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Abstract. Cell polarization plays a central role in the development of complex
organisms. It has been recently shown that cell polarization may follow from
the proximity to a phase separation instability in a bistable network of chemical
reactions. An example which has been thoroughly studied is the formation of
signaling domains during eukaryotic chemotaxis. In this case, the process of
domain growth may be described by the use of a constrained time-dependent
Landau–Ginzburg equation, admitting scale-invariant solutions à la Lifshitz and
Slyozov. The constraint results here from a mechanism of fast cycling of molecules
between a cytosolic, inactive state and a membrane-bound, active state, which
dynamically tunes the chemical potential for membrane binding to a value
corresponding to the coexistence of different phases on the cell membrane. We
provide here a universal description of this process both in the presence and
in the absence of a gradient in the external activation field. Universal power
laws are derived for the time needed for the cell to polarize in a chemotactic
gradient, and for the value of the smallest detectable gradient. We also describe
a concrete realization of our scheme based on the analysis of available biochemical
and biophysical data.

Keywords: coarsening processes (theory), signal transduction (theory),
metastable states

c©2009 IOP Publishing Ltd and SISSA 1742-5468/09/P02019+25$30.00

mailto:andrea.gamba@polito.it
mailto:igor.kolokolov@gmail.com
mailto:lebede@landau.ac.ru
mailto:giovanni.ortenzi@unimib.it
http://stacks.iop.org/JSTAT/2009/P02019
http://dx.doi.org/10.1088/1742-5468/2009/02/P02019


J.S
tat.M

ech.
(2009)

P
02019

Universal features of cell polarization processes

Contents

1. Introduction 2

2. Cell polarity 3

3. Macroscopic description of cell polarization 5

4. Model free energy 7

5. Phase separation kinetics 8

6. The coarsening stage 11

7. Spontaneous and gradient-induced polarization 12

8. Gradient sensitivity 14

9. External fluctuations 15

10. Conclusions 15

Acknowledgments 17

Appendix A. Lattice-gas description of cell polarization 17

Appendix B. Mean-field equations for eukaryotic polarization 17

Appendix C. Thermal and chemical noise 21

Appendix D. Scale-invariant size distribution 22

References 24

1. Introduction

Biophysical processes of cell polarization have attracted great interest in recent times.
It has been observed that intriguing similarities exist in the polarization of such diverse
biological systems as cells of the immune system, social amoebas, budding yeast, and
amphibian eggs [38]. This suggests that cell polarization may be a highly universal
phenomenon.

One of the best studied examples of the role of biochemical cell membrane polarization
in eukaryotic cells is chemotaxis. Chemotaxis is the ability of cells to sense spatial
gradients of attractant factors, governing the development of all superior organisms.
Eukaryotic cells are endowed with an extremely sensitive chemical compass allowing them
to orient toward sources of soluble chemical signals. This mechanism is the result of
billions of years of evolution, and multicellular organisms would not exist without it.
Slight gradients in the external signals produced by the environment induce the formation
of oriented domains of signaling molecules on the cell membrane surface. Afterward,
these signaling domains induce differentiated polymerization of the cell cytoskeleton in
their proximity, leading to the formation of a growing head and a retracting tail, and
eventually directed motion towards the attractant source.
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It has been suggested in the biological literature that domains of signaling molecules
are self-organized structures [25]. In this paper we confirm that this expectation may
be substantiated by the use of statistical mechanical methods, leading to the prediction
that universal features typical of coarsening processes in phase-ordering systems should be
observable in polarizing cells. We also describe here a concrete realization of our scheme
in the process of eukaryotic chemotaxis, based on the analysis of available biochemical
and biophysical data. Parts of the results presented here have been briefly reported in a
previous letter [12].

2. Cell polarity

Stochastic reaction–diffusion systems are a natural paradigm for describing in physical
terms the biochemical processes taking place in the living cell, since the cytosol and cell
membrane are inherently diffusive environments6. Although active transport processes
also take place in the cell, they relate mainly to vesicles, organelles and large multiprotein
complexes, while smaller cell constituents move diffusively. Thermal agitation and the
intrinsic stochasticity in the advancement of chemical reactions provide natural sources
of noise.

Most reactions in the cellular environment would be very slow if they were not favored
by the action of catalysts. Small numbers of enzymatic molecules (103–105 per cell) control
the speed of chemical reactions involving much larger numbers of substrate molecules
(105–106 per cell). Often, the substrate concentration in its turn controls the catalyst
activity, so the response of the system becomes non-linear. Most biochemically relevant
reactions involve enzyme–substrate couples and are parts of networks of interconnected
autocatalytic reactions.

Non-linearities allow in principle the system to realize several stable biochemical
phases, characterized by different concentrations of chemical factors [36]. Transitions
between different phases in reaction–diffusion systems have been observed in purely
physical settings, such as the adsorption and reaction of gases on catalytic surfaces [27, 40].
Recently, it has been shown that a similar process of non-equilibrium phase separation
may be at the heart of directional sensing in higher eukaryotes [11, 12].

In eukaryotic directional sensing, cells exposed to shallow gradients of external
attractant factors polarize, accumulating the phospholipidic signaling molecule phos-
phatidylinositol trisphosphate (PIP3) and the PIP3-producing enzyme phosphatidylinositol
3-kinase (PI3K) on the cell membrane side exposed to the highest attractant concentra-
tions, while phosphatidylinositol bisphosphate (PIP2) and the PIP2-producing enzyme
phosphatase and tensin homolog (PTEN) accumulate on the complementary side [24]
(see appendix A for a more abstract description of the relative roles of these signaling
molecules).

Accurate quantitative experiments [33, 28] performed by exposing Dictyostelium
cells to controlled attractant gradients showed that uniform concentrations of external
attractant factor induce a predominant, uniform concentration of PIP3 and PI3K on the
cell membrane, and do not immediately result in cell polarization and motion. However,
slight gradients in the distribution of the attractant factor induce the formation of two

6 For general facts regarding cell biology we refer the reader to [2].
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Figure 1. Local structure of a prototypical signaling network for cell polarization.
Here ϕ+ and ϕ− represent the local concentration of distinct signaling molecules,
or distinct states of the same molecule, which are converted into each other by
the couple of counteracting enzymes h and u. The u enzymes are activated by
ϕ−, resulting in an amplification loop. The surface distribution of h enzymes is
assumed to simply mirror an external distribution of soluble chemical attractant.
The signaling molecules ϕ+, ϕ− are permanently bound to the cell membrane and
perform diffusive motions on it, while the u enzymes are free to shuttle between
the cytosolic reservoir and the membrane.

complementary domains, one rich in PIP3 and PI3K, and one rich in PIP2 and PTEN,
in times of the order of a few minutes. This early breaking of the spherical symmetry of
the cell membrane induces cell polarization and motion [24]. Uniformly stimulated cells
observed over longer timescales (of the order of 1 h) are seen to polarize stochastically
and move in random directions.

