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Asymptotic freedom at zero temperature in free-standing crystalline membranes
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We investigate the effects of quantum (zero-temperature) long-wavelength fluctuations of free-standing
crystalline membranes, which are two-dimensional objects embedded into three-dimensional space. The
fluctuations produce logarithmic renormalization of elasticity and bending moduli of the membranes. We find
one-loop RG equations to demonstrate that the system is in the “asymptotic freedom” regime; that is, the quantum
fluctuations destabilize the flat membrane phase.
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I. INTRODUCTION

Amazing electronic and mechanical properties of graphene
[1] and other two-dimensional (2d) crystals [2] fuel con-
tinuously growing research in this area (see reviews [3,4],
containing also numerous relevant references). This progress
also brings important and new dimensions for research not
only restricted to material science and its applications. It also
shines some light and manifests some analogies with basic
phenomena of quantum field theory. As is often stated in the
immense graphene literature, graphene might serve as a tool for
the realization or visualization of high-energy physics effects
in the normal scale of a solid state physics laboratory. One
could observe properties of charge carriers similar to ones of
electrons in quantum electrodynamics, e.g., the carrier mass
renormalization [3,5].

Naturally, after almost 10 years since the discovery of
graphene and numerous publications, one may wonder, is
there still something to be understood about graphene? It is
the purpose of our article to demonstrate that this is indeed so.
Our investigation concerns freely suspended graphene or other
crystalline films. It turns out that different 2d crystals can be
stable and maintain macroscopic continuity and high quality
[6]. Being freely suspended (substrate-free) such objects
(2d crystals suspended in 3d space) can be considered as
a new state of matter. In our paper, we examine quantum
(zero-temperature) long-scale fluctuations in such films and
their influence on macroscopic physical characteristics of the
films.

Properties of the freely suspended crystalline films at finite
temperatures are well investigated, especially theoretically.
Nelson and Peliti [7] and Kantor and Nelson [8] first suggested
that the anharmonic interaction produces a power dependence
on the scale of the bending and elastic crystalline moduli of the
films. The prediction was confirmed later by systematic renor-
malization group (RG) calculations for a four-dimensional
crystalline membrane embedded into higher dimensional,
d > 4, space [9–11]. The approach becomes exact in the limit
d → ∞; see [12–14]. The power behavior of the moduli was
checked by various scaling and physical arguments and also
atomistic simulations [15–17], and no essential quantitative or
qualitative contradictions to the theoretical predictions were
found.

Much less attention has been paid to quantum fluctuations in
crystalline films. This is partially because the quantum (T = 0)

nonlinear effects lead to only logarithmic corrections, hence
generally much smaller than the power-law renormalization
produced by thermal fluctuations [18]. However, small does
not necessary mean irrelevant. In this work we bring the
attention of our readers to quantum fluctuations related to
vibrational modes. We claim that a freely suspended crystalline
film manifests the behavior known as “asymptotic freedom”
in high-energy physics. The asymptotic freedom is a property
that causes interactions between particles to become weaker
as energy increases (or distance between particles decreases),
and at increasing space scales the coupling constant grows.
Note that the asymptotic freedom behavior is a feature of
quantum chromodynamics. This is one more illustration of a
remarkable peculiarity of the phenomenological Landau-like
theoretical approach which is a powerful tool for describing
different systems irrespective to their microscopic nature.

Our paper is organized as follows. In Sec. II we develop the
low-energy (long-wavelength) nonlinear theory of interacting
vibrations in freely suspended 2d crystalline membrane. In
Sec. III one-loop renormalization group (RG) equations for
the elastic and bending moduli are derived and solved. We end
the paper with a discussion of possible physical consequences
and interpretation of the results. We relegate to an Appendix
technical steps of the RG calculations.

