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Spectra of turbulence in dilute polymer solutions
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Turbulence in dilute polymer solutions when polymers are strongly stretched by the flow is
investigated. We establish power-law spectra of velocity, that are not associated with a flux of a
conserved quantity, in two cases. First, such spectrum is formed in the elastic waves range of high
Reynolds number turbulence of polymer solutions above the coil–stretch transition. Second, such
spectrum is characteristic of the elastic turbulence, where chaotic flow is excited due to elastic
instabilities at small Reynolds numbers. ©2003 American Institute of Physics.
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I. INTRODUCTION

In this paper we continue theoretical investigation of t
bulence in dilute polymer solutions, started in Refs. 1 and
As opposed to Newtonian fluids, such solutions possess
ditional macroscopic degrees of freedom related to the e
ticity of the polymer molecules. Relaxation times of elas
stresses can be comparable with time scales of the
which means that the relation between the stress and
velocity gradient is nonlocal in time and, consequently,
space. It is a striking property of dilute polymer solutio
that minute amounts of polymer can significantly modify t
flow. Probably, the most famous example is the drag red
tion phenomenon. Addition of long-chain polymers in co
centrations as small as, say, 1025 by weight, can induce a
substantial reduction of the drag force needed to push a
bulent fluid through a pipe.3–6Another example is the elasti
turbulence,7–9 which is a chaotic flow, excited in the dilut
polymer solutions at low Reynolds numbers.

The reason why small amounts of polymer can sign
cantly modify properties of the fluid is flexibility of polyme
molecules. At equilibrium a polymer molecule coils up into
spongy ball of a radiusR0 . The value ofR0 depends on the
number of monomers in the molecule, which is usually ve
large. For a dilute solution with the concentration of the m
ecules,n, satisfyingnR0

3!1, an influence of equilibrium size
molecules on the hydrodynamic properties of the fluid can
neglected. When placed in an inhomogeneous flow, suc
molecule is deformed into an elongated structure, which
be characterized by its end-to-end distanceR. If the number
of monomers in a typical polymer molecule is large, t
elongationR can be much larger thanR0 . The influence of
the molecules on the flow increases with their elongation
may become substantial whenR@R0 .

Deformation of a polymer molecule is determined
two processes, stretching by the velocity gradients and re
ation due to elasticity of the molecule. To understand h
the molecule resists the deformation by the flow, one sho
2061070-6631/2003/15(7)/2060/13/$20.00
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consider its relaxation. Recent experiments with DNA m
ecules indicate that the relaxation is linear in the wide reg
of scalesR0!R!Rmax, whereRmax is the maximum mol-
ecule extension.10 In the case of polymers, theoretical arg
ments and numerics presented in Ref. 11 support the lin
relaxation. These results can be understood if we assume
at R@R0 the role of excluded volume and hydrodynam
interactions between the monomers are negligible. Then
random walk arguments suggest that the entropy of poly
molecules is quadratic inR in the rangeR0!R!Rmax im-
plying linear relaxation. Whether the polymers are excited
the flow is determined by the softest relaxation mode t
corresponds to the dynamics of the elongationR. In the ab-
sence of stretching, the relaxation ofR is described by the
equation] tR52R/t, wheret is a relaxation time, which is
expected to beR-independent atR0!R!Rmax. If the end-
to-end distanceR is of the order of the maximum extension
t starts to depend onR and the dynamics of the molecul
becomes nonlinear.12 Possible statistical consequences of t
nonlinearity have been investigated in Ref. 13.

The behavior of the molecule in an inhomogeneo
steady flow depends on the value of the Weissenberg n
ber, Wi, defined as the product of the characteristic veloc
gradient andt. When a polymer molecule is placed in a flow
smooth at the scaleR, the velocity difference between th
end-points is proportional toR multiplied by the characteris
tic value of the velocity gradient. At Wi!1 the relaxation is
fast as compared to the stretching time and the polymer
ways relaxes to the equilibrium size,R0 . The behavior of the
polymer at Wi*1 depends on the geometry of the flow. F
purely elongational flows the molecule gets aligned along
principal stretching direction. If the velocity gradient
larger than the inverse relaxation time, i.e., Wi*1, the elastic
response becomes too slow in comparison with the stretc
and the molecule gets substantially elongated.14 The sharp
transition from the coiled state to the strongly extended s
is called the coil–stretch transition. Rotation can suppress
transition and even damp it completely since the molec
0 © 2003 American Institute of Physics
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2061Phys. Fluids, Vol. 15, No. 7, July 2003 Spectra of turbulence in dilute polymer solutions
does not always point in the stretching direction~see, e.g.,
Ref. 15!. For example, no coil–stretch transition occurs
the case of the shear flow, which is a particular combinat
of the elongational and rotational flows.

