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We consider statistics of the passive scalar on distances much larger than the pumping scale. Such
statistics is determined by statistics of Lagrangian contraction, that is by probabilities of initially
distant fluid particles coming close. At the Batchelor limit of spatially smooth velocity, the
breakdown of scale invariance is established for scalar statistics. ©1999 American Institute of
Physics.@S1070-6631~99!03008-1#
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I. INTRODUCTION

If an external pumping supplies the fluctuations of t
scalar at some scaleL, then the advection by a spatiall
inhomogeneous velocity field produces scalar fluctuation
all scales, both larger and smaller thanL. In an incompress-
ible velocity field, the flux of the scalar variance flows dow
scales, this direct cascade is quite well understood
now.1–5 From a general physical viewpoint, it is also of in
terest to understand the properties of turbulence at sc
larger than the pumping scale. If only direct cascade ex
one may expect equilibrium equipartition at large scales w
the effective temperature determined by small-sc
turbulence.6,7 The peculiarity of our problem is that we con
sider scalar fluctuations at the scales that are larger than
scale of excitation yet smaller than the correlation scale
the velocity field, which provides for mixing of the scala
Although we find simultaneous correlation functions of d
ferent orders, it is yet unclear if such a statistics can
described by any thermodynamics-like variational princip

Since we are interested in the behavior of the pass
scalar on large scales, the diffusivity can be neglected
that the properties of the scalar statistics are solely du
Lagrangian dynamics. In a turbulent flow, the distances
tween fluid particles generally grow with time. The law
such growth determines the correlation functions of the s
lar at distances smaller thanL. For example, the pair corre
lation function ^u(r )u(0)& is proportional to the averag
time two fluid particles spend within the pumping correlati
scale. Forr ,L, that is the time when separation grows fro
r to L. On the contrary, the scalar statistics at scales la
than L is related to the probabilities of initially distant pa
ticles to come close. Study of the large-scale statistics t
reveals new information on the properties of Lagrangian
namics in a random flow. We shall show below that t
statistics of Lagrangian contraction critically depends on
spatial smoothness of the velocity field. We shall argue t
nonsmooth velocity provides for a scale-invariant statis
2261070-6631/99/11(8)/2269/11/$15.00

Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
at

y

les
s,
h
e

he
f

e
.
e
o

to
e-

a-

er

us
-

e
at
s

of a scalar which is even getting Gaussian at the limit
case of extremely irregular velocity. On the contrary, t
statistics is rather peculiar at spatially smooth random fl
~the so-called Batchelor limit!: it demonstrates strong inter
mittency and non-Gaussianity at large scales. Another un
pected feature of the scalar statistics in this limit is a to
breakdown of scale invariance: not only are the scaling
ponents anomalous~i.e., they do not grow linearly with the
order of correlation function! but even any given correlation
function is not generally scale invariant~that is, the scaling
exponents depend on the angles between the vectors
necting the points!.

The paper is organized as follows. We introduce t
problem and discuss the results that could be unders
qualitatively in Sec. II. These results are supported
straightforward calculations within the framework of th
Kraichnan model,2 presented in Secs. III–V. We briefly de
scribe the case of nonsmooth velocity in Sec. VI. We co
sider arbitrary space dimensionalityd. The two-dimensional
case deserves separate consideration due to an addition
generacy.

II. QUALITATIVE DESCRIPTION

The evolution of the passive scalaru(r ,t) under the ac-
tion of velocity v(r ,t) and pumpingf(r ,t) is described by

] tu1v¹u5f. ~2.1!

Let us introduce Lagrangian trajectories%(r ,t) determined
by the equation] t%5v(t,%) and by the initial condition
%(0,r )5r . Next, introducing ũ(t,r )5u(t,%) we rewrite
~2.1! as] tũ5f, which gives the formal solution

u~0,r !5E
2`

0

dt f~ t,%!. ~2.2!

Here we have taken into account that att50 the functionsu
and ũ coincide.
9 © 1999 American Institute of Physics
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Both v and f are assumed to be random functions
time and space. We will examinen-point correla-
tion functions of the passive scalarFn(r1 , . . . ,rn)
5^u(r1) . . . u(rn)&, averaged over both the statistics of t
advecting velocityv and of the pumpingf. Since our main
interest here is to study the scalar statistics on large dista
and time scales, then without lost of generality we may c
sider pumping statistics to be close to white Gaussian

^f~ t1 ,r1!f~ t2 ,r2!&5d~ t12t2!x~ ur12r2u!. ~2.3!

Here x is assumed to decay on a scaleL. One can treat a
deviation from Gaussianity by introducing the three-po
pumping correlation function

^f~ t1 ,r1!f~ t2 ,r2!f~ t3 ,r3!&

5d~ t12t2!d~ t12t3!x3~ ur12r2u,ur12r3u,ur22r3u!,

~2.4!

wherex3 is supposed to have the same characteristic len
L asx. Note, that even whenx3 introduces a small correc
tion to the Gaussian statistics of the source, it produce
new effect, making the odd correlation functions of the sca
nonzero. The correlation functions can be represented a

F2n5E
2`

0

dt1¯E
2`

0

dtn^x@R12~ t1!#¯x@R2n21,2n~ tn!#&

1¯, ~2.5!

F2n115E
2`

0

dt1¯E
2`

0

dtn^x3@R12~ t1!,R13~ t1!,R23~ t1!#

3x@R45~ t2!#¯x@R2n,2n11~ tn!#&1¯, ~2.6!

where angular brackets mean averaging over the statistic
the velocity and one should perform summation over all s
of the pairs of the pointsr i . Using~2.2! we have written the
correlation functions in terms of the Lagrangian separatio

Ri j ~ t !5u%~ t,r i !2%~ t,r j !u. ~2.7!

Most of this paper is concerned with the case where
velocity field can be considered spatially smooth, wh
means we can write

va~ t,r1!2va~ t,r2!5sab~ t !@r 1b2r 2b#. ~2.8!

Here sab is the random strain matrix depending only o
time. At such a velocity field, the distancesRi j (t) grow ex-
ponentially, the stretching ratel(t)5 ln@R(t)/R(0)# has
Gaussian statistics with nonzero meanl̄ and with the disper-
sion decreasing ast21/2 at time intervals far exceeding th
correlation time ofŝ.