II. BASIC RELATIONS

We consider quantum fluctuations of a freely suspended
crystalline film (membrane). The membrane is treated as 2d

infinitesimally thin film embedded into 3d space. Below we
assume that the membrane on average is perpendicular to the Z

axis. We also assume that the membrane is symmetric; that is,
both its sides are equivalent. Then in the main approximation
the long-scale energy (Landau functional) of the membrane
can be written as [7,8]

F =
∫

dx dy

{
μw2

αβ + λ

2
w2

αα + κ

2
(∇2h)2

}
. (1)

Here the coefficients μ,λ are 2d Lamé (elastic) moduli, κ

is the Helfrich (bending) module of the membrane, h is
the membrane displacement along the Z direction, wαβ is
the membrane in-plane distortion tensor, and the subscripts
α,β, . . . run over x,y. The distortion tensor can be written in
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the main approximation as [19]

2wαβ = ∂αuβ + ∂βuα + ∂αh∂βh, (2)

where u is the in-plane displacement vector of the membrane.
Analyzing quantum fluctuations one should investigate

dynamics of the investigated degrees of freedom. In the
low-frequency limit the degrees of freedom (fields) to be taken
into account are u and h. The corresponding modes are the
longitudinal and the transverse sound modes with the acoustic
dispersion laws ω = cl,t k and also the bending mode with
the quadratic dispersion law ω = (κ/ρ)k2, where ρ is the 2d

mass density of the membrane, ω is frequency, and k is the
(in-plane) wave vector. The sound velocities are expressed via
the elasticity moduli as

c2
l = 2μ + λ

ρ
, c2

t = μ

ρ
. (3)

Note that optical vibrational modes may also exist in crys-
talline membranes (as, e.g., in graphene). However, since the
optical modes have a finite frequency they are irrelevant for
the low-frequency effects we are investigating.

We are interested in correlation functions of the macro-
scopic fields u and h, primarily in their pair correlation
functions

〈uα(t,r)uβ(0,0)〉 =
∫

dω d2k

(2π )3
e−iωt+ikrFαβ(ω,k), (4)

〈h(t,r)h(0,0)〉 =
∫

dω d2k

(2π )3
e−iωt+ikrG(ω,k). (5)

The above averages over quantum fluctuations (marked by
angular brackets) can be calculated as functional integrals over
the fields u and h with the weight exp(iI/�), where I is the
action

I =
∫

dt d2r

{
ρ

2
(∂t u)2 + ρ

2
(∂th)2

−
[
μwαβwαβ + λ

2
w2

αα + κ

2
(∇2h)2

]}
, (6)

reflecting dynamics of the membrane. The first term in the
action (6) is the kinetic energy of the membrane whereas the
second term there is the membrane potential energy (1) (taken
with the sign minus), both integrated over time. Note that the
expression (6) is invariant under the transformation h → −h

that reflects the assumed symmetry of the membrane.
There are terms of the second, third, and fourth order in

the fields u, h in Eq. (6). The second-order term describes the
noninteracting modes, whereas the third-order and the fourth-
order terms determine their interaction (coupling). The bare
correlation functions (4) and (5) determined by the quadratic
(harmonic) part of the action (6) read as

Fαβ(ω,k) = i�

ρ

[
1

ω2 − c2
l k

2 + i0

kαkβ

k2

+ 1

ω2 − c2
t k

2 + i0

(
δαβ − kαkβ

k2

)]
, (7)

G(ω,k) = i�

ρ

1

ω2 − (κ/ρ)k4 + i0
. (8)

Here the term +i0 implies the standard Feynman rule for
the contour integration over frequency near the poles of the
Green’s functions. The positions of the poles correspond to
the dispersion laws of the acoustic modes ω = cl,t k and of the
bending mode ω = (κ/ρ)1/2k2.

Based on the interaction terms (of the third and fourth
orders) in the action (6), one can develop a perturbation
theory for the correlation functions of the fields u and h.
Fluctuation corrections, say, to the bare correlation functions
(7) and (8), can be presented by Feynman diagrams with
lines corresponding to the bare correlation functions and
vertices of the third and of the fourth order determined by
the interaction terms. One can check by direct calculations
that the perturbation theory produces logarithmic corrections
to the parameters of the bare correlation functions (7) and (8).
That is why below we use the renormalization group (RG)
technique to examine long-scale behavior of the correlation
functions of u and h.

