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Large-scale properties of passive scalar advection
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We consider statistics of the passive scalar on distances much larger than the pumping scale. Such
statistics is determined by statistics of Lagrangian contraction, that is by probabilities of initially
distant fluid particles coming close. At the Batchelor limit of spatially smooth velocity, the
breakdown of scale invariance is established for scalar statisticsl999 American Institute of
Physics[S1070-663199)03008-1

I. INTRODUCTION of a scalar which is even getting Gaussian at the limiting
case of extremely irregular velocity. On the contrary, the

If an external pumping supplies the fluctuations of thestatistics is rather peculiar at spatially smooth random flow
scalar at some scalk, then the advection by a spatially (the so-called Batchelor linitit demonstrates strong inter-
inhomogeneous velocity field produces scalar fluctuations atittency and non-Gaussianity at large scales. Another unex-
all scales, both larger and smaller thanin an incompress- pected feature of the scalar statistics in this limit is a total
ible velocity field, the flux of the scalar variance flows down- breakdown of scale invariance: not only are the scaling ex-
scales, this direct cascade is quite well understood byonents anomaloug.e., they do not grow linearly with the
now!~® From a general physical viewpoint, it is also of in- order of correlation functionbut even any given correlation
terest to understand the properties of turbulence at scaldéanction is not generally scale invariafthat is, the scaling
larger than the pumping scale. If only direct cascade existsxponents depend on the angles between the vectors con-
one may expect equilibrium equipartition at large scales witecting the points
the effective temperature determined by small-scale The paper is organized as follows. We introduce the
turbulenceé®’ The peculiarity of our problem is that we con- problem and discuss the results that could be understood
sider scalar fluctuations at the scales that are larger than tlgalitatively in Sec. Il. These results are supported by
scale of excitation yet smaller than the correlation scale ostraightforward calculations within the framework of the
the velocity field, which provides for mixing of the scalar. Kraichnan modef, presented in Secs. IlI-V. We briefly de-
Although we find simultaneous correlation functions of dif- scribe the case of nonsmooth velocity in Sec. VI. We con-
ferent orders, it is yet unclear if such a statistics can besider arbitrary space dimensionalily The two-dimensional
described by any thermodynamics-like variational principle.case deserves separate consideration due to an additional de-

Since we are interested in the behavior of the passivgeneracy.
scalar on large scales, the diffusivity can be neglected, so
that the properties of the scalar statistics are solely due to
Lagrangian dynamics. In a turbulent flow, the distances bell- QUALITATIVE DESCRIPTION
tween fluid particles generally grow with time. The law of
such growth determines the correlation functions of the SC&5
lar at distances smaller thdan For example, the pair corre-
lation function (4(r)#(0)) is proportional to the average hO+VV o= . (2.1
time two fluid particles spend within the pumping correlation | ot ;s introduce Lagrangian trajectoriggr,t) determined

scale. For <L, that is the time when sepgration grows from by the equationd,o=V(t,0) and by the initial condition
r to L. On the contrary, the scalar statistics at scales Iargeé(0 fy=r. Next, introducing 8(t,r)=6(t,0) we rewrite
thanL is related to the probabilities of initially distant par- ' ~ T ) ' =

ticles to come close. Study of the large-scale statistics thu&-D @sdf=, which gives the formal solution

reveals new information on the properties of Lagrangian dy- 0

namics in a random flow. We shall show below that the 0(0,r)=fﬁxdt¢(t,g). 22
statistics of Lagrangian contraction critically depends on the

spatial smoothness of the velocity field. We shall argue thatiere we have taken into account that at0 the functionsy

nonsmooth velocity provides for a scale-invariant statisticsand @ coincide.

The evolution of the passive scaléfr,t) under the ac-
of velocity v(r,t) and pumpinge(r,t) is described by
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Both v and ¢ are assumed to be random functions ofwithin the pumping correlation length. We thus have to esti-
time and space. We will examinen-point correla- mate the probability for the vect®(t) that was once within
tion functions of the passive scalaF,(rq, ... rp) the pumping correlation lengthto come exactly to the pre-
=(0(ry) ... 6(r,)), averaged over both the statistics of the scribed point which is far away. Since the volume is con-
advecting velocity and of the pumpingp. Since our main  served, then all the particles from the pumping volubfe
interest here is to study the scalar statistics on large distancegll evolve in such a way as to be stretched in a narrow strip
and time scales, then without lost of generality we may conwith the lengthr. Assuming ergodicitfwhich requires that
sider pumping statistics to be close to white Gaussian the stretching time. ~* In(r/L) is much larger than the strain

_ _ _ correlation timg, we thus come to the conclusion that the

(b(t1,11) b(t2.r2))= 8ty —t2) x([r1—ral). @3 probability that two points separated hy belong to a
Here x is assumed to decay on a scéleOne can treat a “piece” of scalar originated from withirl is given by the
deviation from Gaussianity by introducing the three-pointvolume fraction (/r)®. That gives the law of the decrease of

pumping correlation function the two-point scalar correlatiof,ocr ~9,
The peculiarity of the smooth velocity fiel@.8) is that
ty,r t,r t3,r . . . . .
(¢t d(t2.12) $(ts 13)) it preserves straight lines under advection. That makes it
=08(t;—t,) 8(ty—ta)xa(|r1—ra|,[ri—rsl,[ro—r5]),  easy to determinedependence of the correlation function of