Let us briefly recall the properties of the small-scale s
lar statistics as they follow from~2.5! to ~2.8!. Whenr !L,
the pair correlation function is proportional to the mean tim
whenR(t),L so thatF2(r )5x(0)l̄21 ln(L/r) with logarith-
mic accuracy.1,2,8With the same accuracy, the moments w
n! ln(L/r) are Gaussian at small scales.3,5

The situation is drastically different atr .L. Now, non-
zero correlation at two distant points appears only when
fluid particles manage to come there that were in the p
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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within the pumping correlation length. We thus have to es
mate the probability for the vectorR(t) that was once within
the pumping correlation lengthL to come exactly to the pre
scribed pointr which is far away. Since the volume is con
served, then all the particles from the pumping volumeLd

will evolve in such a way as to be stretched in a narrow s
with the lengthr. Assuming ergodicity@which requires that
the stretching timel̄21 ln(r/L) is much larger than the strai
correlation time#, we thus come to the conclusion that th
probability that two points separated byr belong to a
‘‘piece’’ of scalar originated from withinL is given by the
volume fraction (L/r )d. That gives the law of the decrease
the two-point scalar correlation:F2}r 2d.

The peculiarity of the smooth velocity field~2.8! is that
it preserves straight lines under advection. That make
easy to determiner dependence of the correlation function
arbitrary order if all the points lie on a line. In this case, t
history of stretching is the same for all the distances. Lo
ing backward in time we may say that when the largest d
tance between points was withinL then all other distances
were as well. Therefore, then-point correlation function for
collinear geometry is determined by the largest distan
Fn}r 2d. This is true also when different pairs of points l
on parallel lines. Note that the exponent isn independent,
which corresponds to a strong intermittency and an extre
anomalous scaling. The fact that for collinear geometryF2n

@F2
n is due to strong correlation of the points along the lin
When we consider an arbitrary geometry, the oppos

takes place, namely the stretching of different noncollin
vectors is generally anticorrelated because of incompress
ity and volume conservation. Indeed, for a smooth veloc
field there exists a number of invariants, preserved by
flow. A d-volumeea1a2¯ad

r1
a1
¯rd

ad is conserved for anyd
Lagrangian trajectoriesri(t). In particular, ford52 there
are area conservation lawseabr1

ar2
b for any two vectors re-

lating three points. Let us now consider a two-dimensio
flow where the anticorrelation due to area conservation
be easily understood and the scaling for noncollinear ge
etry can be readily appreciated. Since the area of any tria
is conserved, the three points that form a triangle with
areas much larger thanL2 will never come within the pump-
ing correlation length. Therefore, the triple correlation fun
tion

F3~r 12,r 13,r 23!5E
2`

0

dt^x3@R12~ t1!,R13~ t1!,R23~ t1!#&

~2.9!

is determined by the asymptotic behavior ofx3 at r i j @L,
which is very small. For example, ifx3 decays exponentially
thenF3}exp(2s/L2). On the other hand, for collinear geom
etry F3}r 22. We thus see thatF3 as a function of the angle
q between the vectorsr12 and r13 has a sharp maximum a
zero angle and decreases within the intervalq.L2/r 2!1.

Similar considerations apply for the fourth-order corr
lation function
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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F45E
2`

0

dt1E
2`

0

dt2^x@R12~ t1!#x@R34~ t2!#&1¯,

~2.10!

where dots stay for all possible permutations of points.
us consider the contribution from the first term. Again, sin
the areauR123R34u is conserved, the answer is crucially d
pendent on the relation betweenur343r12u and L2. When
ur343r12u!L2 we have a collinear answerF4}r 22. Let us
now consider the case of noncollinear geometry and find
probability of an event that during evolutionR12 became of
the orderL, and then, at some other moment of time,R34

reachedL ~only such events will contribute toF4). Note that,
unlike the case of the third-order function, now there is
reducible part in pumping, which makesF4 nonzero~decay-
ing as power ofr i j ) even whenur343r12u@L2. The probabil-
ity that R12 came toL is L2/r 12

2 . Due to area conservation
there is an anticorrelation betweenR12 andR34: if R12;L,
thenR34;r 12r 34/L. So the probability forR34 to come back
to L is L2/(r 12r 34/L)25L4/r 12

2 r 34
2 . Therefore, the total prob

ability can be estimated asL6/r 6, which is much smaller
than the naive Gaussian estimationL4/r 4, while the collinear
answerL2/r 2 is much larger than Gaussian.

That consideration can be readily generalized for an
bitrary number of noncollinear pairs. We expect thatF2n

}(L/r )D2n. In accordance with~2.5! the separationsRi j

should be diminished in the evolution process up toL to
produce a nonzero contribution to the integral. Suppose
R12 is diminished up toL. Such process~explained in the
consideration of the pair correlation function! gives the prob-
ability (L/r 12)

2. Next, due to the conservation law of th
triangular areas, all otherRi j will increase by the factor
r 12/L. Then we should diminish, say,R34 from r 34r 12/L
down to L. Such process gives the probabilityL2/(r 12r 34).
Due to the conservation law of the triangular areas otherRi j

will be larger than their initial values by the factorr 34/L at
the moment. Repeating the process we come to the fa
(L2/r 2)2n21 for thenth order correlation function. Therefor

D2n54n22. ~2.11!

The above analysis can be generalized for arbitrary ge
etry. Suppose that among the separationsr i j are parallel vec-
tors ~more precisely, with angles less thanL2/r 2). Let us
divide r i into sets consisting of pairs of points with parall
separationsr i j . All points of such set behave as a sing
separation at the Lagrangian evolution. Therefore instea
n we should substitute into~2.11! the ~minimal! number of
sets. The estimates obtained above will be supported by
orous calculations in Sec. IV.