One comment is in order here. Besides the above said
long-wavelength logarithmic contributions into the self-energy
functions, in our model as in any renormalizable quantum field
theory, there is also a number of short-wavelength (ultraviolet,
UV) divergent terms. They cannot be calculated in terms
of the macroscopic theory. Therefore these terms should be
included in the definitions of the observable values of the
corresponding quantities. This is a very common situation,
for example, for second-order phase transitions, where UV
divergences in the self-energy function of the fluctuating
order parameter have to be interpreted as contributions to
the phase transition temperature (that cannot be calculated
in terms of the macroscopic theory). For our case (quantum
vibrations of freely suspended crystalline membranes) such
UV divergent contribution to the out-of-plane correlation
function (see, e.g., [21]) proportional to k2 has a meaning of
the crystalline membrane surface tension. The surface tension
of a freely suspended film is zero. Therefore the sum of the
UV contributions to the surface tension is zero. Quantum
(and also thermal, classical) out-of-plane fluctuations in the
prestrained crystalline membranes (or films with a finite bare
surface tension, say σ ) are considerably suppressed (see, e.g.,
[22], illustrating the point by atomic-scale numeric simulations
for suspended nanoribons). Nevertheless our RG equations
(therefore their solutions, i.e., our results) in such a case hold
up to a scale on the order of (κ/σ )1/2.

III. RENORMALIZATION GROUP EQUATIONS

We use the renormalization group procedure in the Wilson
formulation; see Ref. [20]. The idea of the procedure is to
split the fluctuating fields into fast (short-scale) and slow
(long-scale) parts and to integrate the distribution function
(weight) exp(iI/�) over the fast component. As a result, we
obtain a distribution function for slow variables exp(iI ′/�) to
be interpreted in terms of renormalized parameters of the slow
action I ′.

Note that the distortion tensor (2) is invariant under the
transformation δuα = −θαh, δh = θxx + θyy (where θα is an
infinitesimally small rotation angle), which reflects the original
rotational invariance of the film. This symmetry leads to the
conclusion that the energy and the “potential” part of the action
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have to be expressed in terms of the distortion tensor (2).
Consequently, the action I ′ for the slow variables has the same
form (6) but with renormalized parameters μ, λ, and κ .

The renormalization of the Lamé elastic moduli is deter-
mined by purely logarithmic integrals. Based on the results
presented in the Appendix we end up with the following
quantum (T = 0) one-loop RG equations:

dμ

dξ
= − �

32πρ1/2κ3/2
μ2, (9)

dλ

dξ
= − �

32πρ1/2κ3/2
(μ2 + 4μλ + 2λ2), (10)

where ξ is the logarithm of the scale. Renormalization of
the bending modulus κ is more involved. We skip all the
rather tedious algebra (those readers who are interested in
mathematical details of the calculations can find all essential
steps in the Appendix), and present the final result, the
one-loop RG equation for the bending modulus κ:

dκ

dξ
= − �

8πρ1/2κ1/2

3μ2 + 3μλ

2μ + λ
. (11)

Thus bending oscillations become softer due to the quantum
fluctuations (in contrast, thermal fluctuations lead to hardening
of the oscillations).

One finds from Eqs. (9) and (10) the one-loop RG equation
for the ratio of the Lamé moduli:

d

dξ

λ

μ
= − �μ

32πρ1/2κ3/2

(
1 + 3

λ

μ
+ 2

λ2

μ2

)
. (12)

As follows from the equation, there are two fixed points of
the ratio, λ = −μ/2 and λ = −μ. The fixed point λ = −μ

(corresponding to zero bulk modulus) is unstable and we stay
with the only stable fixed point λ = −μ/2. It is worthwhile to
compare this finding with the known result for renormalization
of Lamé moduli by thermal fluctuations [9–17]. In the latter
case the RG equations (formulated for a four-dimensional
membrane) possess four different fixed points (including
λ = −μ/2) but the only stable fixed point is λ = −μ/3. Since
the stable fixed points are not identical for the two cases, one
should not expect a sort of continuous matching of classical
and quantum results.

Further we assume that the system (membrane) is in the
state characterized by the ratio near the fixed point λ = −μ/2.
Substituting λ = −μ/2 into Eq. (11) one obtains

dκ

dξ
= − �μ

8πρ1/2κ1/2
.