2.4 arbitrary order if all the points lie on a line. In this case, the
history of stretching is the same for all the distances. Look-
where x; is supposed to have the same characteristic lengtihg backward in time we may say that when the largest dis-
L as. Note, that even whey; introduces a small correc- tance between points was withinthen all other distances
tion to the Gaussian statistics of the source, it produces @ere as well. Therefore, thepoint correlation function for
new effect, making the odd correlation functions of the scalakollinear geometry is determined by the largest distance:
nonzero. The correlation functions can be represented as F or 9. This is true also when different pairs of points lie
o o on parallel lines. Note that the exponentrisndependent,
an:f dtl"'J dto(x[Ri2(t1)] " x[Ran—12(tn)])  Which corresponds to a strong intermittency and an extreme
- - anomalous scaling. The fact that for collinear geométgy
, (2.5 >F}J is due to strong correlation of the points along the line.
When we consider an arbitrary geometry, the opposite
0 0 takes place, namely the stretching of different noncollinear
Fons1= f,ocdtl' B f,wdt“<X3[R12(t1)’R13(t1)'R23(t1)] vectors is generallyénticorrelated %ecause of incompressibil-
ity and volume conservation. Indeed, for a smooth velocity
X x[Ras(t2)] - x[Ranan+1(t) )+, (260 field there exists a number of invariants, preserved by the

where angular brackets mean averaging over the statistics §PW- A d-volume €, ... 01" **pg” is conserved for ang

the velocity and one should perform summation over all setdé-agrangian trajectorieg;(t). In particular, ford=2 there

of the pairs of the points; . Using(2.2) we have written the are area conservation Iawgﬁpi"pg for any two vectors re-

correlation functions in terms of the Lagrangian separationdating three points. Let us now consider a two-dimensional

flow where the anticorrelation due to area conservation can

Rij(=le(t.r)—e(t,rl. (2.7 be easily understood and the scaling for noncollinear geom-

Most of this paper is concerned with the case where th@try can be readily appreciated. Since the area of any triangle

velocity field can be considered spatially smooth, whichis conserved, the three points that form a triangle with an

+ ..

means we can write areas much larger tham.? will never come within the pump-
ing correlation length. Therefore, the triple correlation func-
Vo(t,11) —va(t,r2) = 0ap(D)[F15— T 2p]. 2.8 ton

Here o, is the random strain matrix depending only on
time. At such a velocity field, the distancBg (t) grow ex-
ponentially, the stretching ratexn(t)=In[R(t)/R(0)] has 0
Gaussian statistics with nonzero meaand with the disper- Fa(ri2,r15.729) = Jloodt<X3[R12(tl)!RlS(tl)vR23(tl)]>
sion decreasing as 2 at time intervals far exceeding the (2.9
correlation time ofo.
Let us briefly recall the properties of the small-scale sca-
lar statistics as they follow fron2.5) to (2.8). Whenr<L, s determined by the asymptotic behavior f at r;;>L,
the pair correlation function is prg)ortional to the mean timewhich is very small. For example, if; decays exponentially
whenR(t) <L so thatF,(r) = x(0)\ "t In(L/r) with logarith-  thenFzxexp(—s/L?). On the other hand, for collinear geom-
mic accuracy->®With the same accuracy, the moments with etry Fyocr ~2. We thus see thdf; as a function of the angle
n<In(L/r) are Gaussian at small scafes. U between the vectons;, andrq3 has a sharp maximum at
The situation is drastically different at-L. Now, non-  zero angle and decreases within the interffatL2/r?<1.
zero correlation at two distant points appears only when two  Similar considerations apply for the fourth-order corre-
fluid particles manage to come there that were in the padation function
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0 0 the area of the triangle is not fixed and can change during the
Fa= fﬁxdtlJlmdtZO([Rlz(tl)]X[ Ragta) )+, evolution. Nevertheless, the anticorrelation between different
(2.10 Lagrangian trajectories exists, and therefore the answer for
the exponentA; should be larger thand® which is the es-
where dots stay for all possible permutations of points. Letimate one would get without the anticorrelation. In the fol-
us consider the contribution from the first term. Again, sincelowing sections we find that\;=d+ (d—1)/d/(d—2).
the aregR1,X Ry is conserved, the answer is crucially de- This is determined by the hierarchy of Lyapunov exponents
pendent on the relation betweény,,Xry) and L?. When  giving the stretching rates at different directions — Sec. V C.
|r3gXr1]<L? we have a collinear answét,=r . Let us  Note that in the limit of larged the anticorrelation should
now consider the case of noncollinear geometry and find th@lisappear and the answer tends tb Zhe four-point corre-

probability of an event that during evolutid®,, became of  |ation function is also determined by a joint evolution of two
the orderL, and then, at some other moment of tinRy,  distances and ,=A5.

reached. (only such events will contribute #6,). Note that,

unlike the case of the third-order function, now there is & ANALYTIC CALCULATIONS

reducible part in pumping, which mak&g nonzero(decay- ) ) ]

ing as power of ;) even wherjr 3, 1 1,/>L2. The probabil- We do all the calculations assuming the strain to be delta
ity that Ry, came toL is L%r2,. Due to area conservation, correlated in time

there is an anticorrelation betwe®j, andRs,: if Ry>~L, (Tap(t1)a,,,(t2))

thenR3,~r 1 34/L. So the probability foR;, to come back

to L is L2/(r o 34/L)?=L"*r2,r3,. Therefore, the total prob- =D[(d+1)84u0p,~ 8ar0pu~ Bupdpun] (1 12).

ability can be estimated as®/r®, which is much smaller (3.0
than the naive Gaussian estimatiotir#, while the collinear . . . .
answerl2/r2 is much larger than Gaussian. The tensorial structure i63.1) is due to isotropy and the

That consideration can be readily generalized for an arincompressibility condition div=tro=0. Zero correlation
bitrary number of noncollinear pairs. We expect tifat, time of the _straln all_ows one to derive closed equations for
«(L/r)%2n, In accordance with(2.5) the separationsR the correlation functions of the scalar
should be diminished in the evolution process upLtdo .
produce a nonzero contribution to the integral. Suppose thd®LF 2n(r) == 2 x(|Iri=1i|)Fan_a(t,1y), (3.2
R;5 is diminished up toL. Such procesgexplained in the !
consideration of the pair correlation functjagives the prob- -
ability (L/r;,)2. Next, due to the conservation law of the DEFZnH(rk):_; X(|ri_rj|)':2nfl(t’rk’)_”.24n X3
triangular areas, all otheR;; will increase by the factor
r1,/L. Then we should diminish, sayRs, from ragr,/L X(ri=riLIri=rml[rj=rm)Fan_a(t,rie),

down toL. Such process gives the probabillty/(r 1 3,). wherer,. is the setr, with r; andr; excluded and is the