Unfortunately, not much can be argued qualitative
about the scaling atd.2. The crucial point for our consid
erations ind52 was the conservation of the area. It allow
us to get the correct answers even without calculations
other terms, it is related to the fact that there is a sin
Lyapunov exponent at two dimensions. Whend.2 we have
only the conservation of thed-dimensional volumes and
hence more freedom in the dynamics. Consider, for insta
the three-point correlation function for noncollinear geo
etry. Unliked52 we cannot assert that it is zero, since no
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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the area of the triangle is not fixed and can change during
evolution. Nevertheless, the anticorrelation between differ
Lagrangian trajectories exists, and therefore the answer
the exponentD3 should be larger than 2d, which is the es-
timate one would get without the anticorrelation. In the fo
lowing sections we find thatD35d1(d21)Ad/(d22).
This is determined by the hierarchy of Lyapunov expone
giving the stretching rates at different directions — Sec. V
Note that in the limit of larged the anticorrelation should
disappear and the answer tends to 2d. The four-point corre-
lation function is also determined by a joint evolution of tw
distances andD45D3 .

III. ANALYTIC CALCULATIONS

We do all the calculations assuming the strain to be d
correlated in time

^sab~ t1!smn~ t2!&

5D@~d11!damdbn2dandbm2dabdmn#d~ t12t2!.

~3.1!

The tensorial structure in~3.1! is due to isotropy and the
incompressibility condition divv5tr ŝ50. Zero correlation
time of the strain allows one to derive closed equations
the correlation functions of the scalar2:

DL̂F2n~r k!52(
i j

x~ ur i2r j u!F2n22~ t,r k8!, ~3.2!

DL̂F2n11~r k!52(
i j

x~ ur i2r j u!F2n21~ t,r k8!2(
i jm

x3

3~ ur i2r j u,ur i2rmu,ur j2rmu!F2n22~ t,r k9!,

wherer k8 is the setr k with r i andr j excluded andr k9 is the
set r k with r i , r j , and rm excluded. The dimensionless op
eratorL̂ is written as follows:

L̂5(
i j

Fd11

2
r i j

2 dab2r i j
a r i j

b G“ i
a
“ j

b , ~3.4!

Eqs.~3.2! and~3.3! are rather complicated partial differentia
equations. We start our analysis from the pair correlat
function.

A. Pair correlation function

Due to isotropy and translational invariance,~3.2! for the
pair correlation function can be written as

~d21!D

2
r 12d] r~r d11] rF2!52x~r !. ~3.5!

One can easily find a solution of Eq.~3.5!, satisfying the
correct boundary conditions

F2~r !5
2

~d21!DE
r

` dx

xd11E0

x

dyx~y!yd11

5
2

d~d21!D F r 2dE
0

r

dy x~y!yd211E
r

`dy

y
x~y!G .

~3.6!
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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At r @L, the functionx(r ) is assumed to decay fas
enough~say, exponentially!, and it is possible to neglect th
terms related to the tail ofx(r ) so that

F2~r !5
2x̄

d~d21!Dr d
. ~3.7!

Here

x̄5E
0

`

dyx~y!yd21

is proportional to the zeroth Fourier harmonics ofx(r ). Es-
timating x̄.x(0)Ld we getF2;x(0)(L/r )d. It is important
that x̄ exists and is nonzero, otherwise the answer is diff
ent.

B. Collinear geometry

Here we consider a 2nth order correlation function o
the passive scalar regarding that all pointsr1 , ... ,r2n lie on
the same line. Then as follows from~2.8! during the evolu-
tion %i will remain on a line. The direction of the line can b
characterized by a random unit vectorm(t) with the statistics
determined by

] tma5sabmb2maz,
~3.8!

z5sgbmbmg ,

following from ~2.8!. For the collinear geometry,

Ri j ~t!5ur i2r j uexpH E
t

0

dt z~ t !J . ~3.9!

The statistics of the fieldz is determined by~3.1! and~3.8!,
which leads to9,10

^z&5
d~d21!

2
D, ~3.10!

^z~ t1!z~ t2!&5D~d21!d~ t12t2!. ~3.11!

Using expressions~3.9!–~3.11! we can obtain the close
equation for the functionF2n(t,r k):

~d21!

2
DFd( r i j

]

]r i j
1S ( r i j

]

]r i j
D 2GF2n

52(
i j

x~ ur i2r j u!F2n22~ t,r k8! , ~3.12!

wherer k8 is the setr k with r i and r j excluded.
Let us parametrize the pointsr i like

r i5r11ejnl i , ~3.13!

wheren is a unit vector andl i are some coefficients. Then
Eq. ~3.12! can be rewritten:

~d21!

2
D~d]j1]j

2!F2n~ejr i !

52(
i j

x~ejur i2r j u!F2n22~ejr k8!. ~3.14!
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
r-

This is an ordinary differential equation which has to
solved with the following boundary conditions:F2n(ejr i)
tends to zero ifj→1` and remains finite ifj→2`. The
solution is

F2n~r i !5
2

d~d21!DE
2`

1`

dj expF2
d

2
~ uju2j!G

3(
i j

x~ejur i2r j u!F2n22~ejr k8!. ~3.15!

If the separationsejur i2r j u are much larger thanL, then the
right-hand side of~3.14! can be neglected and we conclud
that F2n}exp(2dj). Thus we deal with an extremely stron
intermittency when the scaling exponents are independen
n. If all separations are of the same orderr, then we get from
~3.14! an estimate

F2n;S P2

D D n

~L/r !d. ~3.16!

Note that if the distances strongly differ then it follows fro
~3.15! that it is the largest distance that gives the main c
tribution into ~3.16!.

The analogous procedure can be applied to the odd
relation functions of the passive scalaru. The only differ-
ence is that now we should also take into account the th
order correlation function of the pumping. Then we get

~d21!

2
DFd( r i j

]

]r i j
1S ( r i j

]

]r i j
D 2GF2n11

52(
i j

x~ ur i2r j u!F2n21~ t,r k8!

2(
i jm

x3~ ur i2r j u,ur i2rmu,ur j2rmu!F2n22~ t,r k9!,

~3.17!

wherer k8 is the setr k with r i andr j excluded andr k9 is the
setr k with r i , r j andrm, excluded. Considering all the sep
rations of the order ofr we get from~3.17!

F2n11;
P3

D S P2

D D n21S L

r D d

, ~3.18!

where P35x3(0,0,0). The samer dependence of the od
correlation functions as in~3.16! is accounted for by the
same structure of the differential operator in the left-ha
sides of~3.12! and ~3.17!.