Then one finds from Eq. (9)

dg

dξ
= g2, g = 5�μ

32πρ1/2κ3/2
, (13)

where we introduced the dimensionless coupling constant g.
The above RG equations are correct provided g � 1. We
see that the coupling constant increases as the scale grows.
Therefore for large enough scales the system passes to the
strong-coupling regime corresponding to strong fluctuations
of the membrane shape.

Expanding the right-hand side of Eq. (12) near the fixed
point λ = −μ/2, we find

d

dg

(
λ

μ
+ 1

2

)
= − 1

5g

(
λ

μ
+ 1

2

)
.

Therefore the ratio λ/μ tends to 1/2 as the coupling constant
grows. This justifies our approach. However, the correspond-
ing law is λ/μ + 1/2 ∝ g−1/5; that is, the system approaches
the fixed point not too fast. Therefore, in analyzing concrete
experimental data, probably, it is worthwhile to consider μ and
λ as independent variables.

We conclude from Eq. (13) that the coupling constant
characterizing the quantum fluctuations of the crystalline
membranes increases as the scale grows:

g = g0/(1 − g0ξ ).

In other words, we encounter the “asymptotic freedom” behav-
ior like in quantum chromodynamics. This scenario means that
unlike thermal fluctuations, stabilizing the flat state of the crys-
talline membrane (hardening the classical bending rigidity),
quantum fluctuations yield to a rough (crumpled) membrane
state due to softening of quantum bending fluctuations.

IV. CONCLUSION

What we found looks a bit counterintuitive: at T = 0
crystalline membranes turn out to be rougher at large scales in
contrast to finite temperatures. Although there is no theorem
claiming that quantum fluctuations can be obtained as a
sort of interpolation with T → 0 from classical thermal
fluctuations, our finding may shake some of the arguments used
in analysis of thermal fluctuations by the very bold matching
results obtained for four-dimensional membranes embedded
in infinite-dimensional space [12–14].

A natural question appears concerning experimentally
observable consequences of the qualitatively surprising but
quantitatively rather modest (logarithmic) renormalization of
the elastic moduli. For the graphene monoatomic films all
physical parameters are known [3,4]. Namely, μ 
 9 eV/Å2,
λ 
 2 eV/Å2, κ 
 0.7 eV, and 2d density ρ 
 7.6 ×
10−8 g/cm2. Combining everything together and stretching
experimental uncertainty, our estimations give g 
 1/20. The
physical reason for the small value of g is quite transparent. A
characteristic energy related to the elastic moduli (λ, μ, and κ)
in the quantum limit is determined by the electronic mass m.
On the other hand, the membrane vibrations are related to De-
bye energy, that is, are determined by the atomic mass M . One
can see that in fact g ∼ (m/M)1/3 (apart of numeric factors).

Of course it is not very realistic to overcome the small
bare coupling constant in graphene by a large logarithmic
factor. However, the situation is not completely hopeless.
We recall the situation with smectic liquid crystals, where
logarithmic divergence of the layer displacements requires
astronomic scales for its direct observation but could be
routinely observed by the power-law tails in x-ray scattering
of standard laboratory samples [23]. Similarly, one can
think, say, about measurements of the simultaneous two-point
correlation function 〈∇h1∇h2〉. The bare correlation function
is proportional to δ(r), where r = r1 − r2 is the separation
between the points. However, the logarithmic renormalization

125433-3



E. I. KATS AND V. V. LEBEDEV PHYSICAL REVIEW B 89, 125433 (2014)

produces corrections to the correlation function proportional
to r−2 (with some logarithmic factor). The small coefficient g

in front of this correction makes its observation problematic
but not impossible.

One more direction in which to think about observation
of our findings is to get membranes with larger values of
the bare coupling constant g. One can try to use, e.g., freely
suspended crystalline smectic films with anomalously small
bending elastic modulus κ . Such behavior is expected in
the systems undergoing transition into the membrane ripple
phase or into the so-called smectic Ã or smectic C̃ structures
with one-dimensional layer modulations. If the period of this
modulation p is larger than the molecular size a, then the
bare bending modulus acquires a small prefactor (a/p)2. This
factor for membrane ripple phase and for some modulated
smectics can be as large as 102 (see, e.g., the survey [24], the
papers [25,26], and the more recent discussion of modulated
structures in nonchiral smectics [27]).

