number of papers have been devo
different aspects of the problem~see, e.g., the surveys in Refs. 3–7!. The scheme pro-
posed by Kosterlitz and Thouless can be applied to superfluid and hexatic films
planar 2D magnets. It admits a generalization for crystalline films~see Refs. 8 and 9!.
There are also applications to superconductive materials, especially to high-Tc supercon-
ductors~see, e.g., Ref. 10!.

The dynamics of films in the presence of such defects was considered in Re
and 12. In those papers a complete set of equations was formulated describing b
motion of the defects and the hydrodynamic degrees of freedom. Then, to obtain m
scopic dynamical equations, an averaging over an intermediate scale was perform
6910021-3640/99/70(10)/6/$15.00 © 1999 American Institute of Physics
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that procedure the ‘‘current density’’ related to the defects was replaced by an expre
proportional to the average ‘‘electric field’’ and to gradients of the temperature and o
chemical potential. The resulting equations perfectly correspond to the problems s
in those papers.11,12 Unfortunately, in that procedure information concerning high-or
correlations of the defect motion is lost. That is the motivation for the present stud
which we shall examine these high-order correlations.

The static properties of the system of vortex-like defects in thin films can be
scribed quite universally. The starting point of the description is the free energF

associated with the defects:

F /T52(
iÞ j

b ninj lnS uxi2xj u
a D2(

j
ln y, ~1!

where the subscriptsi , j label defects,xi are the positions of the defects,nj561 are the
‘‘charges’’ of the defects,a is a cutoff parameter of the order of the size of the def
core, and the coupling constantb and the fugacityy are dimensionlessT-dependent
factors. Expression~1! is correct for quantum vortices in superfluid films, for disclin
tions in hexatic films, and for spin vortices in 2D planar magnets. For dislocation
crystalline films, expression~1! has to be modified slightly.8

The presence of the pairs in the system leads to nontrivial ‘‘dielectric’’ propertie
the medium. As a result, the interaction between the charges is modified; the effect
described in terms of a scale-dependent coupling constantb ~Ref. 2!. The dependence
can be found in the framework of the scheme proposed by Kosterlitz.13 Excluding pairs
with separations froma to r, we arrive at renormalized values of the parametersb andy
which obey the following renormalization-group equations:

db

d ln~r /a!
52cy2,

dy

d ln~r /a!
5~22b!y, ~2!

wherec is a numerical factor of order unity. In the low-temperature phase, the coup
constantb tends to a constant on large scales. The asymptotic value ofb is larger than
2; the critical valuebc52 corresponds to the transition temperature. In the asymp
region, whereb can be treated asr-independent, the renormalized fugacityy remains
r-dependent. Its asymptotic behavior can easily be extracted from Eq.~2!: y}r 22b. We
see that in the low-temperature phasey tends to zero as the scale increases. Thus
inequalityy!1 is satisfied for large scales in the low-temperature phase and proba
some region of scales aboveTc .

We consider the correlation functions

F2n~ t1 , . . . ,t2n ;x1 , . . . ,x2n!5^r~ t1 ,x1! . . . r~ t2n ,x2n!& ~3!

of the ‘‘charge density’’

r~x!5(
j

njd~x2xj !. ~4!

For superfluid films the ‘‘charge density’’~4! is proportional to the vorticity¹3vs. In
statics, one gets the estimate14

F2~r !;y2~r !/r 4, ~5!
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wherer 5ux12x2u. For high-order equal-time correlation functions the normal estim
F2n;F2

n is valid under the conditiony!1.15

Following Ref. 11, we adopt the stochastic equation

dxj ,a

dt
52

D

T F ]F

]xa j
1njgeab

]F

]xb j
G1j j ,a , ~6!

which determines the trajectory of thej th vortex in a superfluid film. HereF is the free
energy ~1!, D is a diffusion coefficient,g is a dimensionless parameter, andj j are
Langevin forces with the correlation function

^j i ,a~ t1!j j ,b~ t2!&52Dd i j dabd~ t12t2!. ~7!

Equation~6! can be derived in the spirit of the procedure proposed by Hall and Vinen
a 3D superfluid~see Ref. 16!. Huber17 argued that the same equation is correct for s
vortices in planar 2D magnets. We believe that forg50, Eq. ~6! is applicable to the
dynamics of disclinations in hexatic films such as membranes, freely suspended
and Langmuir films. We should also take into account annihilation and creation
cesses. They are characterized by a creation rateR̄(r ), which is the probability density
for a defect–antidefect pair with separationr to be created per unit time per unit area, a
by an annihilation rateR(r ), which is the probability for a defect–antidefect pair
annihilate per unit time if the pair is separated by a distancer. Actually R̄(r ) andR(r )
are nonzero only ifr is of the order of the core sizea.