IV. DIMENSIONALITY TWO

As we mentioned above, the 2d case needs to be sep
rately considered because of an additional degenerac
equations for the correlation functions of the passive sca
The degeneracy is associated with the area conservation
of any triangle, vertices of which move along Lagrangi
trajectories.

A. Triple correlation function

As explained in Sec. II, the three-point correlation fun
tion has a sharp peak for the collinear geometry, whereas
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the general position of points the answer is determined
the tails of the pumping function and is nonuniversal. The
fore, only the collinear answer is of interest, which has
ready been obtained in Sec. III B. Here, we just rederive
result in a systematic way, starting directly from the equat
DL̂F352x3 . Introducing the variables

x15
r 13

r 12
cosq, x25

r 13

r 12
sinq, s5r 12r 13sinq, ~4.1!

the operatorL̂ ~3.4! can be recast to the following simpl
form11,12

L̂52x2
2~]1

21]2
2! . ~4.2!

Hereq is the angle betweenr12 andr13, ands is the doubled
area of the triangle, with vertices inr1 , r2 , andr3 . Thus, the
solution can be easily found11,12 @see also~5.5!#

F35E
2`

1`

dx18E
0

1` dx28

x28
2

lnF ~x12x18!21~x21x28!2

~x12x18!21~x22x28!2G
3

x3~r 128 ,r 238 ,r 318 !

8pD
. ~4.3!

One should substitute into~4.3! the transformations invers
to ~4.1!,

r 125A s

x2
, r 135As~x1

21x2
2!

x2
,

~4.4!

r 235As~@x121#21x2
2!

x2
,

and the analogous relations betweenr 128 ,r 238 ,r 318 and
s,x18 ,x28 .

One can easily check, that ifs*L2, there are no such
values ofx18 andx28 , thatr 128 , r 138 , andr 238 are smaller thanL.
Therefore, in this case the value ofF3 will be determined by
the nonuniversal behavior of the functionx3 for the values of
its arguments larger thanL. Consequently, properties of th
correlation functionF3 are nonuniversal, in agreement wi
the qualitative discussion of Sec. II.

Let us considerF3 at s&L2. Since we assumed that bo
r 12 andr 13 are much larger thanL, the conditions&L2 gives
the inequalityq,L2/(r 12r 13)!1, that is we consider geom
etry close to collinear. In this case, the main contribution
the integral~4.3! is made by the region of integration, whe
all r 8 are smaller thanL. In particular,r 128 &L, which allows
one to estimatex28*s/L2, which is the same asx28/x2

*r 12
2 /L2@1. Therefore, we can expand the resolvent in~4.3!

and write

F35
x2

2pDE dx28

x28
E x3~r 128 ,r 138 ,r 238 !dx18

~x12x18!21x28
2

. ~4.5!

In the limit s!L2, it can be further simplified since the ma
contribution to the integral~4.5! is associated with the regio
x28!min(1,x1):
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
y
-

l-
e
n

o

F35
1

DE
0

`

x3~r 12j,r 13j,r 23j!jdj

'
P3L2

2D max~r 12
2 ,r 13

2 ,r 23
2 !

. ~4.6!

Expression~4.6! is in accordance with estimate~3.18!. Note
that ~4.6! has no singularity when any two points coincide
long as at least one distance is finite.

B. Four-point correlation function

In this section we derive the result for the four-poi
correlation function starting directly from~3.2!. Again, there
are two regimes for which one can find the answer. For
collinear geometry, the consideration is very similar to t
one done in Sec. IV A and reproduces the result~3.15!. Here
we will find the answer for the noncollinear geometry. No
that its estimate is already known from Sec. II. Equati
~3.2! for the four-point correlation functionF4 is

2DL̂F45x~r 12!F2~r 34!1permutations.

The property of the operator~3.4! ~characteristic of the large
scale advecting velocity! is that the solution of this equatio
is reducible into pieces, corresponding to each term on
right-hand side:

F45F̃4~r12,r34!1F̃4~r34,r12!1F̃4~r13,r24!

1F̃4~r24,r13!1F̃4~r14,r23!1F̃4~r23,r14!. ~4.7!

To find F̃4 we should solve the equation

2DL̂F̃4~r12,r34!5x~r 12!F2~r 34!. ~4.8!

In terms of the variables (q is the angle betweenr12 andr34)

x15
r 34

r 12
cosq, x25

r 34

r 12
sinq, s5r 12r 34sinq, ~4.9!

the operatorL̂ for d52 is11,12

L̂52x2
2~]1

21]2
2!. ~4.10!

The solution of~4.8! can be written as a double integral,

F̃45
1

8pDE
2`

1`

dx18E
0

1` dx28

x28
2

x~r 128 !F2~r 348 !

3 lnF ~x12x18!21~x21x28!2

~x12x18!21~x22x28!2G ,

~4.11!

r 128 5A s

x28
, r 348 5As~x18

21x28
2!

x28
.

We shall calculate the integral in the limits@L2 when there
are several simplifications. First, sincer 128 &L, we can write
x28*s/L2. Hence,r 348 .Asx28*s/L@L, and we can use the
asymptotic form~3.7! of F2 . Second, like for the three-poin
correlation function one can show thatx28@x2 , and one can
expand the logarithm. Finally, we can write
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



he

la

sic

n

v

e

ke

of

s.

q.
ore,

-

2274 Phys. Fluids, Vol. 11, No. 8, August 1999 Balkovsky et al.
F̃45
x2x2

4p2D2s
E

0

1`

dx28xSA s

x28
D

3E
2`

1` dx18

@x18
21x28

2#@~x182x1!21x28
2#

. ~4.12!

The integral overx18 can be easily calculated and we get

F̃45
x2x2

2pD2s
E

0

1`dx28

x28

1

x1
214x28

2
xSA s

x28
D . ~4.13!

If x1 is not anomalously large, we can disregard it in t
integrand, and find

F̃45
x2Cx2

4pD2s3
, C5E

0

1`

x~j! j3dj. ~4.14!