Numerical simulations of a stochastic reaction–diffusion model of the process suggest
that both the early, large amplification of slight attractant gradients and the separate
phenomenon of late, random polarization under uniform stimulation are explained by
the proximity of the system to a spontaneous phase separation driven by non-linear
autocatalytic interactions [11]. In this framework, cell polarization is the final result
of a nucleation process by which domains rich in PIP3 and PI3K are created in a sea rich
in PIP2 and PTEN, or vice versa, depending on initial conditions and activation patterns.
The polarization process is accomplished when pure PIP2 and PIP3 rich domains grow
to sizes comparable to the size of the cell. Gradient activation patterns strongly influence
the kinetics of domain growth and coalescence, taking advantage of the underlying phase
separation instability. This way, the peculiar reaction–diffusion dynamics taking place on
the surface of the cell membrane works as a powerful amplifier of slight anisotropies in
the distribution of the external chemical signal.

From this statistical mechanical point of view, random and gradient-driven
polarization appear as two faces of the same coin, in good agreement with some of the
existing biological intuition [38].

To better understand the process of spontaneous and gradient-driven cell polarization
from a physical point of view it is convenient to describe the corresponding signaling
network in abstract terms, i.e. forgetting about the particular nature of the molecules
involved and considering only the general structure of the network. This approach has the
potential to provide a unified description of polarization phenomena in distant biological
systems.

In our abstract signaling network (figure 1) a system or receptors transduces an
external distribution of chemical attractant into an internal distribution of activated
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enzymes h, which catalyze the switch of a signaling molecule between two states, that
we denote here as ϕ− and ϕ+. A counteracting enzyme u transforms the ϕ+ state back
into ϕ−. The molecule ϕ− in turn activates u, thus realizing a positive feedback loop.

The signaling molecules ϕ+, ϕ− are permanently bound to the cell surface S and
perform diffusive motions on it, while the u enzymes are free to shuttle between the
cytosolic reservoir and the membrane. In a more complete description we should consider
that also the h enzymes are shuttling from the cytosol to the membrane [11, 12]. Here
however for simplicity we represent with h only the receptor-bound fraction, which we
identify with the external activation field. The diffusivity of u enzymes in the cytosol
is much higher than the diffusivity of ϕ+, ϕ− molecules on the cell membrane; therefore
membrane-bound u enzymes may be assumed to be in approximate equilibrium with the
ϕ+, ϕ− concentration field. This leaves only the ϕ+, ϕ− surface molecule concentration as
relevant dynamic variables. Moreover, since the ϕ+, ϕ− molecules may only be converted
into each other, we are left with only one relevant degree of freedom, their difference
ϕ ≡ ϕ+ − ϕ−.

The model of figure 1 was initially introduced to describe chemotactic polarization in
higher eukaryotes [11, 12]. In that case, we identify ϕ− and ϕ+ with PIP2 and PIP3, u
with activated PTEN, and h with activated PI3K.

Recently, it has been proposed that polarization of budding yeast (a lower eukaryote)
may be the result of an amplifying feedback loop similar to the one described in figure 1 [4].
In our language ϕ− and ϕ+ represent there the activated and unactivated states of the
Cdc42 small GTPase (see appendix A), while u would be identified with the activating
factor Cdc24. The model of [4] lacks a counteracting enzyme playing the role of h in
the scheme of figure 1, and is therefore not bistable. For this reason, it can reproduce
only stochastic, intermittent polarization, as is observed at the border of the bistability
region in the case of chemotactic polarization [11, 25]. However, in a recent work [34] a
counteracting Cdc42 deactivating factor that could play the role of h has been described.
This suggests that polarization of budding yeast cells may be driven by a bistable potential
allowing the realization of stable polarization, similarly to the case for chemotactic
polarization of higher eukaryotes.

3. Macroscopic description of cell polarization

Cell polarization is a macroscopic effect, emerging from the stochastic dynamics of a
network of chemical reactions taking place on the occasion of the random encounters
of specific signaling molecules which perform diffusive motions and shuttle between
the cell cytosol and membrane [26, 18, 38]. A large amount of information has
been collected in recent years about the biochemical aspects of cell polarization in
higher [26, 18, 38, 24, 23, 35, 25] and lower [37, 39, 20] eukaryotes. However, available data
cannot be considered yet complete or quantitative to a satisfactory degree. This kind of
situation is typical of present efforts to derive macroscopic aspects of cell behavior from
noisy and yet poorly quantitative data about the relevant microscopic interactions. It is
therefore extremely important that a sensible macroscopic description of cell polarization
can be given, starting only from the knowledge of a few robust properties of the biophysical
system.

doi:10.1088/1742-5468/2009/02/P02019 5
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In this section we develop such a description. In section 4 we show how known
examples of cell polarization fit in our general scheme.

Let us start here by assuming that we have knowledge only about the following robust
properties of the cell polarization process.

(1) Single-component order parameter: the state of the system may be effectively
described in terms of the configurations of a single-component concentration field
ϕ describing the distribution of a set of signaling molecules on the cell membrane S.

(2) Bistability: the underlying chemical reaction networks allows the realization of
distinct, locally stable chemical phases.

(3) Self-tuning: a global feedback mechanism controls the metastability degree ψ of the
system and drives it towards a state of phase coexistence.

(4) Non-conserved field: there are no local constraints on the values assumed by the field
ϕ.

The present set of properties stems from the abstraction of known properties of
eukaryotic polarization (see also section 4). In particular, property (4) is the consequence
of the fast diffusion of u enzymes across the cytosolic volume [12]. (It is worth mentioning
here that our framework would still hold, although with a few differences, also in the case
where property (4) is substituted by a local conservation condition.)

Property (1) implies that the evolution of the state of the system can be described
by a single stochastic reaction–diffusion equation. Studies of non-equilibrium statistical
mechanics have shown that a few classes of non-linear stochastic equations may emerge
from the coarse-graining of microscopic dissipative dynamical systems, depending on
general properties, such as the number of field components and the presence, or absence,
of local conservation laws [15, 7].

Property (4) leads us to select the time-dependent Landau–Ginzburg model

∂tϕ(r, t) = −δFψ,h[ϕ]

δϕ(r, t)
+ Ξ(r, t) (1)

(or model A in the classification of [15]) where

Fψ,h[ϕ] =

∫
S

[
D

2
|∇ϕ|2 + Vψ,h(ϕ)

]
dr (2)

is an effective free energy functional, h is an external activation field, D is a diffusion
constant, Vψ,h is an effective potential, and Ξ is a noise term taking into account the effect
of thermal agitation and chemical reaction noise.