Due to the conservation law of the triangular areas oRIEr gty with r, | rj, andr,, excluded. The dimensionless op-
will be larger than their initial values by the factog,/L at L . i
: erator £ is written as follows:
the moment. Repeating the process we come to the factor
(L?/r?)2"~1 for the nth order correlation function. Therefore . d+1 , p 5
Ayp=4n-2. (2.11 g

The above analysis can be generalized for arbitrary geomEqs.(B.Z) and(3.3) are rather complicated partial differential

etry. Suppose that among the separatigpare parallel vec- equa_tions. We start our analysis from the pair correlation
tors (more precisely, with angles less thad/r?). Let us function.
divide r; into sets consisting of pairs of points with parallel A. Pair correlation function
separationgj; . All points of such set behave as a single Due to isotropy and translational invarianéa.2) for the
separation at the Lagrangian evolution. Therefore instead of _. . . : 7
. . C air correlation function can be written as

n we should substitute int.11) the (minimal) number of P
sets. The estimates obtained above will be supported by rig- (d—1)D
orous calculations in Sec. IV. 2

Unfortunately, not much can be argued qualitatively I . o
about the scaling ai>2. The crucial point for our consid- One C?E easc,jlly find 3_:@'““0” of E.5), satisfying the
erations ind=2 was the conservation of the area. It allowed ¢0'"€Ct boundary conditions
us to get the correct answers even without calculations. In 2 © dx [
other terms, it is related to the fact that there is a single Fz(r)=mj WJ dyx(y)y?+t
Lyapunov exponent at two dimensions. Wten 2 we have rx 0

rl_d&r(rd+1‘9rF2):_X(r)- (3.5

only the conservation of the-dimensional volumes and 2 r =dy
hence more freedom in the dynamics. Consider, for instance, = m[r"kdyﬂy)y"%J 7X(y) .
the three-point correlation function for noncollinear geom- '

etry. Unliked=2 we cannot assert that it is zero, since now (3.6
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At r>L, the functiony(r) is assumed to decay fast This is an ordinary differential equation which has to be
enough(say, exponentially and it is possible to neglect the solved with the following boundary conditions ,,(efr;)

terms related to the tail of(r) so that

2x

Pl = - yore

(3.7
Here
x= fo dyx(y)y? !

is proportional to the zeroth Fourier harmonics)df). Es-
timating y= x(0)LY we getF,~ x(0)(L/r)¢. It is important

tends to zero iff— +o and remains finite if— —. The
solution is

2 (e d
Fon(ri) = d(d——l)Df_m dé ex —§(|§|—§)

X2 X(Er=rDFan-o(ere). (319
If the separationeflri—rj| are much larger thah, then the
right-hand side of3.14 can be neglected and we conclude
that F,,cexp(—df). Thus we deal with an extremely strong

that y exists and is nonzero, otherwise the answer is differintermittency when the scaling exponents are independent of

ent.

B. Collinear geometry

Here we consider arth order correlation function of
the passive scalar regarding that all poins... r», lie on
the same line. Then as follows fro(8.8) during the evolu-

tion g; will remain on a line. The direction of the line can be

characterized by a random unit vectoft) with the statistics
determined by

0tma=0'aﬁm5—ma§,

3.8
{=0,5mgm,, 38
following from (2.8). For the collinear geometry,
0

The statistics of the field is determined by3.1) and(3.9),
which leads t&°

d(d—1)
(§)==—5—D,

(Lt

(3.10

2))=D(d=1)5(t;—tp). (3.11

Using expressiong3.9—(3.11) we can obtain the closed

equation for the functiofr,,(t,r}):

d-1 2
( ) [dE ru& E rlja ) }FZn

=—; x(ri=rDF2n-a(tre) (312
wherer, is the setr, with r; andr; excluded.

Let us parametrize the points like

ri=ry+enl;, (3.13

wheren is a unit vector and; are some coefficients. Then,

Eq. (3.12 can be rewritten:

(d-1)
2

D(ddg+ %) Fpn(€fr))

=—; X (41— 1) Fan_o(€fry). (3.14

n. If all separations are of the same ordethen we get from
(3.149 an estimate

P2 n
F2n~(3) (L/r)q. (3.16
Note that if the distances strongly differ then it follows from
(3.15 that it is the largest distance that gives the main con-
tribution into (3.16).

The analogous procedure can be applied to the odd cor-
relation functions of the passive scalér The only differ-
ence is that now we should also take into account the third-
order correlation function of the pumping. Then we get

d-1 2
063 ry S ]

F2n+l

riFan—1(t,re)

=_%_: x(|ri—

rilri— Fml)Fan—2(t,ryn),

(3.17

wherer,; is the setr, with r; andr; excluded and,» is the
setry with r;, r; andr,, excluded. Considering all the sepa-
rations of the order of we get from(3.17)

Py [P\ " t/L\d

Fai~pl o T
where P3=x3(0,0,0). The same dependence of the odd
correlation functions as ir3.16) is accounted for by the

same structure of the differential operator in the left-hand
sides 0f(3.12 and(3.17).

I'm|v|rj_

_”Er:n xs(|ri—

(3.18

IV. DIMENSIONALITY TWO

As we mentioned above, thedZase needs to be sepa-
rately considered because of an additional degeneracy of
equations for the correlation functions of the passive scalar.
The degeneracy is associated with the area conservation law
of any triangle, vertices of which move along Lagrangian
trajectories.

A. Triple correlation function

As explained in Sec. Il, the three-point correlation func-
tion has a sharp peak for the collinear geometry, whereas for
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the general position of points the answer is determined by 1 (=

the tails of the pumping function and is nonuniversal. There- Fszafo X3(r 12,1136, 236) €D

fore, only the collinear answer is of interest, which has al-

ready been obtained in Sec. Il B. Here, we just rederive the PaL2

result in a systematic way, starting directly from the equation ~ (4.6

2D max(r,,r2;,r2y)

Expression4.6) is in accordance with estimaf8.18. Note
that (4.6) has no singularity when any two points coincide as
long as at least one distance is finite.