V. DIMENSIONALITIES LARGER THAN TWO

Here we treat correlation functions of the passive sca
for d.2. In this case, the degeneracy inherent tod52 is
absent, and the consideration is the same for alld, which is
thus considered as a parameter. Of course, direct phy
meaning can be attributed only tod53.

We will calculate the three- and four-point correlatio
functions. Exactly as it was ford52, the operatorL̂ has the
same form for both correlation functions. Namely, we ha
to solve the following equations:

2L̂F35x3 , 2L̂F̃45x~r 12!F2~r 34!, ~5.1!

where F̃4 is defined by~4.7!. Then, we can introduce th
variables~4.1! for F3 and~4.9! for F̃4 . In these variables the
operatorL̂ has the following rather simple form:

L̂5dx2
2~]1

21]2
2!1~d22!~]t

21d]t!, t5 ln~s/L2!.

Therefore, in order to solve Eq.~5.1! we have to find the
resolventR of the operatorL̂ which satisfies the equation

2L̂R5d~x12x18!d~x22x28!d~t2t8!

and the following boundary conditions: First,R should go to
zero whenx1→6`, x2→1`, x2→0, andt→1`. ThenR
should tend to a constant att→2`. It is more convenient to
work with Hermitian operators, therefore it is useful to ma
a substitution,

R5
x2

dx28
expF2

d

2
~t2t8!GR~x1 ,x18 ,x2 ,x28 ,t,t8!

Then we obtain

x2
2 ]2R

]x1
2

1x2

]2~x2R!

]x2
2

1
d22

d S ]2R

]t2
2

d2

4
RD

52d~x12x18!d~x22x28!d~t2t8!.

It is natural to seek the solution in the following form:
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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R5
1

Ax2
E

2`

1` dk

2pE2`

1` da

2p
u~k,a,x2 ,x28!eik(x12x18)1 ia(t2t8).

~5.2!

The functionu satisfies

x2
2 ]2u

]x2
2

1x2

]u

]x2
2~k2x2

21n2!u52Ax28d~x22x28!,

where

n5A~d21!2

4
1

d22

d
a2. ~5.3!

The solution of Eq.~5.3! can be readily expressed in terms
the Bessel functions of imaginary argument~see, e.g., Ref.
13!,

u5
1

Ax28
$u~x22x28!Kn~ ukux2!I n~ ukux28!

1u~x282x2!Kn~ ukux28!I n~ ukux2!%.

Hereu(x) is the step function, equal to one ifx.0 and zero
otherwise.

Now we should substituteu back into~5.2!. The integral
over k can be calculated analytically with the help of Eq
~6.672! and ~8.820! from Ref. 13. Then we get

R5
1

2Apx2x28
E

2`

1` da

2p

G~n11/2!

G~n11!

3F x2x28

x2
21x28

21~x12x18!2G n11/2

3FS n

2
1

3

4
,
n

2
1

1

4
;n11;F 2x2x28

x2
21x28

21~x12x18!2G 2D
3exp@ ia~t2t8!#. ~5.4!

Here F(a,b;g;x) is the hypergeometric function andG(x)
is the Euler gamma function.

In d52, the integral overa is trivial, and the resolvent
can be easily reproduced,11,12

R5
1

8px28
2

lnF ~x12x18!21~x22x28!2

~x12x18!21~x21x28!2Gd~t2t8!. ~5.5!

Convolution of the resolvent with the right-hand sides of E
~5.1! depends on the properties of the sources. Theref
below we separately consider both correlation functions.

A. Three-point correlation function

The solution of~5.1! for the three-point correlation func
tion can be written in the following form:

F35E
0

`

dx28E
2`

1`

dx18E
2`

1`

dt8R~x1 ,x18 ,x2 ,x28 ,t,t8!

3
x3~r 128 ,r 138 ,r 238 !

D
. ~5.6!
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The relations between the variablesr 128 ,r 138 ,r 238 and
t8,h8,q8 are as in~4.4!. Recall thatt5 ln s/L2.

Like it was ind52, the behavior ofF3 is very different
for the cases ofq!1 andq;1. Let us first consider the cas
of not very small angles, namelyq@L2/(r 12r 13). Since both
r 12 andr 13 are much larger thanL, the areas of the triangle
is much larger thanL2, which means thatt@1. On the other
hand, sincex3 decreases very rapidly when any ofr i j is
larger thanL, the areas8 cannot be much larger thanL2.
Therefore,t8 is of the order unity in the integral~5.6!. Thus,
we see thatt2t8 is always positive and much larger tha
unity. On the other hand, from the conditionq@L2/r 2, it is
easy to check that for a typical configuration contributing
~5.4! the condition lnA!t holds. Therefore, shifting the con
tour of integration in~5.4! into the upper half-plane, we wil
meet a branch point of the integrand, which originates fr
n and is situated ata5 i (d21)Ad/(d22). Because of the
large value oft, the integral will be determined by a nea
vicinity of the branch point. Therefore, we can write

R}expF2
D3

2
t G , ~5.7!

D35d1~d21!Ad/~d22!. ~5.8!

Substituting the expression into~5.6! we get

F3;~P3 /D !~L/r !D3, ~5.9!

Note thatD3.2d.
Let us now consider the limitq!L2/r 2 and reproduce

the collinear result. In this case, as we shall see, the m
contribution to~5.6! is made byq8!1. The resolventR in
the limit q,q8!1 can be found directly from the represe
tation ~5.2!. The smallness of the angles implies thatx2 ,x28
!1. Using the asymptotic expansion of the Bessel functi
one gets

u5
1

2nAx28
H u~x22x28!S x28

x2
D n

1u~x282x2!S x2

x28
D nJ .

~5.10!

We see that in the main approximation thek dependence
disappears fromu and we can integrate overk in ~5.2!. Then
we get

R5
d~x12x18!

2Ax2x28
E

2`

` da

2pn~a!

3expF ia~t2t8!2n~a!U ln x2

x28
UG . ~5.11!

The integral~5.11! can be calculated analytically,

R5
1

p
A x2

x28
3d~d22!

K0~X!

3expF2
d

2
~t2t8!Gd~x12x18!, ~5.12!
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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X5
d21

2 A d

d22
~t2t8!21 ln2

x2

x28
. ~5.13!