Property (2) implies that the effective potential Vψ,h has two potential wells,
corresponding to a couple of distinct, stable chemical phases ϕ+ and ϕ−.7 The kinetic
advantage of transforming a region of ϕ+ phase into a region of ϕ− phase is measured by
the metastability degree

ψ = Vψ,h(ϕ+) − Vψ,h(ϕ−).

7 We are using a slightly different notation to distinguish the values ϕ+, ϕ− assumed by the ϕ field from the
names of the concentration fields ϕ+, ϕ− of signaling molecules.
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The polarized state corresponds to the stable coexistence of the ϕ+ and ϕ− phases in
complementary regions of the cell membrane.

Property (3) implies that ψ is an integral functional of the field configuration, going to
zero for large times under stationary conditions. A reasonable analyticity assumption then
leads to the following system of equations, describing the dynamics of cell polarization in
the presence of a stationary external activation field:

∂tϕ(r, t) = D∇2ϕ(r, t) − ∂Vψ,h
∂ϕ

[ϕ(r, t)] + Ξ(r, t) (3)

ψ(t) ∝
∫
S

ϕ(r, t) dr−
∫
S

ϕ(r,∞) dr, t→ ∞. (4)

4. Model free energy

It is possible to derive a concrete realization of the scheme described in section 3 in the
case of the signaling network of figure 1 by using the law of mass action, the quasi-
stationary approximation for enzymatic kinetics, and the limit of fast cytosolic diffusion
(see appendix B). In this case, the state of the system can be described with the single-
concentration field ϕ = ϕ+ − ϕ−, thus giving property (1) of section 3. The ϕ field is not
constrained by a local conservation law because ϕ+ molecules can be freely converted into
ϕ− molecules and back on any point of the cell surface. This corresponds to property (4).

The evolution of the ϕ field is described by the equation

∂tϕ = D∇2ϕ− kcatKassf
c2 − ϕ2

2K + c+ ϕ
+ 2kcath

c− ϕ

2K + c− ϕ
+ Ξ

where f = ufree is the volume concentration of free cytosolic u enzymes (which is
approximately uniform as a consequence of fast cytosolic diffusion), h is a surface
activation field, Kass is the association constant of u enzymes to ϕ− signaling molecules,
kcat is a catalytic rate, K is a saturation (Michaelis–Menten) constant, c = ϕ+ + ϕ− =
const.

The corresponding effective potential has the form Vf,h(ϕ) = fV1(ϕ) + hV2(ϕ) (see
appendix B). The metastability degree ψ is therefore a function of h and f . If h = h(r, t)
is not uniform (e.g. if the cell is exposed to a chemical activation gradient) ψ takes on
different values at different points of the membrane surface. We consider however for the
moment the simplest case where the activation field is uniform in space and constant in
time.

A simple analysis shows (appendix B) that there are regions of parameter values such
that Vψ,h is bistable, with two potential wells ϕ+ and ϕ− corresponding to stable phases
respectively rich in the ϕ+ and ϕ− signaling molecules. Thus property (2) is verified.

In the present problem, the volume concentration f of free enzymes varies in time (but
not in space). More information about its values can be obtained in the limit (realized for
small membrane diffusivities and large times) when the interface between the ϕ+ and the
ϕ− phase is much smaller than the typical domain size, allowing us to use the so-called
thin wall approximation. Then, the value of f is simply linked (see appendix B) to the
area covered by the ϕ− phase:

f(t) − f(∞) ∝
∫
S

ϕ(r, t) dr−
∫
S

ϕ(r,∞) dr ∝ ψ(t)

doi:10.1088/1742-5468/2009/02/P02019 7
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showing that the metastability degree is proportional to the excess fraction of free
cytosolic u enzymes with respect to their value at equilibrium. The presence of this
global feedback mechanism corresponds to property (3).

The present situation is highly reminiscent of the decay of the uniform, metastable
state of a supersaturated solution with the formation of precipitate grains [19]. In that
case, the metastability degree is proportional to the excess solute concentration with
respect to its equilibrium value. The main difference from the present case is that in
the case of precipitation, the density field ϕ is locally constrained by the law of particle
conservation [7], and its evolution is described by model B of [15], instead of by model A.

5. Phase separation kinetics

In polarization experiments cells are exposed to uniform or gradient distributions of
attractant factors and polarize either spontaneously, or in the direction of the attractant
gradients [38]. The properties of the model free energy described in section 4 and numerical
simulations of a model system [11] suggest that the introduction of an external attractant
distribution moves the system into a region of bistability, where the uniform phase realized
at initial time becomes metastable and germs of a new phase are nucleated. Depending
on the way the system is prepared at the initial time, the metastable phase can be either
a ϕ+ rich or a ϕ− rich phase.

The process of decay of a metastable state in physical systems described by systems
of equations similar to (3) and (4) has been extensively studied in the framework of the
theory of first-order phase transitions [19, 7]. The process passes through successive stages
of nucleation, coarsening, and coalescence (figure 3). In the first stage, approximately
circular germs of the new, more stable phase are produced in the sea of the metastable
phase by random fluctuations, or by the presence of nucleation centers. In the second
stage, a process of coarsening is observed, where larger domains of the new phase grow at
the expense of smaller ones, the average size of domains grow, and the average number
of domains decreases. In a finite system, the process is concluded when a state of phase
coexistence is reached. In this final state, the two phases are in equilibrium and are
polarized in two large complementary domains.

For our purposes, a detailed knowledge of the initial, nucleation stage8 is not necessary,
as long as its characteristic time t0 is so fast that a large number of germs of the new
phase is nucleated all over the cell surface, well before the coarsening stage starts9.

To understand the subsequent, coarsening state we have to focus on the laws by which
the domains of the new phase either grow or shrink.

We consider here the case when the new phase is a minority phase, so that we
can restrict our consideration to approximately circular domains, which are dominating
because they minimize the linear tension between the two phases. For simplicity, we

8 And therefore of the precise characteristics of the noise term Ξ which is its driving force.
9 The converse case, where t0 is the largest timescale of the problem and polarization is the result of the rare
nucleation of a solitary domain, cannot provide a mechanism of gradient sensing which is at the same time
insensitive to the uniform component of the attractant field, and highly sensitive to its gradient component.
Indeed, the nucleation of a single domain could provide a mechanism of gradient sensing only if the gradient were
to induce significantly different domain nucleation rates at different points of the cell membrane. But in that
case, variations in the uniform component of the attractant field would also produce large variations in the typical
polarization times, while the converse has been reported.
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Figure 2. Typical form of the effective potential Vψ,h(ϕ) (red curves) in different
parameter regions (cf supplementary text of [11]). Region I: one equilibrium
point ϕ− < c; Region II: one equilibrium point ϕ+ = c; Region IIIa: one stable
equilibrium ϕ− < c and one metastable equilibrium ϕ+ = c. Region IIIb: same
as IIIa, but now ϕ+ = c is stable and ϕ− is metastable. The phase coexistence
curve separating IIIa from IIIb is defined by the condition Vψ,h(ϕ−) = Vψ,h(ϕ+).
Arrows show the direction of the dynamic drift towards the phase coexistence
curve.