We did not touch the electron-phonon coupling (or, more
precisely, coupling to the low-frequency modes we are
investigating). The reason is that the Dirac electronic degrees
of freedom, despite their softness, do not yield to any additional
long-wavelength renormalization of quantum vibrations of the
crystalline membrane. Indeed, at the Dirac point the electron-
phonon coupling has the form of the so-called deformational
potential [28,29]. The feedback influence of this deformation
potential into the long-wavelength vibrational part of the
Hamiltonian is irrelevant, and therefore does not change our
main conclusion concerning asymptotic freedom behavior of
quantum vibrational fluctuations in free-standing crystalline
films.

We hope that our work will motivate further experimental
and theoretical studies along this line—quantum fluctuations
in freely suspended crystalline membranes.
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APPENDIX

Here we develop the RG procedure starting from splitting
the fields u and h into the fast and slow parts: u → u′ + ũ,
h → h′ + h̃, where the prime designates slow fields and the
tilde designates fast fields. One can assume that the fast fields
ũ and h̃ are sums of spacial harmonics with wave vectors q in
the interval �′ < q < �, where � is the ultraviolet cutoff, and
�′ is a separation wave vector of slow and fast variables. Next,
one should calculate a “slow” action I ′(u′,h′) in accordance
with the definition

exp(iI ′/�) =
∫

DũDh̃ exp(iI/�), (A1)

where functional integration over fast fields is implied.
The rotational symmetry discussed in the main body of the

paper guarantees that the “slow” action I ′(u′,h′) is determined
by the same expression (6) but with renormalized parameters.

Therefore one can calculate corrections only to the harmonic
(quadratic) part of the action

I (2) =
∫

dt d2r

{
ρ

2
(∂t u)2 + ρ

2
(∂th)2

−
[
μ(∂αuβ)2 + λ

2
(∂αuα)2 + κ

2
(∇2h)2

]}
. (A2)

Actually, there appear logarithmic corrections to the moduli
μ, λ, κ whereas logarithmic corrections to the mass density ρ

are absent.
If the coupling constant g (13) is small then the renormal-

ization of the moduli μ, λ, κ can be calculated by a loop
expansion. To find corrections to the harmonic action (A2)
in the main one-loop approximation it is enough to use the
third-order contribution to the action (6)

I (3) = −
∫

dt d2r

[
μ∂αuβ∂αh∂βh + λ

2
∇u(∇h)2

]
. (A3)

Substituting here u = u′ + ũ, h = h′ + h̃ we find the follow-
ing second order in the fast fields interaction term in the action

Iint = −
∫

dt d2r

[
μ∂αu′

β∂αh̃∂βh̃ + λ

2
∇u′(∇h̃)2

]

−
∫

dt d2r

[
μ∂αũβ∂αh̃∂βh′ + μ∂αũβ∂αh′∂βh̃

+ λ∇ũ∇h′∇h̃

]
, (A4)

needed to calculate the one-loop contribution to the harmonic
action (A2).

Let us first consider the one-loop correction to the slow
harmonic action produced by the first term in Eq. (A4),

�1I
(2) = i

2�

∫
dt d2r

(
μ∂αu′

β + λ

2
∇ · u′δαβ

)

×
(

μ∂μu′
ν + λ

2
∇ · u′δμν

)

×
∫

dt1 d2r1 〈∂αh̃∂βh̃∂μh̃1∂νh̃1〉0, (A5)

that determines renormalization of the Lamé coefficients μ

and λ. Here the subscript 0 marks correlation functions found
by averaging with the harmonic action (A2). First we have to
calculate the integral entering the correction (A5). It is simpler
to calculate it in the Fourier representation∫

dt1 d2r1 〈∂αh̃∂βh̃∂μh̃1∂νh̃1〉0

= −2�
2

ρ2

∫
dω d2q

(2π )3

qαqβqμqν

[ω2 − (κ/ρ)q4 + i0]2

= − i�2

32πρ1/2κ3/2
ln

�

�′ (δαβδμν + δαμδβν + δανδβμ).