Thed function forces the ratior 128 /r 138 to be equal tor 12/r 13.
Integration over one of the distances, sayr 128 , makes both of
r 8 to be of the orderL ~we believe thatr 12;r 13). Let us
consider the integral over the angleq8. It is easy to see tha
the argument ofK0 in ~5.12! is always large. Therefore we
can use the asymptotic form of this function and write

F3;E dq8
q1/2

q83/2
expF2

d

2
lnS r 2

L2

q

q8
D

2
d21

2
Aln2

q

q8
1

d

d22
ln2S r 2

L2

q

q8
D G .

The main contribution to the integral is made by the vicin
of q85qr 2/L2. HenceF3;(L/r )d. From the assumption
q8!1, we see that there should beq!L2/r 2, otherwise the
main contribution comes fromq8;1, and the expression fo
the resolvent~5.12! is inapplicable.

B. Four-point correlation function

From ~5.1! it follows that the answer for the four-poin
correlation function can be written in the form~4.7! where

F̃4~r12,r34!

5
1

DE
0

`

dx28E
2`

1`

dx18E
2`

1`

dt8R~x1 ,x18 ,x2 ,x28 ,t,t8!

3x~r 128 !F2~r 348 !, ~5.14!

The variablesr 128 andr 348 are expressed viax18 , x28 , andt8 by
~4.11!. The analogous relations hold for the variablesr 12 and
r 34. It can be more convenient for the present purposes
pass from the integration overx18 , x28 , andt8 to the integra-
tion overq8, r 128 , andr 348 . Then~5.14! can be replaced by

F̃45
1

2dp3/2E2`

` dr128

r 128
x~r 128 !E

2`

` dr348

r 348
F2~r 348 !

3E
0

p dq8

sin2q8
E

2`

`

da
G~n11/2!

G~n11! S A

2 D n11/2

3FS n

2
1

3

4
,
n

2
1

1

4
;n11;A2D S r 12r 34sinq

r 128 r 348 sinq8
D ia2d/2

.

The expression forA can be written as follows:

A5
2 sinq sinq8

r 12r 348 /~r 128 r 34!1r 128 r 34/~r 12r 348 !22cosq cosq8
.

~5.15!

The caseq!L2/r 2 can be analyzed in a way present
in Sec. V A for the three-point correlation function, leadin
to the expression~3.15! and to the law~3.16!. Below we
analyze the caseq@L2/r 2. In this case, there are two differ
ent regions in the integral overj28 in the integral making
contributions toF̃4 . The first region is determined by th
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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inequalityj28&1, which corresponds tor 348 .L. By the order
of magnitude, this contribution is equal to the three-po
correlation function, because in this case the value oft8 in
~5.14! is of the order of unity, whilet@1, and therefore all
the arguments presented in Sec. V A are valid. The sec
region is defined by the conditionj28*1. It corresponds to
large values ofr 348 , for which we can use the asymptot
behavior ofF2 , given by~3.7!. Another simplification is that
in this regionr 348 @r 128 and therefore we can believe

A'2 sinq sinq8
r 34r 128

r 12r 348
!1. ~5.16!

Then, we can put the hypergeometric function to be equa
1, and write

F̃4'
2xd

p3/2d2~d21!D2E da
G~n11/2!

G~n11! S r 34

r 12
sinq D n11/2

3~r 12r 34sinq! ia2d/2E du

u
x~u! un11/22 ia1d/2

3E dv
v

v2d/22n21/22 iaE dq8~sinq8!n23/22 ia1d/2.

The integral over angleq8 can be easily expressed via th
Euler G functions. The integral overv should be calculated
with the cutoff onL. Therefore, we get the following integra
over a:

F̃4}E da
G~n11/2!

G~n11!

G~n/221/42 ia/21d/4!

G~n/211/42 ia/21d/4!

3S r 12r 34

L2
sinq D ia2d/2

~r 34sinq/r 12!
n11/2

d/21n11/21 ia

3E du

u
x~u! S u

L2D n11/22 ia1d/2

. ~5.17!

Again, we can shift the contour of integration up to t
branch point determined by the same conditionn50, and we
get the same answer as for the three-point correlation fu
tion. Thus, both contributions possess an identicalr depen-
dence giving

F4;
P2

2

D2 S L

r D D3

, ~5.18!

with the same exponent~5.8!.
The contribution~5.18! to F4 is the leading one only if

d.A211. If d,A211, then along with~5.18! there ap-
pears an additional contribution intoF4 due to a pole of the
integrand in~5.17!. It originates from the zero of the denom
natord/21n11/21 ia, existing only atd,A211. The con-
tribution behaves like

}S L

r D d(d11)/(d21)

. ~5.19!

Comparing the law~5.18! with ~5.19!, we conclude that in
the region of its existence, that is atd,11A2, the term
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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~5.19! is the leading contribution toF̃4(r12,r34). Particularly,
this is the case ind52, where the contribution~5.19! be-
haves as (L/r )6, in accordance with~4.14!.

C. Instanton

To understand better the underlying Lagrangian dyna
ics let us outline briefly another method of calculation, bas
on the fact that they are rare events that contribute to
correlation functions at large scales. Therefore, some kin
instanton formalism can be applied; the main task here i
recognize the relevant degrees of freedom. In this way,
shall establish a relation between the scaling exponentD3

and the Lyapunov exponents of the smooth flow. The L
grangian distancesRi j are all determined by a single matri
W5T exp(*s dt) via Ri j 5Wr i j . To find the correlation
functions, we should be able to average over the statistic
the matrixW. The way to do it was proposed in Ref. 14, w
shall follow Ref. 15 and write

W5RT , ~5.20!

whereR is an orthogonal matrix andT is an upper-triangular
matrix: Ti j 50 if i . j . The matrixR can be excluded from
the consideration due to isotropy. Then, representingT as

Tii 5exp~r i !, Ti j 5exp~r i !h i j if i , j , ~5.21!

we can write the action describing the stochastic dynamic
r andh,

L5(
i 51

d

miF] tr i1D
d~d22i 11!