Figure 3. Stages of polarization kinetics.

shall also restrict to domains which are small enough that membrane curvature may be
neglected.

An approximate equation for the growth of a circular domain of size r may be derived
from (3) in the thin wall approximation. Inserting the approximate propagating solution
ϕ(R, t) = φ(R − r(t)) (figure 4(a)) for the radial domain profile in (3) and integrating
over S we get

∂Fψ,h[φ]

∂r
= −∂Q

∂ṙ
+ ξ′ (5)

where

Q =
ṙ2

2

∫
S

(φ′)2 dR

is a dissipation function [17] and ξ′ is a noise term.
For a circular domain of radius r, Q � γπrṙ2, where

γ =

∫ ∞

0

(φ′)2 dR =

∫ ϕ+

ϕ−

√
2Vψ,h(φ)/D dφ

doi:10.1088/1742-5468/2009/02/P02019 9
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(a) (b)

Figure 4. (a) Radial profile of a growing (r > rc) and a shrinking (r < rc)
circular domain of the ϕ− phase in the sea of the ϕ+ phase. The ϕ+ and the ϕ−
phase are separated by a diffusive interface of thickness δ. (b) Qualitative graph
of the effective free energy of a circular domain of size r. Domains larger than
r > rc tend to grow because the energetic gain due to the surface term πr2ψ
overcompensates the loss due to a longer interface. The converse happens for
domains with r < rc.

is a kinetic coefficient [7]. On the other hand the effective free energy for a circular domain
or radius r is [7]

Fψ,h = 2πσr − πr2ψ (6)

where σ = Dγ is a linear tension.
From (5) and (6) we get the following approximate equation for the growth of a

circular domain of size r:

γṙ = ψ − σ

r
+ ξ (7)

where ξ is a noise term.
Equation (7) shows that domains smaller than the critical radius

rc =
σ

ψ

are mainly dissolved by diffusion, while germs with r > rc mainly survive and grow because
of the overall gain in free energy (figure 4(b)).

During the nucleation stage the noise term produces a population of germs of the new
phase of size close to

r0 ∼ rc ∼ δ

in a characteristic time t0. For domains with r > rc the noise term in (7) may be neglected
and domain growth is an almost deterministic process.

It is interesting to estimate r0 ∼ δ in terms of observable parameters. The thickness
δ can be estimated as

δ ∼
√
D/b

where b is the potential barrier separating the two phases [7]. The height of the potential
barrier may in its turn be estimated dimensionally from (B.14) as b ∼ kcathc, giving

r0 ∼ δ ∼
√

D

kcat

c

h
. (8)

Using realistic parameter values (D ∼ 1 μm2 s−1, kcat ∼ 1 s−1, c/h ∼ 10) we get r0 ∼ 1 μm.
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6. The coarsening stage

When domains of the new phase occupy an appreciable fraction of the membrane surface
S a coarsening stage sets on. Domain growth makes the degree of metastability ψ decrease
and renders further growth of the new phase more and more difficult. The critical radius rc
grows with time, so that domains that earlier had size larger than rc become undercritical
and shrink, and larger domains grow at the expense of smaller ones. In a large system rc
soon becomes the main length scale in the problem, leading to the appearance of a scaling
distribution of domains of size r.

The population of coarsening domains of size r can be described in terms of the size
distribution function n(r, t), such that n(r, t)Δr is the average number of domains with
size between r and r + Δr, and the total number of domains at time t is given by

N(t) =

∫ ∞

0

n(r, t) dr.

The time evolution of n(r, t) implied by (7) is described by a standard Fokker–Planck
equation [36]. If we restrict our consideration to supercritical domains we can neglect the
diffusive part of the Fokker–Planck equation since for them the noise term ξ is negligible.
This means that the stochastic nature of the problem enters mainly in the formation of
the initial distribution of germ sizes n(r, t0), while for r > rc the time evolution of n(r, t)
is dictated by the deterministic part of (7). Thus, we are left with the following kinetic
equation:

γ
∂n(r, t)

∂t
+

∂

∂r

[(
ψ(t) − σ

r

)
n(r, t)

]
= 0. (9)

Equation (9) contains the unknown function ψ(t), and is therefore not closed. We
obtain a closed system by complementing (9) with the asymptotic law

ψ(t) ∝ A∞ −
∫ ∞

0

πr2n(r, t) dr (10)

obtained from (4) in the thin wall approximation. Here

A∞ =

∫ ∞

0

πr2n(r,∞) dr

is the area occupied by the new phase at equilibrium.
For large times a scaling distribution of domain sizes can be found explicitly

(appendix D and figure 5):

n(r, t) dr =
CA∞
r2
c

p(r/rc) d(r/rc), ψ(t) =
σ

rc

rc ≡ rc(t) = r0(t/t0)
1/2

(11)

where

p(ρ) =
8e2ρ

(2 − ρ)4
exp

(
− 4

2 − ρ

)
, t0 =

2γr2
0

σ
(12)

where r0 is the characteristic domain size at the beginning of the coarsening stage and
C � 0.11.
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Figure 5. Time evolution of the self-similar domain size distribution n(r, t)
(t/t0 = 1, 2, 3, 4).

The total number of domains decreases in time due to the evaporation of small
domains. Using the explicit solution (11) and (12), we easily find

N(t) =

∫ ∞

0

n(r, t) dr =
CA∞
r2
c

=
CA∞/r2

0

t
.

Similarly, it is possible to compute explicitly the value of the average domain size, which
is found to coincide exactly with the critical radius:

〈r〉 = rc.

7. Spontaneous and gradient-induced polarization

The coarsening theory exposed in section 6 allows us to deduce a simple scaling law for
the time needed for spontaneous cell polarization.

If the cell has size R, the growth of domains according to (11) comes to a stop at the
time t∗ when the average patch size 〈r〉 becomes of the order of the cell size R. From (11)
we get

t∗ ∼ t0 (R/r0)
2 .

At the end of the process the cell is polarized in a random direction. The actual direction
of polarization is the result of the initial random imbalance in the germ distribution.

The typical time for random polarization is of the order of 103 s [12]. Together with
the estimate (8) this gives t0 ∼ 10 s.