Substituting the result into Eq. (A5) one finds corrections to
μ and λ leading to RG equations (9) and (10) presented in the
main body of the paper.

Now we pass to calculation of the one-loop renormalization
of κ determined by the second term in Eq. (A4). The
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corresponding correction to the slow harmonic action is

�2I
(2) = i

2�

∫
dt1 dt2 d2r1 d2r2 ∂αh′

1∂μh′
2〈∂βh̃1∂νh̃2〉0

×〈(μ∂αũ1β + μ∂βũ1α + λ∇ · ũ1δαβ)(μ∂μũ2ν

+μ∂νũ2μ + λ∇ · ũ2δμν)〉0. (A6)

The principal technical problem here is that the main
contribution related to fast variables is ultraviolet. Therefore
one has to extract the logarithmic term on top of the ultraviolet
contribution. To be confident about results of this rather
involved calculation we do it both in real space and in Fourier
space.

1. Real-space calculations

A characteristic time t = t1 − t2 in Eq. (A6) is determined
by the 〈ũũ〉 correlation time and is, consequently, much less
than one of the 〈h̃h̃〉 correlation time. Therefore one can
substitute there the simultaneous 〈h̃h̃〉 correlation function.
Changing variables as τ = (t1 + t2)/2, r = r1 − r2, R =

(r1 + r2)/2 and expanding ∇h over r , one finds

�2I
(2) = − i

4�

∫
dτ d2R ∂α∂γ h∂μ∂δh

∫
d2r rγ rδ〈∂βh̃

× (0,r1)∂νh̃(0,r2)〉0

∫
dt 〈(μ∂αũ1β + μ∂βũ1α

+ λ∇ · ũ1δαβ)(μ∂μũ2ν + μ∂νũ2μ + λ∇ · ũ2δμν)〉0,

(A7)

where h = h(τ,R).
The correlation functions entering (A7) can be extracted

from

〈h̃(0,r)h̃(0,0)〉0 = i�

ρ

∫
dω d2k

(2π )3

exp(ikr)

ω2 − (κ/ρ)k4 + i0

= �

2ρ1/2κ1/2

∫
d2k

(2π )2

exp(ikr)

k2

= �

4πρ1/2κ1/2
ln(L/r)

and

∫
dt 〈ũα(t,r)ũβ(0,0)〉0 = − i�

ρ

∫
d2k

(2π )2
exp(ikr)

[
kαkβ

k2

1

c2
l k

2
+

(
δαβ − kαkβ

k2

)
1

c2
t k

2

]

= − i�

4π (2μ + λ)

{
[ln(L/r) + 1/2] δαβ − rαrβ

r2

}
− i�

4πμ

{
[ln(L/r) − 1/2] δαβ + rαrβ

r2

}
.

Taking space derivatives one finds

〈∂βh̃(0,r1)∂νh̃(0,r2)〉0 = �

4πρ1/2κ1/2r2

(
δβν − 2

rβrν

r2

)

and ∫
dt 〈∂μũα(t,r)∂νũβ(0,0)〉0 = i�

4π (2μ + λ)r2

{
−(δμνδαβ + δμαδνβ + δμβδνα)

+ 2

(
δαβ

rμrν

r2
+ δαμ

rβrν

r2
+ δαν

rμrβ

r2
+ δμβ

rαrν

r2

+ δνβ

rαrμ

r2
+ δμν

rαrβ

r2

)
− 8

rαrβrμrν

r4

}
+ i�

4πμr2

{
− (

δμνδαβ − δμαδνβ − δμβδνα

)

+ 2

(
δαβ

rμrν

r2
− δαμ

rβrν

r2
− δαν

rμrβ

r2
− δμβ

rαrν

r2
− δνβ

rαrμ

r2
− δμν

rαrβ

r2

)
+ 8

rαrβrμrν

r4

}
.

Substituting the above expressions into Eq. (A7) one obtains

�2I
(2) = �

32πρ1/2κ1/2

∫
dτ d2R ∂α∂γ h∂μ∂δh

∫
d2r

rγ rδ

r2

1

2πr2

[
16μ2

2μ + λ

(
−δαμ + rαrμ

r2

)
− 8μλ

2μ + λ
δαμ − 4μδαμ

]

= − �

16πρ1/2κ1/2

∫
dτ d2R

2π
(∇2h)2 ln

�

�′

[
μ2

2μ + λ
+ 2μλ

2μ + λ
+ μ

]
. (A8)

The contribution (A8) to the effective action gives a correction to κ that leads to the RG equation (11).