DLF3=— 5. Introducing the variables

lis M .
X1=-——C0SY, X,=-—sind,

4.1
lo BV

S=rqf 138Ny,

the operatorZ (3.4) can be recast to the following simple
formt112
B. Four-point correlation function

L=2x5(37+33) . 4.2 In this section we derive the result for the four-point
correlation function starting directly froit8.2). Again, there
are two regimes for which one can find the answer. For the
collinear geometry, the consideration is very similar to the
one done in Sec. IV A and reproduces the re€ilt5. Here

we will find the answer for the noncollinear geometry. Note
that its estimate is already known from Sec. Il. Equation

(3.2 for the four-point correlation functioft, is

Hered is the angle between, andr,3, andsis the doubled
area of the triangle, with vertices in, r,, andrs. Thus, the
solution can be easily fouhti*?[see alsq5.5)]

+ , + o dXé
F3= Xm 2 In
— 0 X

2

(X1 = X})2+ (Xp+ Xp)?

2
(X1— X3)

X1)2+ (X —
X3(T 12, F 53T 5) —DLF = x(r 15)F(r 34) + permutations.

87D 4.3

The property of the operat¢8.4) (characteristic of the large-
scale advecting velocihyis that the solution of this equation

is reducible into pieces, corresponding to each term on its
right-hand side:

One should substitute int@.3) the transformations inverse
to (4.1,

\F S(X1+X3)
ro=\— rae=\—
12 X5 13 Xo

Fa=Fa(r12.130) +Fa(ras,r110) + Fa(r 3,120

(4.4) +Fa(r24,r 19 +Fa(r1anr2) +Falrosrig). (4.7
2 -
Fym [S([x1—1]°+x3) To find E, we should solve the equation
X5 ' e
—DLF4(r12,r38) = X(r 12 F2(r3s). (4.8

and the analogous relations betweed,,r;;,r;; and

ox! x! In terms of the variables{ is the angle between, andr3,)
LR A I

One can easily check, that $#=L2, there are no such l34 a4 . )
values ofx] andxy, thatr},, i, andrj;are smaller thah. X1 =r_12C°S’9 x2=r—123|n19, S=rifsing, (4.9
Therefore, in this case the value Bf will be determined by . ]
the nonuniversal behavior of the functigg for the values of ~ the operatoiZ for d=2 istt42
its arguments larger than Consequently, properties of the ZZ=2X§(0§+&§). (4.10

correlation functionF5; are nonuniversal, in agreement with
the qualitative discussion of Sec. Il.

Let us consideF; ats<L?2. Since we assumed that both
r 1, andr 5 are much larger thab, the conditions<L? gives
the inequality9<<L?/(r ,,r 13 <1, that is we consider geom-
etry close to collinear. In this case, the main contribution to
the integral(4.3) is made by the region of integration, where
all r’ are smaller that. In particular,r;,<L, which allows

The solution of(4.8) can be written as a double integral,
1o(+=  (r=dx ,

SWDJ,OC dxlfo X_é2X(r12)F2(r34)

(X1 =X7)?+ (X +X5)?

(%= X])2+ (Xp—Xp)?

ﬁ4:

XIn

one to estimatex,=s/L?, which is the same axj/x,
=r2,/L2>1. Therefore, we can expand the resolventir)
and write

dezf X3(M12:7 13,7 290%] 4.5

Fs=
2mD (Xg—X7)2+x5°

(4.12

s(x12+x )
M= o r34= .
2 X

We shall calculate the integral in the lingie-L? when there
are several simplifications. First, sincg<L, we can write
x,=s/L?. Hence,rj,>sx=s/L>L, and we can use the

In the limit s<L?, it can be further simplified since the main asymptotic form(3.7) of F,. Second, like for the three-point
contribution to the integral.5) is associated with the region correlation function one can show thgf>x,, and one can

Xo<min(1x,):

expand the logarithm. Finally, we can write
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~ X2X2 f+°° S 1 (+e dk [+ da s ik —x i a(r—
F,= dx; — R=—| | s=u(kax;xpektax)tialr=r)
4 47T2D25 0 2X< é) \/X—Z o 2T ) 27T 2172
(5.2
X jw dx _ (412  The functionu satisfies
— X2+ X7 ][ (X1 = X1)?+Xx57]
Z&ZU au 2.2 2 [ '
The integral ovex; can be easily calculated and we get Xzﬁﬂ(za—xz_(k X3+ 12)u=—\xp8(xo—X3),
2
= XX [Tedx 1 s where
Fa=r— f ~ ZiaiX\ Vg 413
27D%sJo  x;, x{t+4x, X5 d—12 d—2
v= \/( ) +—0a? (5.3
If x, is not anomalously large, we can disregard it in the 4 d ' '

integrand, and find The solution of Eq(5.3) can be readily expressed in terms of

the Bessel functions of imaginary argumésee, e.g., Ref.

C +o
X2 o fo X(&) £de. 414  13),

47D2%s3’

’|E4:

1
u= —{0(x,— x5 K (|K|x)1,(|K|x5
V. DIMENSIONALITIES LARGER THAN TWO \/xé{ (=) K,k (k)

Here we treat correlation functions of the passive scalar +0(xy = X2) K ([K[x) ([ k|x2)}-
for d>2. In this case, the degeneracy inherentdte2 is
absent, and the consideration is the same fod,althich is
thus considered as a parameter. Of course, direct physicq
meaning can be attributed only tb=3.

We will calculate the three- and four-point correlatio

functions. Exactly as it was fait=2, the operatoﬁ has the

Here 6(x) is the step function, equal to onexf>0 and zero
therwise.
Now we should substitute back into(5.2). The integral
n over k can be calculated analytically with the help of Egs.
(6.672 and(8.820 from Ref. 13. Then we get

same form for both correlation functions. Namely, we have 1 += da ['(v+1/2)
to solve the following equations: R= —f Py
ged 2 xgxpd —= 27 T(v+1)
—LF3=x3, —LF4=x(r1p)Fa(ras), (5.1 , V12
XoX5

whereF, is defined by(4.7). Then, we can introduce the
variables(4.1) for F5 and(4.9) for F,. In these variables the

2,12 2
X5+ X5%+ (X1 —X1)

2
A . , _ 2XoX5
operatorL has the following rather simple form: <El 24 S 2%2
PP, ) , 2 4’2 4 X3+ X524+ (X, — X})?
L=dx5(7+95)+(d—2)(d5+dda,), 7=In(s/L?).
xexdia(r—1")]. (5.4

Therefore, in order to solve Ed5.1) we have to find the

resolventR of the operato which satisfies the equation ~HereF(a,B;v;x) is the hypergeometric function ard(x)

is the Euler gamma function.
—LR=8(x1—X}) 8(X— X5) 8(7—7") In d=2, the integral ovew is trivial, and the resolvent
can be easily reproducéd!?
and the following boundary conditions: Fir&, should go to
zero wherx; — * o, X,— + %, X,—0, andr— +«. ThenR 1
should tend to a constant at- — . It is more convenient to
work with Hermitian operators, therefore it is useful to make
a substitution, Convolution of the resolvent with the right-hand sides of Eq.
(5.1) depends on the properties of the sources. Therefore,
below we separately consider both correlation functions.