Let us now consider the case where a source of external attractant is present at some
distance from the cell, in such a way that a gradient of external attractant is created by
diffusion close to the cell surface (figure 6).

The inhomogeneity in the distribution of attractant induces a similarly inhomogeneous
distribution of activated enzymes h. This way, the degree of metastability ψ takes on
different values on different points of the cell surface.

If the cell membrane has a nearly spherical form and a radius R much smaller than
the characteristic scale of the attractant distribution, and if the gradient component of
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Figure 6. Geometry of stimulation of a cell by an external source of attractant.

Figure 7. The crossover time tε separates an initial stage of isotropic coarsening
from a final stage when domains evaporate from the back of the cell and condense
in the front.

the activation field is small with respect to the background component on the scale R,
the metastability degree ψ at the beginning of the coarsening process may be written as
the sum of a uniform component ψ and a small space-dependent perturbation:

ψ + δψ with δψ = −εψ0 cos θ

where ψ0 is the value of the uniform component at the beginning of the coarsening process
and ε is the relative gradient on the scale R. The perturbation modifies the equation of
domain growth (7) as follows:

γṙ = ψ − σ

r
− εψ0 cos θ + ξ (13)

where θ is an azimuthal angle defined in figure 6.
The uniform component ψ varies in time together with the (approximately) uniform

concentration of u molecules in the cell volume. On the other hand, the perturbation δψ is
constant in time, but not uniform in space, being proportional to the external attractant
distribution.

As long as εψ0 � ψ, the effect of the perturbation is negligible, so domain growth
proceeds according to the law (11) and the uniform component ψ decays as t−1/2.

In a large cell there is a crossover time tε when the perturbation becomes of the same
order as the uniform component:

ψ(tε) = εψ0.

Using the scaling law (11) we get

tε =
t0
ε2
.

After tε domain growth enters a new stage, where the growth becomes anisotropic.
Domains in the front and back of the cell get different average sizes (figure 7).
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Figure 8. Dynamic mechanism of gradient sensing. In the presence of a gradient
(red) domain sizes grow initially as t1/2. After the crossover time tε they grow
linearly in time and the cell polarizes in the direction of the gradient (see also
figure 7). In the absence of a gradient (blue) the t1/2 growth goes on until the
cell polarizes in a random direction.

Indeed, for t > tε the leading term in (13) is the perturbation εψ0 cos θ, implying that
in the region closer to the source of the perturbation (cos θ > 0) the ϕ− phase evaporates,
and in the region away from the source (cos θ < 0) it condenses. At the end of the process,
complete polarization is realized (figure 7). In this final stage domains grow approximately
linearly in time (figure 8); thus the total time t′ε to reach polarization is still a quantity
of order tε (using definition (14) from section 8 it can be estimated as (1/2)(1 + ε/εth)tε).

The above scheme is valid as soon as the initial nucleation time t0 is significantly
smaller than tε, an assumption which is compatible with the observation of real [25] and
numerical [11] experiments.

8. Gradient sensitivity

The second stage of domain evolution described in section 7 occurs only if t∗ > tε.
Otherwise, the presence of a gradient of attractant becomes irrelevant and only the stage of
isotropic domain growth actually occurs. This condition implies that a smallest detectable
gradient exists, such that directional sensing is impossible below it. The threshold value
εth for ε is found by the condition tε = t∗. Since the product ψrc is a time-independent
constant, we can simply compare its values at initial and final times when ε = εth,
obtaining that the threshold detectable gradient is

εth =
r0
R
. (14)

Using the estimates from sections 5 and 7, and the typical value R ∼ 10 μm, we get
ε ∼ 10%, a value which is compatible with the observations [33].

An interesting speculation is that the bound (14) may explain why spatial directional
sensing was developed only in large eukaryotic cells and not in smaller prokaryotes, whose
directional sensing mechanisms rely instead on the measurement of temporal variations
in concentration gradients [3]. By solving (14) in terms of the size R we get the following
bound for the size of a cell which may be able to sense a relative gradient ε:

R >
r0
ε
.

doi:10.1088/1742-5468/2009/02/P02019 14

http://dx.doi.org/10.1088/1742-5468/2009/02/P02019


J.S
tat.M

ech.
(2009)

P
02019

Universal features of cell polarization processes

Our bound goes in the same direction as the size criterion formulated in [5], but it is
independent of it, since the criterion of [5] is based on estimates of signal-to-noise ratios,
while our bound stems from the intrinsic properties of polarization dynamics.

9. External fluctuations

One may wonder whether a cell may become polarized by transient gradients produced
by a spontaneous fluctuation in the external distribution of attractant molecules, or
fluctuations in receptor–ligand binding, as has been suggested in the literature [18].
Since eukaryotic cells typically carry 104–105 receptors for attractant factors, one expects
spontaneous fluctuations in the fraction of activated receptors to be of the order of 102,
a value which is comparable to observed anisotropy thresholds. However, to actually
produce directed polarization the fluctuation should sustain itself for several minutes,
i.e. for a time comparable to the characteristic polarization time (such as tε). Such
an event has very low probability of being observed since the correlation time of the
fluctuations determined by attractant diffusion at the cell scale and the characteristic
times of receptor–ligand kinetics are much less than the polarization time. Indeed, the
diffusion time is ∼1 s at the typical cell size 10 μm, and the characteristic times of receptor–
ligand kinetics are also ∼1 s (see online supporting information for [33]). Therefore, the
direction of cell polarization in the case of a homogeneous distribution of attractant can
only be determined by the inhomogeneity in the initial distribution of the positions of
PIP2 rich germs produced by thermal fluctuations.

10. Conclusions

By using standard statistical mechanical methods we have shown that the dynamics
of signaling domains in cell polarization is independent on the nature of the signaling
molecules and the values of kinetic rate constants, as long as some very general conditions
are met.

(a) Timescale separation allows to describe the polarization process in terms of a single-
concentration field of signaling molecules on the cell membrane10.

(b) The underlying chemical reaction network is bistable.

(c) A global feedback mechanism drives the system towards phase coexistence.

(d) The cell is sufficiently larger than the size of nucleating germs of the new phase.

These conditions allow the cell to work as a detector of slight gradients of external
stimulation gradients.

The property of universality arising from our analysis cannot be underestimated.
Currently, several efforts are being made to understand the dynamical behavior of living
beings starting from microscopic information provided by molecular biology. However,
this information is mostly incomplete and poorly quantitative, and theories that depend

10 We should consider adding here the condition that the concentration field is not locally constrained by a
conservation law. However, also the converse case of a locally conserved field can be treated in a similar way
without substantially changing the present scheme.
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in a sensitive way on it are likely to be of little utility. But if some behavior happens to
be universal, a consistent physical theory for it may be built, which can be compared to
experiments.