In contrast to the steady case, a polymer molecule, m
ing in a random flow, alternately enters regions of high a
low stretching. As the intensity of the flow increases, t
effect of the stretching becomes more pronounced. One
generally assert existence of the coil–stretch transition in
case. This has been first demonstrated by Lumley,15 who
considered the situation where the characteristic time
variations of the velocity gradient is much larger than t
inverse of the characteristic value of the gradient. He show
that if the amplitude of the velocity gradient fluctuations
large enough, the expectation value ofR2 grows with time,
which signifies the coil–stretch transition. We have shown
Refs. 1 and 2 that the coil–stretch transition occurs in a
random flow and established a general criterion for the tr
sition. In particular, the transition occurs in the situati
where the time of velocity gradient variation is of the ord
of the inverse of its characteristic value, which is likely to
the case for real flows. The coil–stretch transition in rand
flows is controlled by the parameterl1t, wherel1 is the
average logarithmic divergence rate of nearby Lagrang
trajectories, to be referred to as the principal Lyapunov
ponent ~which is positive for an incompressible flow16,17!.
The molecules are weakly stretched ifl1t,1 and strongly
stretched otherwise. Therefore, for random flows the par
eterl1t plays the role of the Weissenberg number.

As it is well known~see, e.g., Refs. 18 and 19!, turbulent
flows in Newtonian fluids consist of chaotic eddies from
wide interval of scales,h,r ,L, where L is the integral
scale~where the flow is excited! andh is the viscous scale
The energy pumped at the scaleL cascades down to the sca
h, where it dissipates. The size of the polymer molecule
usually much smaller than the viscous scale. Viscosity ma
the flow smooth at scalesr ,h, i.e., the velocity can be
approximated by linear profiles at these scales. Therefor
R,h, then the stretching of molecules is determined by
velocity gradient, which is random in the turbulent flow. T
Lyapunov exponent can be estimated as the characte
value of the velocity gradient, which is determined by t
eddies at the viscous scaleh. As the Reynolds numbe
grows, the velocity gradient increases, and so doesl1t. At
some value Rec of the Reynolds number the productl1t
reaches the value 1 and the coil–stretch transition occur

Several mechanisms can limit the polymer stretch
above the coil–stretch transition. The first one is the inter
nonlinearity of the elasticity of the polymer molecules. If th
mechanism dominates, then above the transition the m
ecules are stretched up to the elongation of the order ofRmax.
An alternative mechanism has been proposed by Tabor
de Gennes.20 It is based on the assumption that the elon
tion of the polymer moleculesR becomes larger than th
viscous length of turbulence,h, where the elastic force al
ways wins over the stretching at a certain value of the el
gation. Below, we assume thatR!h, which seems to be
reasonable for typical polymer solutions. Another limitin
mechanism is the back reaction of the polymers on the fl
Downloaded 09 Jun 2003 to 128.165.156.80. Redistribution subject to A
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It is caused by the collective contribution of coherently d
formed polymer molecules into the stress tensor. This ela
part of the stress grows with the molecule elongation. Wh
it becomes of the order of the viscous stresses existing in
flow, the polymers modify the flow around them suppress
the stretching. As a result, a dynamic equilibrium is realiz
at a characteristic elongation,Rback. The total polymer stress
is proportional tonR2, so thatRback depends on the polyme
concentrationn. We assume that the concentration is lar
enough for the value ofRback to be much smaller thanRmax.
Probably, the conditionRback!Rmax is necessary for exis
tence of a stationary state, because the polymer molec
stretched up toRmax, are intensively destroyed by the flow

Above the coil–stretch transition the back reacti
modifies the small-scale properties of turbulent flows, wh
leads to the emergence of a new scale,r * .h, where energy
dissipates mainly due to polymer relaxation. The scaler *
plays the role of a new dissipation scale. Large-scale ed
with the sizesr .r * do not excite elastic degrees of freedo
so the usual inertial energy cascade is realized at th
scales. At Re@Rec there appears a new region of scale
h* ,r ,r * , where elastic waves can propagate,2 which are
analogous to the Alfven waves in magnetic hydrodynam
At the scaleh* viscosity becomes essential, leading to t
strong damping of the elastic waves.