(X1 =X7)?+ (Xa—X3)?

S8(r—7'). (5.5

8mx5% [ (Xg—X1)2+(XpH+X5)?

R(Xq,X1,X2,X5,7,7")

Xo d
R=——ex _E(T_T')

dx; A. Three-point correlation function
Then we obtain The solution of(5.1) for the three-point correlation func-
tion can be written in the following form:
R #(x,R) d—2[ R d?
Xo—s+Xp———t —— | —— — ) O (Y (s , ,
ax3 x5 d |92 4 Fa= fo dxzf . dxlf A7 R(xgX1, %, X5,7,7')

== 8(X1—X1) 8(X2—X3) (17— 1"). X3(r12:7 137 29)

It is natural to seek the solution in the following form: D 5.6
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The relations between the variables;,,ri5,r;; and d—1 d x

’ ’ ’ H _ 2 12 2 72
7',n',9" are as in(4.4). Recall thatr=Ing/L~. == Vi 2(7—7 ) +In® —. (5.13

Like it was ind=2, the behavior of 3 is very different B X3

for the cases off<1 and9d~1. Let uszfirst consid_er the case The s function forces the ratio]/r |5 to be equal to1,/r ;3.

of not very small angles, namety>L"/(r 2 19). Since both  yteqgration over one of the distances, s4y makes both of
F12 andr 3 are much Iarger thah, the areas of the triangle |+ 5 pe of the ordei. (we believe that ;,~r2). Let us
is much larger than.?, which means that>1. On the other  cgngider the integral over the angé. It is easy to see that
hand, sincey; decreases very rapidly when any of i  he argument oK, in (5.12 is always large. Therefore we

larger thanL, the areas’ cannot be much larger tha’.  can use the asymptotic form of this function and write
Therefore,r’ is of the order unity in the integrdb.6). Thus,

we see thatr— 7' is always positive and much larger than f . 91?2 [{ d ( r2 19)
37 ex

unity. On the other hand, from the conditidr®L?/r?, it is —5In 29

13!3/2 2
easy to check that for a typical configuration contributing in

(5.4) the condition IPA<7 holds. Therefore, shifting the con- d—1 9 d 2 9
tour of integration in(5.4) into the upper half-plane, we will - Inzy + a—2 In? o

meet a branch point of the integrand, which originates from
v and is situated ai=i(d—1)\d/(d—2). Because of the The main contribution to the integral is made by the vicinity
large value ofr, the integral will be determined by a near of §'=9r%/L2. HenceFz~(L/r)% From the assumption
vicinity of the branch point. Therefore, we can write 9’ <1, we see that there should Be<L?/r2, otherwise the
main contribution comes from}’ ~ 1, and the expression for

R ex;{ _ %T , (5.7 the resolvent5.12) is inapplicable.
B. Four-point correlation function
As=d+(d—1)Jd/(d—2). (5.9 P
From (5.1) it follows that the answer for the four-point

Substituting the expression int6.6) we get correlation function can be written in the for@.7) where

Fa~(P3/D)(L/r)s, (5.9  Farizra
Note thatA ;>2d. :iJ'w ,f” ,f+°° : / b

Let us now consider the limitr<L%/r? and reproduce DJo o)  dxf  drRO6xXeXpTT)

the collinear result. In this case, as we shall see, the main

contribution to(5.6) is made byd' <1. The resolven® in X x(r1)Fa(rsy, (5.149

the limit 9,9’ <1 can be found directly from the represen- The variables |, andr}, are expressed vig; , x5, andr’ by
tation (5.2). The smallness of the angles implies thatx;  (4.11). The analogous relations hold for the variabigsand

<1. Using the asymptotic expansion of the Bessel functiong,, . |t can be more convenient for the present purposes to

one gets pass from the integration ovef , x5, and7’ to the integra-
L L ) tion overd’, ry,, andrg,. Then(5.14 can be replaced by
X3 Xa
u= ; 9(X2_Xé)(— +9(X§_X2)(_,) } _ 1 o dry o dr
2v\/x_2[ X % e e T e AN
(5.10 2dm32) e 1), S
We see that in the main approximation tkedependence = do (= T(v+1/2) [A|"T1?
disappears fronn and we can integrate ovérin (5.2). Then | darw——715
PP 9 52 fo S|n2a'f_x F(v+1) |2
we get
v 3 v 1 ool gasind | © 9%
S(x1—x) [  da X F —+—,—+—;v+1;A2) S .
- f 2 4’2 4 r1of 58ing’
2\xx, J - 27v(a)

The expression foA can be written as follows:

X . :
Xexr{ia(r— 7)—v(a)|ln —f . (5.11 B 2 siny sind’
2 [ 12 34/ (Y 18 30) + 1158 34/ (V128 3y) — 2COSD COSD'
The integral(5.11) can be calculated analytically, (5.19
The cased<L?/r? can be analyzed in a way presented
1 X5 in Sec. V A for the three-point correlation function, leading
R_; x’3d(d—2)K°()o to the expressior{3.15 and to the law(3.16). Below we
2 analyze the cas€>L2?/r?. In this case, there are two differ-
d ent regions in the integral ovef;, in the integral making
X —=(r—7 —X] . Lo ~ A o .
ex;{ 2(7 )| 60 x), (5.12 contributions toF,. The first region is determined by the
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inequality £5=<1, which corresponds to},~L. By the order

Balkovsky et al.