2 G1
ıD

2 Fd(
i

mi
2

2S (
a

maD 2G1ıDd(
i , j

exp~2r i22r j !m i j
2

12ıDd (
i ,k, j

m i j m ik exp~2rk22r i !hk j

1(
i , j

m i j ] th i j 1ıDd (
i ,k,m,n

m imm inhkmhkn

3exp~2rk22r i !. ~5.22!

Here mi and m i j are auxiliary fields, conjugated tor i and
h i j , respectively.

The variablesr i describe stretching of volume elemen
in the flow, whileh i j describe the direction fluctuations of
given vector with respect to the main axis of the strain ma
ŝ. Note that the constantsl i5d(d22i 11)/2 entering the
action ~5.22! are the Lyapunov exponents. Using~5.22!, we
can rewriteF3 ~2.9! as follows:

F35E DrDhDmDm expF i E
2`

0

dtL1 lnS E
2`

0

dt x3D G .
~5.23!

The variablesh i j are irrelevant for the evaluation of th
scaling and are only responsible for the angular behav
Since all threeRi j always lie on a plane, we can leave on
two of r i and write an effective Lagrangian
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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L̃5ma~] tra1la!1mb~] trb1lb!1
ıD

2
@d~ma

21mb
2!

2~ma1mb!2#.

Then, the dependence onL/r can be extracted from the fol
lowing expression:

F3;E Dra,bDma,b expF ıE
2`

0

dt L̃1 lnS E
2`

0

dt x3D G .
~5.24!

Now we can write the instanton equations for the extrem
of the exponent in~5.24!,

] tra1la52ıD@~d21!ma2mb#,

] trb1lb52ıD@~d21!mb2ma#, ~5.25!

ı] tma5
1

F

]x3

]ra
, ı] tmb5

1

F

]x3

]rb
, F5E

2`

0

dt x3 .

The boundary conditions arema,b→0 as t→2` and ra,b

50 at t50. Note that the ‘‘energy’’

E5ı~mala1mblb!2
D

2
@d~ma

21mb
2!2~ma1mb!2#

1
1

F3
x3 ~5.26!

is a constant. From the boundary conditions we deduce th
should be zero.

Let us explain the qualitative behavior of the solutio
We consider the evolution backwards in time. At small tim
all Ri j are large, and therefore the derivatives ofx3 on the
right-hand side of Eq.~5.25! are zero. Hencema,b are con-
stants such thatra,b diminish andRi j also become smaller
Then, at some moment allRi j become of the order ofL.
Then, derivatives ofx3 cannot be disregarded and durin
some short interval of time whenRi j ;L the values ofma,b

will change to vacuum zero values. The derivatives ofra,b

change sign, andRi j start to grow. Note, that if only one o
the Ri j is of the orderL and the others are still much large
than L, then x3 is small, the derivatives in Eqs.~5.25! are
ineffective, and the solution will never reach its vacuu
stage. Thus, we should tune the conditions so that allRi j will
become of the orderL simultaneously. Finally, we come t
the set of conditions for the initial stage

] tra5l52la2ıD@~d21!ma2mb#,

] trb5l52lb2ıD@~d21!mb2ma#,

E5ı~mala1mblb!2
D

2
@d~ma

21mb
2!2~ma1mb!2#50.

From here we find the value ofl,

l52
1

2
A~la1lb!21

d22

d
~la2lb!2. ~5.27!

Calculating the action, we find thatF3;(L/r )D3
a,b

with
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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s

D3
a,b5

la1lb1A~la1lb!21
d21

d
~la2lb!2

d22
.

~5.28!

The value ofD3
a,b is minimal ~that is F3 is maximal! if we

take the two largest Lyapunov exponents:la5l15d(d
21)/2 andlb5l25d(d23)/2. Substituting it into~5.28!
we reproduce~5.8!. The instanton found has a long lifetime
proportional to ln(r/L), therefore the above consideration h
to be valid also for a velocity finite correlated in time.

D. Discussion

We thus see that many-point correlation functions
not scale invariant because of strong angular depende
One may consider averaging over different geometries,
instance, integrating over the angle between any two vec
r i j keepingR25(r i j

2 in 2d. As a result of such averaging
the object appears which depends onR only and is thus scale
invariant. Does such averaging also restore the normal s
ing? One may notice that the main contribution into the a
gular integral gives the region of small angles near collin
peakq&(L/r )2; since there aren21 angles in then-point
correlation function then one getsFn}r 22n, that is normal
scaling is restored indeed. That means that the increas
small angles and decrease at large ones~relative to a normal
scaling! are of the same order and both caused by the s
mechanism. It is unclear what is the way — if any —
natural average over geometries that restores normal sc
in d.2.

We thus discovered an intermittency build-up in the
rection opposite to the cascade. It is instructive to comp
this with an intermittency discovered at small scales wh
the cascade flows upscale in a compressible flow.16

What will be for a finite correlation ofŝ in time? It is
clear from Secs. II and III that the dependencer 2d both for
the pair correlation function and for the correlation functi
of any order for collinear geometry is valid as long as t
correlation time ofŝ is much less thanD21 ln(r/L). Under
the same assumption, all the results obtained in two dim
sions will be valid~up to a single numerical factor in front o
any correlation function! for a finite-correlated strain as wel
As far as higher dimensions are concerned, it is clear
some anticorrelation between contraction of different d
tances will be present, and it is likely that it will be governe
by the same exponentD3 . Indeed,~5.28! has to hold in a
finite-correlated case as well,D3 is thus determined by the
two largest Lyapunov exponents which are likely to be p
portional to (d21) and (d23), respectively.

VI. NONSMOOTH VELOCITY FIELD

The advection of the passive scalar by the nonsmo
velocity in the framework of the Kraichnan model is d
scribed by Gaussian velocity field with the pair correlati
function
 license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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^ua~ t,r !ub~0,0!&

5d~ t !$V0dab2r 2g@~d112g!r 2dab2~22g!r ar b#%.

Here g is a measure of velocity nonsmoothness, 0<g<2.
The generalization of Eqs.~2.2! and ~2.3! for nonzerog

needs replacingL̂ by

(
i , j

r i j
2g@~d112g!r i j

2 dab2~22g!r i j
a r i j

b #“ i
a
“ j

b .