2. Fourier-space calculations

In the subsection we start from the same correction to the action (A6) that is rewritten in the Fourier representation as

�2I
(2) = i

2�

∫
dω d2k

(2π )3
kαkμh(ω,k)h(−ω,−k)

∫
dν d2q

(2π )3
(qβ + kβ)(qν + kν)G(ω + ν,k + q)(μqαδβκ + μqβδακ + λqκδαβ)

× (μqμδνλ + μqνδμλ + λqλδμν)Fκλ(ν,q). (A9)
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Since the bending mode is slower than the acoustic ones, we may substitute F (ν,q) → F (0,q) in Eq. (A9). Integrating then over
ν, one obtains

�2I
(2) = i

4ρ1/2κ1/2

∫
dω d2k

(2π )3
kαkμh(ω,k)h(−ω,−k)

∫
d2q

(2π )2
(qβ + kβ)(qν + kν)(q + k)−2(μqαδβκ + μqβδακ + λqκδαβ)

× (μqμδνλ + μqνδμλ + λqλδμν)Fκλ(0,q).

Here k is the wave vector of the slow variables whereas q is the wave vector of fast variables; therefore q � k.
In the main order in k/q we obtain an ultraviolet integral for �2I

(2). To extract the renormalization of κ one has to expand the
above expression for �2I

(2) up to the second order in k to obtain

�2I
(2) = �

4ρ1/2κ1/2

∫
dω d2k

(2π )3
kαkμh(ω,k)h(−ω,−k)

∫
d2q

(2π )2

[
kβkν

q2
− 2

qβkν + kβqν

q2

qk
q2

+ 4
qβqν

q2

(qk)2

q4
− qβqν

q2

k2

q2

]

× (μqαδβκ + μqβδακ + λqκδαβ)(μqμδνλ + μqνδμλ + λqλδμν)
1

q2

[
1

2μ + λ

qκqλ

q2
+ 1

μ

(
δκλ − qκqλ

q2

)]
. (A10)

Below, we separately calculate contributions to �2I
(2) related to the longitudinal factor qκqλ/q

2 and to the isotropic factor δκλ

in the last line of Eq. (A10). The “longitudinal” contribution to the slow action is

�21I
(2) = �

4ρ1/2κ1/2

(
1

2μ + λ
− 1

μ

) ∫
dω d2k

(2π )3
kαkμkκkλh(ω,k)h(−ω,−k)

∫
d2q

(2π )2q4

×
[
δβκδνλ

q2
− 2

δνκqβqλ

q4
− 2

δβκqνqλ

q4
− qβqνδκλ

q4
+ 4

qβqνqκqλ

q6

]
(2μqαqβ + λq2δαβ)(2μqμqν + λq2δμν)

= �

16πρ1/2κ1/2

(μ + λ)(μ + 2λ)

2μ + λ
ln

�

�′

∫
dω d2k

(2π )3
k4h(ω,k)h(−ω,−k).

The “isotropic” contribution to the slow action is written as

�22I
(2) = �

4ρ1/2κ1/2

∫
dω d2k

(2π )3
kαkμh(ω,k)h(−ω,−k)

∫
d2q

(2π )2q2

[
kβkν

q2
− 2

qβkν

q2

qk
q2

− 2
kβqν

q2

qk
q2

+ 4
qβqν

q2

(qk)2

q4

− qβqν

q2

k2

q2

][
μ(qαqμδβν + qβqμδαν + qαqνδβμ + qβqνδαμ) + 2λ(qαqβδμν + qμqνδαβ) + λ2

μ
δαβδμν

]

= �

16πρ1/2κ1/2
(−2μ − 2λ) ln

�

�′

∫
dω d2k

(2π )3
k4h(ω,k)h(−ω,−k).

Summing up the “longitudinal” and the “isotropic” contributions we find the same correction to κ as in real-space calculations,
leading to the RG equation (11).
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