To examine the correlation functions~3! we use the Doi technique,18 which enables
one to treat systems of classical particles in which creation and annihilation proc
occur. The Doi technique is formulated in terms of creationĉ and annihilationc opera-
tors which satisfy the same commutation rules as do those for Bose particles; we
introduce the fieldsc6 andĉ6 corresponding to defects and antidefects, respectively
effective Hamiltonian can be written in terms of the fields. Then one can formula
conventional diagrammatic expansion in terms ofR, R̄, b, and the propagators of defect
Extracting blocks with small separations between the defects, one can pass to ren
ized quantities. Details of the procedure will be published elsewhere.19 Here we only
present the results. The fugacity is expressed in terms of the renormalized values
creation and annihilation rates as

R̄~x!5
y2

r 4
R~x!. ~8!

The renormalized value of the annihilation rate is

R~x!58pbd~x!. ~9!

The renormalized values ofb andy obey the same renormalization-group equations~2!
as in statics. ForD andg we get the following renormalization-group equations:

dD

d ln~r /a!
;2y2,

dg

d ln~r /a!
;y2, ~10!

which are analogous to the equation~2! for b. We conclude that the corrections toD and
g are small~and irrelevant! due to the small value of the fugacity.
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Next, we can examine the correlation functions~3!, rewriting the charge density~4!
as

r5ĉ1c12ĉ2c2 . ~11!

One should distinguish between contributions related to different numbersk of defect–
antidefect pairs passing through the pointsxm at given timestm . They can be estimated
as

F2n;y2k~r * !r
*
24n , ~12!

where we assume that all spatial separations are of the order ofr * and all time intervals
are of the order ofr

*
2 /D. We see that the ratio in~12! contains the 2kth power of a

dimensionless small parametery. Thus we conclude that the leading contribution toF2n

is due to a single defect–antidefect pair, which corresponds tok51. The situation is
illustrated in Fig. 1. Though the contribution associated with a number of def
antidefect pairs contains an additional huge entropy factor, it has also an additional
factor associated with the small probability of observing defect–antidefect pairs
separations larger than the core radius; the smallness is due to the strong Co
attraction. In the large-scale limit whenb is saturated we haveF2n}r

*
24(n21)22b . If

some spatial separations amongur i2r j u and/or some time intervals differ strongly, the
one can formulate some simple rules. For example, if one of the time intervalst is much
larger than all values ofur i2r j u2/D, then the correlation function behaves asF2n}t2b.

For the pair correlation function we have the same estimate~5! as in statics. The
high-order correlation functions are much larger than their normal estimates in term
the pair correlation function. Namely, in accordance with Eqs.~5! and ~12! we have

F2n /F2
n;y22n12@1. ~13!

Let us explain in terms of our scheme the origin of the estimateF2n;F2
n for the equal-

time correlation functions. This estimate corresponds tok5n in Eq. ~12!. The reason is
that two defects cannot pass simultaneously through 2n points, and at leastk5n defect–
antidefect pairs must be taken in order to obtain a nonzero contribution to the equa
correlation functionF2n . The situation is illustrated in Fig. 2. Thus we have two differe
regimes: for equal-time and for unequal-time correlation functions. To establish
boundary between the regimes we should consider small time intervals in whic

FIG. 1. Two trajectories passing through given points.
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single-pair contribution is finite but small. The smallness is associated with diffu
‘‘smearing.’’ The characteristic time over which the simultaneous~equal-time! regime
passes into the nonsimultaneous~unequal-time! regime can be estimated fromDt
;r 2/u ln@y(r)#u, wherer is the characteristic spatial separation.

The effect considered resembles intermittency in turbulence~see, e.g., Ref. 20!,
which leads to larger-dependent factors in the ratios like~13! in the velocity correlation
functions of a turbulent flow. However, in the case of defects the larger-dependent
factors are related to the ultraviolet cutoff parameter, whereas for intermittency in t
lence the larger-dependent factors are related to the infrared~pumping! scale. Our
situation is thus closer to the inverse cascade~see Ref. 21! realized on scales much large
than the pumping length. Our results can also be compared with nontrivial tails of
ability distribution functions in the physics of disorder materials~see, e.g., Refs. 22 an
23!.
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