(5.19 is the leading contribution tB 4(r 1, 34). Particularly,

of magnitude, this contribution is equal to the three-pointinis is the case id=2. where the contributior5.19 be-

correlation function, because in this case the value’oihn
(5.14) is of the order of unity, whiler>1, and therefore all

haves asl(/r)®, in accordance witti4.14).

the arguments presented in Sec. V A are valid. The second

region is defined by the conditio&=1. It corresponds to
large values ofr;,, for which we can use the asymptotic
behavior ofF,, given by(3.7). Another simplification is that
in this regionr 3,21, and therefore we can believe

M3l 1o
<1,

12034

A=2 sing sind’

(5.19

C. Instanton

To understand better the underlying Lagrangian dynam-
ics let us outline briefly another method of calculation, based
on the fact that they are rare events that contribute to the
correlation functions at large scales. Therefore, some kind of
instanton formalism can be applied; the main task here is to
recognize the relevant degrees of freedom. In this way, we

Then, we can put the hypergeometric function to be equal Qhall establish a relation between the scaling expoent

1, and write

T(v+1/2)
“Tv+1)

_ 2xq
w2d%(d—1)D?

l3q .

Fa

) v+1/2

| d

. du ,
X(I’12I'34Sinﬁ)'“7d/2J TX(U) uV+1/2*Ia+d/2

M2

dv
—uv
v

X —d/2—v—1/2—iaJ dﬁ’(sinﬂ’)V_s/z_i"‘+d/2.

The integral over angléd’ can be easily expressed via the
EulerT" functions. The integral over should be calculated

with the cutoff onL. Therefore, we get the following integral
over a:

’|E4O<fd

T (v+1/2) T(vi2—14—ial2+d/4)
YT(v+1) T(W2+1d—ial2+dl4)

MEEEW s A2 sin o)t LR
L2 A2+ vri2tia
du

(5.17

v+12—ia+d/2
u
[Tl
Again, we can shift the contour of integration up to the
branch point determined by the same conditien0, and we

TX(U)

get the same answer as for the three-point correlation func-

tion. Thus, both contributions possess an identicdepen-
dence giving

|

with the same exponel(b.8).

The contribution(5.18 to F, is the leading one only if
d>\2+1. If d<\2+1, then along with(5.18 there ap-
pears an additional contribution inf, due to a pole of the
integrand in(5.17). It originates from the zero of the denomi-
natord/2+ v+ 1/2+i a, existing only atl< 2+ 1. The con-
tribution behaves like

) d(d+1)/(d—1)

P3

L\%3
3"

F4 ;

(5.18

L

r

og

(5.19

Comparing the law(5.18 with (5.19, we conclude that in
the region of its existence, that is dt<1+ 2, the term

and the Lyapunov exponents of the smooth flow. The La-
grangian distanceR;; are all determined by a single matrix
W=Texp(fodt) via Rj;=Wr;;. To find the correlation
functions, we should be able to average over the statistics of
the matrixW. The way to do it was proposed in Ref. 14, we
shall follow Ref. 15 and write

W=RT, (5.20

whereR is an orthogonal matrix and is an upper-triangular
matrix: T;;=0 if i>]j. The matrixR can be excluded from
the consideration due to isotropy. Then, representias

Ti=exppi), Tij=explpi) 7 (5.2

we can write the action describing the stochastic dynamics of
p and »,

if i<j,

1D

d(d—2i+1)

2

3

d
L::z m{&tpi-i—D
i=1

2

[sm

+1DdY, exp(2p;—2p;) u

i<j

+21Dd

1<

i ik EXP(2pi— 2pi) 7k

<
+ 2 mijdm 1D X MimMin Tmn
i<j i<k<m,n

XeXF(Zpk—Zpi). (522

Here m; and w;; are auxiliary fields, conjugated t@ and
7ij , respectively.

The variablegp; describe stretching of volume elements
in the flow, while ;; describe the direction fluctuations of a
given vector with respect to the main axis of the strain matrix
o. Note that the constants;=d(d—2i+1)/2 entering the
action (5.22 are the Lyapunov exponents. Usif§22, we
can rewriteF5 (2.9) as follows:

0
J dt)(3”.

(5.23

The variablesy;; are irrelevant for the evaluation of the
scaling and are only responsible for the angular behavior.
Since all threeR;; always lie on a plane, we can leave only
two of p; and write an effective Lagrangian

0
F3=f DpDnD,quex;{iJ dtL+In
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~ 1D d-1
L=my(@patNa) +My(dipp+Ap) + —-[d(mE+mp) Nat Aot \/ (Nt Ap)?+ —5—(Na=Ap)?

A =
—(my+mp)?]. d—2

(5.28

The value ong'b is minimal (that isF3 is maxima) if we
take the two largest Lyapunov exponents,=\;=d(d
J'o —1)/2 and\p=A,=d(d—3)/2. Substituting it into(5.28

Then, the dependence &rir can be extracted from the fol-
lowing expression:

we reproducd5.8). The instanton found has a long lifetime,
proportional to Inf/L), therefore the above consideration has
(5.249  to be valid also for a velocity finite correlated in time.
Now we can write the instanton equations for the extremum
of the exponent in5.24),

0 ~
F3~f Dpa’mea’beX[{lf dtL+In

dpatAa=—1D[(d—1)my—m,], D. Discussion

We thus see that many-point correlation functions are
not scale invariant because of strong angular dependence.
0 One may consider averaging over different geometries, for
F=J dt xs. instance, integrating over the angle between any two vectors

*"" rij keepinngzErizj in 2d. As a result of such averaging,
The boundary conditions ama, ,—0 ast— —c and p,, fthe opject appears which dependsR)unIy and is thus scale
—0 att=0. Note that the “enefgy” ' invariant. Does such averaging also restore the normal scal-
ing? One may notice that the main contribution into the an-
gular integral gives the region of small angles near collinear
peak 9= (L/r)?; since there arem—1 angles in then-point
correlation function then one geks,=r 2", that is normal
1 scaling is restored indeed. That means that the increase at

3 small angles and decrease at large dineltive to a normal
scaling are of the same order and both caused by the same
H’lechanism. It is unclear what is the way — if any — of
natural average over geometries that restores normal scaling
ind>2.