The pair correlation function is nowF2(r )}r g2d.5

An interpretation of the extra factorr g compared to~3.7!
is related to the fact that every Lagrangian distanceR gener-
ally grow by a power lawt1/g as distinct from an exponentia
law at g50. In other words, stretching is uniform in th
logarithm of scale atg50 and decelerating atg5” 0.

We cannot yet find the high-order correlation functio
at arbitraryg. Fortunately, at the limit of extremely irregula
velocity g52 the operator turns into

L̂052~d21!F S ( “ i D 2

2( ¹ i
2G .

For translationally invariant functions the term ((¹ i)
2 can

be discarded. We are thus left with a diffusion equation; i
straightforward to show that if the pumping is Gaussian th
the scalar statistics is Gaussian, too~both at the scales large
and smaller than the pumping scale!. If the pumping is non-
Gaussian, then the scalar statistics is getting Gaussian a
scales distant form the pumping scale~odd moments and
cumulants of even moments decrease with the growth ofr /L
faster than the respective Gaussian moments!. The third mo-
ment, for instance, decreases withr /L faster thanF2

3/2, this
can be shown by substituting the resolvent (d.2)
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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n

the

R5L̂0
2152

G~3d/221!

2p3d/2D~d21!
@~x12y1!21~x22y2!2

1~x32y3!2#123d/2

into

F3
(0)5E dx1 dx2 dx3R~x1 ,x2 ,x3 ,y1 ,y2 ,y3!

x3~x12,x13,x23!'
C3

@y12
2 1y13

2 1y23
2 #d21

,

~6.1!

C35
6d21G~d21!

pd~d21!
E dz dh x3~2uhu,uA3z1hu,uA3z1hu!.

One sees thatF3
(0)}r 222d, which is decaying withr much

faster thanF2
3/2}r 323d/2.

At g,2 one can directly check that the scalar statist
is non-Gaussian even for a Gaussian pumping. Employ
perturbation theory with respect toj522g, one may try to
prove at least that the scaling is normal and the ang
anomaly is absent at 0,g<2. Let us do this for the triple
correlation function. The operatorL̂ to the first order inj is
L̂5L̂01jL̂1 with

L̂152(
i , j

S dab@~d21!ln r i j 11#2
r i j

a r i j
b

r i j
2 D“ i

a
“ j

b .

Then, we should findL̂1F3
(0) and integrate it with the resol

vent. We have
tegrals:
L̂1F3
(0)52C3H 3~d21!~3d22!

@r 12
2 1r 13

2 1r 23
2 #d

2
d~d21!

@r 12
2 1r 13

2 1r 23
2 #d11 F ~r 13

2 2r 23
2 !2

r 12
2

2
~r 12

2 2r 23
2 !2

r 13
2

2
~r 12

2 2r 13
2 !2

r 23
2 G

1
2d~d21!2

@r 12
2 1r 13

2 1r 23
2 #d11 S r 12

2 ln
r 13

2 r 23
2

r 12
4

1r 13
2 ln

r 12
2 r 23

2

r 13
4

1r 23
2 ln

r 12
2 r 13

2

r 23
4 D J .

There are three kinds of terms here. From the symmetry reasons, it is enough to know the values of the following in

I 15E dx1 dx2 dx3

~x12
2 1x13

2 1x23
2 !d@~x12y1!21~x22y2!21~x32y3!2#3d/221

,

I 25E ~x13
2 2x23

2 !2dx1 dx2 dx3

x12
2 ~x12

2 1x13
2 1x23

2 !d11@~x12y1!21~x22y2!21~x32y3!2#3d/221
,

I 35E
x12

2 ln
x13

2

x12
2

dx1 dx2 dx3

~x12
2 1x13

2 1x23
2 !d11@~x12y1!21~x22y2!21~x32y3!2#3d/221

.
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With the logarithmic accuracy one finds

I 1,2,35
A1,2,3

~y12
2 1y13

2 1y23
2 !d21

lnFAy12
2 1y13

2 1y23
2

L
G ,

A15
2p3d/2

3~d21!G~3d/221!
,

A25
2p3d/2

3d~d21!G~3d/221!
, ~6.2!

A352
p3d/2

3d~d21!G~3d/221!
.

The result can be expressed in terms ofI 1,2,3,

F3
(1)52jL̂0

21L̂1F3
(0)

52j
C3G~3d/221!

2p3d/2
@~9d26!I 123dI212d~d21!I 3#

5
jC3

~y12
2 1y13

2 1y23
2 !d21

lnF L

Ay12
2 1y13

2 1y23
2

LG
5jF3

(0) lnF L

Ay12
2 1y13

2 1y23
2 G .

This is the first term of the expansion with respect toj of the
function F3}(y12

2 1y13
2 1y23

2 )12d2j}r g212d, which is the
normal scaling for the triple correlation function.

Analysis of the integralsI 1,2,3 shows that there is no
angular singularity at collinear geometry. By a direct calc
lation one can check that the scaling of the triple correlat
function is the same for three points on a line. This is natu
since nonzerog destroys degeneracy, collinearity is n
longer preserved during the Lagrangian evolution so the
relation functions at collinear geometry have no anoma
similar to what has been established byg-expansion at smal
scales.12,17

VII. CONCLUSION

We have studied the correlation functions of a pass
scalar in the framework of the Kraichnan model on distan
larger than the scalar’s pumping length. In the Batche
limit, the collinear anomaly has been found: scaling behav
of many-point correlation functions for the collinear geom
etry ~where some points lie on a line! strongly differs from
one for general geometry. The anomalous scaling is obse
in the interval of angles which decreases with increas
scale. This violation of a conventional scaling behavior
related to a strong correlation between different Lagrang
trajectories occurring in the Batchelor case that is for d
Downloaded 13 Oct 2002 to 132.77.4.43. Redistribution subject to AIP
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tances smaller than the viscous scale of the velocity field.
larger distances~at the inertial interval of turbulence! the
scale invariance of scalar statistics~yet not Gaussianity! is
likely to be restored~remember that we consider the scal
larger than the scale of scalar’s pumping! as is confirmed by
our calculations in Sec. VI. At even larger scales~beyond
velocity correlation scale that is an external scale of tur
lence! the scalar statistics has to be Gaussian.
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