The universal properties of cell polarization emerge from properties of domain growth
which have been extensively studied, for first-order phase transitions [7]. The similarity
of the two problems follows from the fact that fast degrees of freedom of chemical kinetics
are in approximate equilibrium with slower degrees of freedom, which can be described by
means of an effective free energy functional. It is worth observing that in the biological
system studied here, there is no direct interaction between signaling molecules similar to
the one observed in solid state systems such as binary alloys, only an effective interaction
mediated by enzyme activity, binding, unbinding and diffusion processes.

Our theoretical scheme allows us to shed light on some non-trivial questions, such
as that of the mechanism of directional sensing and the effect of random fluctuations of
the medium on the polarization process. Random polarization appears as the result of
the intrinsic stochasticity of the process of domain nucleation and not that of random
fluctuations of the medium. Random and gradient-induced polarization appear as two
sides of the same coin. Our scheme provides an explanation of why spatial directional
sensing is not observed in the small prokaryotic cells, and provides asymptotic estimates
for polarization times and threshold detectable gradients.

An important component of our picture is the existence of a global coupling of the
degree of metastability to the state of the system [12, 10]. The constrained phase-ordering
dynamics tunes the system towards phase coexistence, which is similar to what happens
in the case of a precipitating supersaturated solution [19]. The global control allowing
self-tuning to phase coexistence is realized by shuttling of enzymes from the cytosol to
the cell membrane and backwards.

Some of the features that we have observed in cell polarization have been considered
in previous works, such as the fact that equations of the form (1) are relevant for the
description of systems of bistable chemical reactions [29, 36], and that global couplings
in activator–inhibitor reaction–diffusion systems may lead to the formation of stable
spatiotemporal patterns [14, 30]. The peculiar properties of such systems have led to
the use of the term excitable or active media. Using this same language, we can say
that the cell membrane acts as an active medium responding to the stimulation with the
formation of domains of a new phase. Our work proposes that directional sensing results
from the peculiar, universal features of the phase-ordering dynamics of these domains.

From a biological point of view, the universality of the polarization process allows the
cell to behave in a robust, predictable way, independent of microscopic peculiarities such
as the precise values of reaction rates and diffusion constants.

We first proposed that chemotactic cell polarization may result from the simple
ingredients of bistability induced by a positive local feedback loop in a signaling network
and global control induced by shuttling of enzymes between the cytosol and the membrane
in our previous works [11, 12, 9]. Other authors have proposed similar models, either
independently [32] or subsequently [21] (a review of models of chemotactic polarization
can be found in [16]). Some of these models try to take into account computationally
the interactions of a large numbers of chemical factors, while retaining the essential role
of a feedback loop as a generator of a phase separation instability. However, most of the
reaction rates that should be provided to perform such computations are known with very
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poor accuracy. Our framework suggests however that such a detailed description may be
not necessary, as long as properties (a)–(d) are met.

Aspects of the bistable mechanism of eukaryotic polarization firstly introduced
in [11] (supporting material) have been considered in recent papers [6, 22] as relevant
to polarization phenomena. A similar mechanism, outside of the bistability region, has
been proposed for explaining intermittent polarization in budding yeast [4]. These works
suggest that the combination of bistability and global control [11, 12] is providing a useful
paradigm for the understanding of cell polarization phenomena.
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Appendix A. Lattice-gas description of cell polarization

The signaling molecules PIP2 and PIP3 are different phosphorylation states of
the phosphatidylinositol molecule, i.e., they carry a different number of phosphate
groups attached (2 and 3, respectively). Enzymes which catalyze phosphorylation
of their substrate, i.e. the addition of a phosphate group, are called kinases, while
dephosphorylating enzymes are called phosphatases.

It is natural to visualize the state of a chemical system such as the one described in
figure 1 in terms of two families of classical spins on a two-dimensional lattice, taking on
values −1 (PIP2, PTEN), 0 (an empty site), +1 (PIP3, PI3K) [10]. Taking into account
fast cytosolic diffusion, the enzyme family becomes slaved to the substrate family [10].

In this lattice-gas description the existence of a cytosolic enzymatic reservoir
exchanging enzymes with the cell membrane is represented by a chemical potential for
enzyme creation and destruction (actually, adsorption and desorption to/from the cell
membrane), globally coupled to the lattice configuration [10].

The PIP2 and PIP3 molecules constitute approximately 1% of the total number of
membrane phospholipids, and the numbers of PI3K and PTEN enzymes are at least one
order of magnitude lower; thus, both the substrate and the enzyme population should be
thought of as diluted gases.

Two-state (or multistate) molecules such as PIP2 and PIP3 are all but an exception
in cell biology. Another example is given by small GTPases, such as the Cdc42 molecule
involved in the polarization of budding yeast, which can be found either in the activated
GTP state or in the deactivated GDP state. The switch between the two phosphorylation
states is catalyzed by a couple of activating (GEF) and deactivating (GAP) enzymes [2].

Appendix B. Mean-field equations for eukaryotic polarization

We derive here mean-field equations for eukaryotic polarization using standard methods
of chemical kinetics, including Michaelis–Menten saturation terms for the enzymatic
components11. We make use of the fact that the diffusivity Dvol of u enzymes in the

11 Michaelis–Menten saturation terms arise from timescale separation in enzymatic kinetics, which allows us to
make use of a quasi-stationary approximation [8].
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cytosol is much faster than the diffusivity D of ϕ molecules on the cell membrane: this
fact allows to considerably reduce the number of dynamical degrees of freedom.

We describe the macroscopic state of the cell using surface concentration fields of
membrane-bound molecules (figure 1) and the volume concentration field f ≡ ufree of free
u enzymes.

The chemical kinetic equations for the signaling network of eukaryotic polarization
are

∂tϕ
+ = D∇2ϕ+ − kcat

uϕ+

K + ϕ+
+ kcat

hϕ−

K + ϕ− (B.1)

∂tϕ
− = D∇2ϕ− + kcat

uϕ+

K + ϕ+
− kcat

hϕ−

K + ϕ− − ∂tu (B.2)

∂tu = kassfϕ
− − kdissu (B.3)

∂tf = ∇ · (Dvol∇f). (B.4)

They must be complemented by the boundary condition

J ≡ Dvol
∂f

∂n
= ∂tu (B.5)

where ∂/∂n is the derivative along the outward normal to the membrane surface S.
Condition (B.5) expresses the fact that the flux of u enzymes leaving the cytosolic volume
equals the flux of enzymes being bound to the cell membrane.