We thus discovered an intermittency build-up in the di-
rection opposite to the cascade. It is instructive to compare
this with an intermittency discovered at small scales when
the cascade flows upscale in a compressible fow.

What will be for a finite correlation ofr in time? It is
clear from Secs. Il and lll that the dependemcé both for
will change to vacuum zero values. The derivativesf, the pair correlation fgnction and for t_he co_rrelation function
change sign, an&;; start to grow. Note, that if only one of of any order for collinear geometry is valid as long as the

; . i i S -1
the R; is of the orderL and the others are still much larger Correlation time ofo is much less thad = In(r/L). Under
thanL, then x5 is small, the derivatives in Eq¢5.25 are  the same assumption, all the results obtained in two dimen-

ineffective, and the solution will never reach its vacuumsions will be valid(up to a single numerical factor in front of

dpp+Np=—1D[(d=1)mp—mg], (5.29

X3 1 dxs

létma=E£, IﬂtmeEa—pb,
a

D 2 2 2
E=1(myA,+mp\p) — i[d(ma+ mg) — (My+my)<]

is a constant. From the boundary conditions we deduce that
should be zero.

Let us explain the qualitative behavior of the solution.
We consider the evolution backwards in time. At small times
all R;; are large, and therefore the derivativesyafon the
right-hand side of Eq(5.25 are zero. Hencen, , are con-
stants such that, ,, diminish andR;; also become smaller.
Then, at some moment aR;; become of the order of.
Then, derivatives ofy; cannot be disregarded and during
some short interval of time wheR;;~L the values oim, ,

stage. Thus, we should tune the conditions so tha,alill any correlat?on func;tiohfor a finite-correlated str.ai'n as well.
become of the ordek simultaneously. Finally, we come to AS far as higher dimensions are concerned, it is clear that
the set of conditions for the initial stage some anticorrelation between contraction of different dis-
tances will be present, and it is likely that it will be governed
dpa=N=—Ng—ID[(d=1)my—my], by the same exponemt. Indeed,(5.28 has to hold in a

finite-correlated case as welk; is thus determined by the
two largest Lyapunov exponents which are likely to be pro-
portional to @—1) and @—3), respectively.

dpp=N=—Np—I1D[(d—1)mp—my],

D 2 2 2
E=1(myA,+mp\p) — E[d(ma+ mg) — (My+my)“]=0.

From here we find the value of, VI. NONSMOOTH VELOCITY FIELD
B \/ , d-2 ) The advection of the passive scalar by the nhonsmooth
)‘__5 (AatAp)"+ d (Aa=Ap)" (5.27) velocity in the framework of the Kraichnan model is de-
b scribed by Gaussian velocity field with the pair correlation
Calculating the action, we find th&;~ (L/r)*3" with function
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(u“(t,r)u?(0,0)) - I'(3d/2—1) , ,
= (V™ — 1 [ (d+1— y)r26"B—(2— y)rerA]L. R=Lo == manp (g LYW e

Here v is a measure of velocity honsmoothness; #<2. +(xg—Yyg)?]t 302

The generalization of Eq92.2) and (2.3 for nonzeroy _

needs replacing. by Into

Y af_ ay B
E r” [(d+1— ')’)r”5 (2— 7)r|] |J]V V Fgo):fdxldx2dXSR(XlaX21X3:ylyyz:y3)

The pair correlation function is now,(r)ocr?=9°

An interpretation of the extra facto? compared td3.7) - Cs
. . . X3(X12,X13,X9) =~ —5——5————,
is related to the fact that every Lagrangian distaRagener- [yt Yistyssl
ally grow by a power law'” as distinct from an exponential (6.1)
law at y=0. In other words, stretching is uniform in the 6971 (d—1)

logarithm of scale aty=0 and decelerating at# 0. Cs_T
We cannot yet find the high-order correlation functions ( )

at arbitraryy. Fortunately, at the limit of extremely irregular a0 gees thaF(O) 2-2d

velocity y=2 the operator turns into faster tharF3/20<r3 3d/2.

f dedny xs(2|5l,|\3E+ .| N3L+ ).

, which is decaying withr much

2 At y<2 one can directly check that the scalar statistics
E v, _2 Viz _ is non-Gaussian even for a Gaussian pumping. Employing
perturbation theory with respect f&=2— y, one may try to

For translationally invariant functions the terri{;)? can  prove at least that the scaling is normal and the angular
be discarded. We are thus left with a diffusion equation; it isanomaly is absent at<Oy<2. Let us do this for the triple
straightforward to show that if the pumping is Gaussian thercorrelation function. The operatdt to the first order in¢ is
the scalar statistics is Gaussian, tboth at the scales larger 7= 7.+ £2, with
and smaller than the pumping scalé the pumping is non-
Gaussian, then the scalar statistics is getting Gaussian at the

. . rerh
scales distant form the pumping scdledd moments and 7 :_2 (5aﬁ[(d_1)|mij+1]_ |]2|J

2o=_(d_1)[

VeV,
cumulants of even moments decrease with the growttlof ! i<i b
faster than the respective Gaussian momeiiise third mo-

ment, for instance, decreases wittL faster thanF32, this  Then, we should find’;F{) and integrate it with the resol-

i]

can be shown by substituting the resolvedt(2) vent. We have
brO_ o 3ETDEA2)  dd-D) (i (1rEg® (e riy)”
oo [riotrigtrsg]®  [riphristrigd? rf, ris 3

2 2.2 2 .2 2.2
2d(d_1) 2 r13r23 2 rj|_2r23 2 I'12I'13
+ rin +rizln +r5;ln .
[r2+r2+r2 d+1 r4 r4 r4
12T 13t rasl 12 13 23

There are three kinds of terms here. From the symmetry reasons, it is enough to know the values of the following integrals:

f dx; dx, dxs
=

(X4 X35+ X539 [ (X1 — Y1) 2+ (Xo— Y2) 2+ (Xa— y5) 21322 ’

| J (XT3~ X59)“dxy dxp dxg
=

2792 92 o2 d+l 2 2 293di2-1°
X1 X1t XT3+ X59) T (Xg = Y1) 2+ (X2 = Y2) *+ (X3 = ¥3)?]

2
o Xi3
X1,In X—del dx, dxz

12
|3:f -
(X2, X33t X39) I (X — Y1) 2+ (Xo— Vo) 24 (Xg— y3) 2139271
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With the logarithmic accuracy one finds

| Aios N VYEz"' YE3+ yg3
123 (Yo + yia+ y§3)d71 L ,
27T3d/2
A= 3T (Bd= 1)
277_3(1/2
A= 3d(d=Dr (3di2=1)" (6.2
71_3d/2
A3:

© 3d(d—1)['(3d/2-1)°

The result can be expressed in termd of 5,

FE=— €L 'L,FY)

C.[(3d/2—1)
2773(1/2

[(9d—6)1;—3dl,+2d(d—1)l ]

£Cs L

= In L
(Yi+Yiaty59® ™t | VYt YistYas

=¢FPIn

L
VYio+YistYas)
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tances smaller than the viscous scale of the velocity field. For
larger distancegat the inertial interval of turbulengehe
scale invariance of scalar statistigget not Gaussianityis
likely to be restoredremember that we consider the scales
larger than the scale of scalar’s pumpirg is confirmed by
our calculations in Sec. VI. At even larger scalégyond
velocity correlation scale that is an external scale of turbu-
lence the scalar statistics has to be Gaussian.

ACKNOWLEDGMENTS

We are grateful to Robert Kraichnan whose work is a
permanent source of inspiration for us. We thank Alexander
Zamolodchikov for stimulating discussions. This work was
supported by the Einstein Center at the Weizmann Institute
and by the grants of Minerva Foundation, Germany and Is-
rael Science Foundation.

1G. K. Batchelor, “Small-scale variation of convected quantities like tem-
perature in turbulent fluid,” J. Fluid Meclg, 113(1959.
2R. H. Kraichnan, “Convection of a passive scalar by a quasi-uniform
random straining field,” J. Fluid Mecl64, 737 (1974.
3B. Shraiman and E. Siggia, “Lagrangian path integrals and fluctuations in
random flow,” Phys. Rev. B9, 2912(1994.
4K. Gawedzki and A. Kupiainen, “Anomalous scaling of the passive sca-
lar,” Phys. Rev. Lett.75, 3608(1995.

5M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, “Statistics of
the passive scalar advected by a large-scale two-dimensional velocity
field: Analytic solution,” Phys. Rev. B51, 5609 (1995; “Normal and
anomalous scaling of the white-advected passive scaf#;,4924(1995.

This is the first term of the expansion with respect tof the
function Fgo_c(y§2+ yagt+ ygg)lfd*%crfl*d, which is the
normal scaling for the triple correlation function. 8D. Forster, D. Nelson, and M. Stephen, “Large distance and long time
Analysis of the integrald; , ; shows that there is no _properties of a randomly stirred fluid,” Phys. Rev.18, 732 (1977.
" . . - n 7 H H “
angular singularity at collinear geometry. By a direct calcu- E: Balltfovskfy, G. Ftalkgavllch, V. éﬁbedgv, g;d‘rggs?r(\igg;, Large-scale
. . . . properties of wave turpuience, yS. ReV. .
Iat|0n_ on_e can check that the scghng of th_e tnple_ cc_)rrelatlongG_ Falkovich and V. Lebedev, “Universal direct cascade in two-
function is the same for three points on a line. This is natural gimensional turbulence,” Phys. Rev. 30, 3883(1994).
since nonzeroy destroys degeneracy, collinearity is no °M. Chertkov, A. Gamba, and I. Kolokolov, “Exact field-theoretical de-
Ionger preserved during the Lagrangian evolution so the cor- scription of passive scalar convection in an N-dimensional long-range ve-
. . . locity field,” Phys. Lett. A192 435(1994.
“?'a_t'on functions at collinear Qeometry havel no anomaly'mG. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, “Instantons and
similar to what has been establishedgxpansion at small  intermittency,” Phys. Rev. B4, 4896(1996.
scalegtl? YE, Balkovsky, M. Chertkov, I. Kolokolov, and V. Lebedev, “Fourth-order
correlation function of randomly advected passive scalar,” Pis'ma Zh.
Eksp. Teor. Fiz61, 1012(1995 [JETP Lett.61, 1049(1995].
VIl. CONCLUSION 12E. Balkovsky, G. Falkovich, and V. Lebedev, “Three-point correlation
We have studied the correlation functions of a passive function of a scalar mixed by an almost smooth random velocity field,”
. . . Phys. Rev. E55, R4881(1997).
scalar in the framework of the K_ralchnan model on distancess s Gradshteyn and I. M. RyzhiRables of Integrals, Series and Prod-
larger than the scalar's pumping length. In the Batchelor ucts 5th ed.(Academic, New York, 1994
limit, the collinear anomaly has been found: scaling behavior“:- KOI_'OKQ'OVy r;"TEe methold of functéonr?l integration for Onﬁ-dimehsional
_ . . . . _ ocalization, higher correlators, and the average current flowing in a me-
of many-point correlgtlon 'functlon's for the COI,“near geom soscopic ring in an arbitrary magnetic field,” JETP L&, 1099(1993.
etry (where some points lie on a linstrongly d'_ﬁer_s from 15 Kolokolov, V. Lebedev, and M. Stepanov, “Passive scalar in a large-
one for general geometry. The anomalous scaling is observedscale velocity field,” JETP Lett81, 1 (1999.
In the Interval Of angles WhICh decreases Wlth IncreaSInglGM ChertkOV, l. KOIOkOIOV, and M. VergaSSOIa, “Inverse versus direct
. . . . . . .~ cascade in turbulent advection,” Phys. Rev. L88, 512(1998.
scale. This violation of a gonvennonal spalmg behawor.lsnA_ Pumir, B. Shraiman, and E. Siggia, “Perturbation theory for the
related to a strong correlation between different Lagrangian s-correlated model of passive scalar advection near the Batchelor limit,”
trajectories occurring in the Batchelor case that is for dis- Phys. Rev. E55, 1263(1997.

Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