For simplicity, we consider here identical catalytic, association and dissociation rates
(kcat, kass, kdiss) and Michaelis–Menten constants K for the ϕ+ → ϕ− and ϕ− → ϕ+

processes. This is compatible with existing information about these processes, suggesting
that reaction rates differ by factors of order 1 [11] and allows us to easily study the
equations analytically.

Typical values for surface and cytosolic diffusivity are D ∼ 1 μm2 s−1, Dvol ∼
10 μm2 s−1 [11]. Typical values for rate constants are: kcat ∼ kdiss ∼ 1 s−1, kass ∼
0.05 s−1 nM−1; for the total number of ϕ+ and ϕ− molecules, and the total number of u
and h enzymes: Nϕ ∼ 106, Nu ∼ Nh ∼ 104–105. Observe that Nu/Nϕ � 1.

The usual definition of macroscopic fields such as u is as follows. For each point r
in space we choose a volume v centered at r, containing n(v) molecules, and we compute
concentrations as u(r) = limv→0 n(v)/v. This implies that the number of molecules of the
relevant chemical factors is so large that v can be chosen much smaller than the size of
the system, but large enough that the resulting field ϕ(r) is approximately continuous.
This hypothesis is not always acceptable, since enzymatic molecules are present in the cell
in very small numbers. We shall therefore assume that real concentrations are described
as the sum of an average part u, described by mean-field equations of the kind (B.1)–
(B.5), and a fluctuating part δu taking into account both the discrete character of the
concentration field and thermal disorder. The fluctuations δu due to random adsorption
and desorption processes are at the origin of the noise term Ξ in (3) (see appendix C).

Since enzyme diffusion in the cytosol is faster than phospholipidic diffusion on the
membrane, during the characteristic times of the dynamics of membrane-bound factors,
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f(r, t) relaxes to the approximately uniform value

f(t) = f0 − 1

V

∫
S

u(r, t) dr (B.6)

where f0 = Nu/V , while u relaxes to the local equilibrium value

u = Kassfϕ
− (B.7)

where Kass = kass/kdiss.
On the other hand, by summing (B.1) and (B.2) we get

∂t
(
ϕ+ + ϕ−)

= D∇2(ϕ+ + ϕ−) − ∂tu. (B.8)

Since Nu/Nϕ � 1 we neglect the term ∂tu. Then, (B.8) shows that the sum c = ϕ+ +ϕ−

tends to be approximately uniform and constant in time.
By subtracting (B.1) and (B.2) and introducing the difference concentration field

ϕ = ϕ+ − ϕ− we get

∂tϕ = D∇2ϕ− kcat
2u(c+ ϕ)

2K + c+ ϕ
+ kcat

2h(c− ϕ)

2K + c− ϕ
(B.9)

and using the local equilibrium condition (B.7) we end up with

∂tϕ = D∇2ϕ− kcatKassf
c2 − ϕ2

2K + c+ ϕ
+ 2kcath

c− ϕ

2K + c− ϕ
. (B.10)

Only values −c � ϕ � ϕ correspond to positive concentrations and are therefore physical.
From (B.10), (B.3) and (B.6) we get the following system:

∂tϕ(r, t) = −δFf,h[ϕ]

δϕ(r, t)
(B.11)

ḟ(t) = −V −1kassf(t)

∫
S

ϕ− dr + kdiss (f0 − f(t)) (B.12)

where

Ff,h[ϕ] =

∫
S

[
1
2
D |∇ϕ|2 + Vf,h(ϕ)

]
dr (B.13)

Vf,h(ϕ) = 2kcathc [−φ− 2κ ln (2κ+ 1 − φ)] + 1
2
kcatKassfc

2[−φ2/2 + (2κ+ 1)φ

− 4κ(κ+ 1) ln(2κ+ 1 + φ)] (B.14)

and we make use of the non-dimensional variables φ = ϕ/c, κ = K/c.
The quantity Ff,h plays the role of a generalized free energy for the system, and can

be used to study its approximate equilibria as long as the characteristic times of variation
of f are longer than the characteristic times of variation of the ϕ field.

We are interested in parameter values such that (B.14) is bistable. In what follows
we consider the case of constant and uniform activation field h, and constant f .

The critical points of the effective potential Vf,h are

φ− = κ− λ/2 −
√

(κ− λ/2)2 − (λ− 1)(2κ+ 1)

φu = κ− λ/2 +

√
(κ− λ/2)2 − (λ− 1)(2κ+ 1)

φ+ = 1
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Figure B.1. Equation (B.10) describes a local flow towards either a ϕ− rich or a
ϕ+ rich stable phase.

where

λ =
4h

Kassf
.

The potential Vf,h is bistable when the three critical points are all real and physical. In
that case, (B.10) describes a dynamical system that may locally favor either a ϕ− rich or
a ϕ+ rich stable phase (figure B.1).

The two roots φ− < φu are real if

λ < 2(3κ+ 1) − 4
√
κ(2κ+ 1), λ > 2(3κ+ 1) + 4

√
κ(2κ+ 1). (B.15)

The lhs condition defines the right boundary of the bistability region of parameter space
(Region III of figure 2).

The two roots are physical (−1 � φ− < φu � 1) when

κ � λ

2 − λ
and κ � 1 +

λ

2
. (B.16)

The lhs condition defines the left boundary of the bistability region (Region III in figure 2).
The inequality φ− � −1 on the other hand is always verified if λ < 2.

The left and right boundaries of Region III meet at the triple point

λ = 1 −
√

5, κ = (1 +
√

5)/2.

So, the λ–κ plane can be divided into three regions (figure 2 and supplementary text
of [11]). In Region III, the system has two stable minima ϕ+ and ϕ−, separated by the
unstable equilibrium ϕu. Outside Region III the potential has a single minimum, either
rich in ϕ− (Region I) or rich in ϕ+ (Region II).

Region III may be divided in two parts, depending on which phase is more stable. In
Region IIIa (figure 2) the more stable phase is ϕ−, while in Region IIIb it is ϕ+. The two
subregions are separated by the phase coexistence curve ψ ≡ Vf,h(ϕ+) − Vf,h(ϕ−) = 0,
where the two stable equilibria ϕ+ and ϕ− have the same energy.

Close to the phase coexistence curve, ψ is much smaller than the potential barrier
separating the two minima. In this region

ψ � 2kcathc

[
φ+ − φ− + 2κ ln

(
1 +

φ+ − φ−
2κ

)](
f

f∞
− 1

)
(B.17)

where the factor f/f∞−1 represents the excess fraction of free u enzymes at a given time,
with respect to the equilibrium value.

Observe that an actual excess of free enzymes renders the ϕ− phase more stable, while
a negative excess (a deficit) stabilizes the ϕ+ phase.
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If the ϕ− phase is the more stable one, it tends to occupy larger and larger regions of
the cell surface, thus decreasing f (cf the quasi-equilibrium conditions (B.6) and (B.7))
and its own stability relative to the ϕ+ phase.

A symmetric situation is encountered if ϕ+ is the more stable phase at initial time.
Thus, the process of growth of any of the two phases decreases the metastability

degree ψ and drives the system towards a condition of phase coexistence (i.e. towards a
polarized state).

We may wonder whether uniform equilibrium states also exist, that may compete
with polarized states. Looking for stable uniform equilibria ϕ = ϕ− in Region IIIa gives
the algebraic conditions

λ =
−φ2 + 2κφ+ (2κ+ 1)

φ+ (2κ+ 1)
= 2

Nh

Nu

[(
1 +

2Kass

V Nϕ

)
− φ

]
(B.18)

ϕ � 2
√
κ(2κ+ 1) − (2κ+ 1) (B.19)

which may be studied graphically, showing that uniform equilibria are impossible in a
large part of Region III, and in particular if

κ <
1

2
and 2

Nh

Nu

(
1 +

2Kass

V Nϕ

)
> 1. (B.20)

Uniform equilibria do not exist in this region because the total number of u enzymes is
not large enough to stabilize a uniform ϕ− phase extended along the whole membrane
surface.

Instead, uniform equilibria with ϕ = ϕ+ exist, and correspond to configurations where
all u enzymes are free.

Appendix C. Thermal and chemical noise

Up to this point we have neglected fluctuations in the number of membrane-bound
enzymes, so that every local minimum of Vf,h corresponds to a stable phase having an
infinite lifetime. However, since the number of bound enzyme molecules in the real system
fluctuates locally, the field ϕ(r, t) should be seen as a stochastic field.

The fluctuations δf around the equilibrium enzyme concentration f∞ in the volume
V due to membrane adsorption and desorption processes induce fluctuations δu around
the local equilibrium value (B.7) in the concentration of membrane-bound enzymes.

To derive quantitative relations we have to compute the encounter rates of a free u
particle fluctuating in the volume V and a ϕ− binding site on the surface S.

The adsorption–desorption process can be described by a simple master equation [13].
Let us consider that a reservoir of volume V contains a number N free � N tot of molecules,
which can be adsorbed and desorbed by a small surface element Σ containing Nb.s. binding
sites. One has the mean-field kinetic equation

d

dt
Nbound = kassV

−1Nb.s.N free − kdissN
bound

which at equilibrium gives

Nbound = αN free =
α

1 + α
N tot

(
α = KassV

−1Nb.s.
)
.
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Let PN be the probability of observing Nbound = N , and r±N the time rates of the processes
N → N ± 1. Then the process is described by the master equation

ṖN = r+
N−1PN−1 − (r+

N + r−N)PN + r−N+1PN+1

which has the stationary solution

PN =

N−1∏
j=0

r+
j

r−j+1

P0

where P0 is a normalizing factor. Letting

r+
N = c kass(N

tot −N), r−N = kdissN

one finds a binomial distribution with

〈Nbound〉 =
αN tot

1 + α
= αN free

〈(Nbound
)2〉 − 〈Nbound〉2 =

αN tot

(1 + α)2
=
NboundN free

N tot
.

By identifying f = N free/V in (B.7) we can model the adsorption–desorption noise with
a Gaussian noise term Ξ with zero mean and the correct variance:

〈Ξ(r, t)Ξ(r′, t′)〉 = 2Γδ(r− r′)δ(t− t′)

where

Γ =
kdiss

kcat

ϕ+

K + ϕ+

f

f0
(Kassfϕ

−).

Appendix D. Scale-invariant size distribution

In the domain coarsening stage described in section 6, the characteristic size rc(t) of
domains grows with time, and soon becomes the largest scale, so a scaling distribution of
domain sizes arises. In the asymptotic regime (for large times) it is possible to derive a
self-similar solution of the system of equations (9) and (10):

γ
∂n(r, t)

∂t
+

∂

∂r

[(
ψ(t) − σ

r

)
n(r, t)

]
= 0 (D.1)

ψ(t) ∝ A∞ −
∫ ∞

0

πr2n(r, t) dr → 0 for t→ ∞. (D.2)

We start by looking for a solution in the form

n(r, t) = [rc(t)]
k g(r/rc(t)). (D.3)

It is easy to verify that k must be given the value −3 in order that (D.2) may attain its
asymptotic limit.

Substituting (D.3) in (D.1), re-expressing the result in terms of the non-dimensional
variable

ρ = r/rc
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Figure D.1. Graph of the rhs of (D.6) for α ≡ γr20/2σt0 = 0.2, 0.25, 0.3. When
α < 1/4 equation (D.6) has a fixed point ρ = ρ∗ > rc, which grows indefinitely
with time, so all domains grow and the total domain area grows to infinity. When
α > 1/4 all domains shrink to zero. The correct asymptotic behavior is found by
selecting the separatrix between these two extreme cases.

and balancing terms in the resulting equation, we find that an asymptotic solution for
large times may exist only if

ψ(t) =
σ

rc(t)
, rc(t) = r0 (t/t0)

1/2

and [
−σρ+ σρ2 − 1

2

γr2
0

t0
ρ3

]
g′(ρ) +

[
σ − 3

2

γr2
0

t0
ρ2

]
g(ρ) = 0. (D.4)

A smooth, positive, normalizable solution of (D.4) may be found only when two of the
poles of g′(ρ)/g(ρ) coalesce, which gives

t0 =
2γr2

0

σ
(D.5)

and finally12

g(ρ) =

⎧⎨
⎩
CA∞

8e2ρ

(2 − ρ)4
exp

(
− 4

2 − ρ

)
for 0 � ρ � 2

0 elsewhere

with

C =
1

4π[1 + 2e2Ei(−2)]
� 0.11

a normalization factor and Ei the exponential integral function [1].
The resulting size distribution function is peaked around rc ∼ t1/2 and there are no

domains with sizes larger than 2rc (figure 5).
The physical meaning of (D.5) can be understood by rewriting the deterministic part

of the equation of domain growth (7) using ρ:

γr2
c

σ
ρ̇ = −(γr2

0/2σt0)ρ
2 − ρ+ 1

ρ
. (D.6)

12 We thank Alan Bray for pointing out to us that this problem has been discussed in a different context in [31].
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The analysis of the fixed points of (D.6) shows that when condition (D.5) is not satisfied,
either the total domain area grows to infinity, or it shrinks to zero13. In both cases, the
asymptotic condition (D.2) cannot be satisfied. Therefore, condition (D.5) provides the
correct asymptotic distribution of domain sizes by selecting the separatrix which divides
those two extreme cases (figure D.1).
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