In this work we investigate the velocity spectrum in th
elastic wave rangekr* @1 ~wherek is the wave vector!. We
show that the spectrum obeys a power law. The ideas of
analysis go back to the works of Townsend21 and
Batchelor.22 They recognized that fluctuations with scale
smaller than the smoothness scale of the flow~h in the case
of usual turbulence andr * in our case!, evolve in the linear
velocity profiles. For the passive scalar at large Prandtl nu
bers Batchelor derived the spectrum with the power-l
k21,22 originating from the exponential character of stretc
ing in the linear flow. Formally, it is explained by zero sca
ing dimension of the advection term that implies scale inva
ance. This property is not broken by a linear decay te
where the power-law spectrum still holds, as it was sho
for a linearly decaying passive scalar by Chertkov.23 Here we
introduce a consistent theoretical scheme for the descrip
of the small-scale fluctuations and show that though the
namics of the small-scale fluctuations is more complicat
than in the case of the passive scalar~advection and linear
decay accompanied by stretching and waves!, the power-law
in the spectrum still holds. The wave oscillations break
scale-invariance, but their influence on the energy balanc
reduced to forcing the equipartition of kinetic and elas
energies of small-scale fluctuations. The power law spect
terminates at k;(vt)21/2, where viscosity overcome
stretching. The power-law interval widens as Re grows.
us stress that this law is not related to a flux of any conser
quantity.

Another situation, where a power-law spectrum of t
small-scale fluctuations is observed, is the elastic turbule
realized in low-Reynolds polymer solutions, if the Weisse
berg number Wi is large enough.7–9 It was shown experimen
tally in Refs. 7–9, that the coil–stretch transition, occurri
at increasing Wi, leads to a chaotic flow even though Re
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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small. Its existence is due to hydrodynamic instabilit
caused by the presence of the elastic stresses. The vel
spectrum is observed to be power-like in a wide range
scales in this case.7–9 We demonstrate that, in contrast to th
usual hydrodynamic turbulence, in the elastic turbulence
power velocity spectrum is not related to the energy casc
since the main energy dissipation occurs at the largest sc
The mechanism, leading to this power spectrum is, ag
similar to the linearly decaying passive scalar problem.

The structure of the paper is as follows. In Sec. II w
introduce a system of equations describing the coupled
namics of inertial and elastic degrees of freedom. This s
tem is similar to the system of equations describing the m
netohydrodynamics~MHD!24 with the important difference
of a linear decay term in the equation on the ‘‘magne
field.’’ In Sec. III we present results, concerning statistics
a passive scalar with a constant damping, embedded
random flow. It is a prototype for the subsequent consid
ation. Section IV is devoted to the description of the prin
pal properties of the large Re turbulence in the presenc
polymers and to the derivation of the power-law spectrum
the elastic dissipation range. In Sec. V we establish
power-law spectrum for the elastic turbulence. In Conclus
we summarize our results and discuss possible implicat
of our work for other subjects. The Appendix is devoted
some details of the Lagrangian statistics.

II. BASIC RELATIONS

We study dynamics of dilute polymer solutions at sca
much larger than the intermolecular distance where the p
mer solution can be regarded as a continuous medium
described by macroscopic fields. Characteristic times of c
sidered processes are regarded to be comparable with
polymer relaxation timet. In this case, besides the usu
hydrodynamic degrees of freedom, one has to take into
count degrees of freedom, related to the polymer elastic
These degrees of freedom can be described in terms o
polymer stress tensor.12

We assume that the flow can be treated as incompr
ible, that is¹•v50, wherev is the velocity of the flow. This
is justified provided processes at a given scale are slow
comparison with sound oscillations at the same scale. T
the velocity dynamics can be described in terms of the
lowing equation:12

] tv i1~v¹!v i1%21¹i P5v¹2v i1¹jP i j , ~1!

which is a generalization of the Navier–Stokes equation
the case of viscoelastic fluids. HereP is the pressure,v is the
kinematic viscosity of the solvent,% is the fluid mass den
sity, andP i j is the polymer contribution into the stress tens
per unit mass.

Equation~1! has to be supplemented by an equation
the polymer stress tensorP i j .12 We assume the following
equation:

] tP i j 1~v¹!P i j 5Pk j¹kv i1P ik¹kv j2
2

t
~P i j 2P0d i j !,

~2!
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wheret is the polymer relaxation time, andP0 is related to
the thermal fluctuations of the polymer conformations.25 Let
us briefly repeat applicability conditions of Eq.~2!, discussed
in Ref. 2. Linearity of the decay term in~2! assumesR
!Rmax, whereR is the typical polymer molecule size. Equa
tion ~2! implies that there is a single mode related to t
polymer deformations, which is an idealization. A polym
molecule has a lot of deformational degrees of freedom,
have different relaxation times. A number of such degrees
freedom was observed in experiments with DNA.10 Never-
theless, in the turbulent flows, only the mode with the larg
relaxation time is strongly excited, whereas other modes
excited at most weakly. Thus, Eq.~2! should be treated as th
equation related to the principal mode.

The concentration of the polymer moleculesn enters
systems~1! and ~2! only via P0 , P0}n and implicitly via
the assumptionR!Rmax since P}nR2. If n is inhomoge-
neous, then the system of equations~1! and ~2! has to be
supplemented by the equation for the concentration] tn
1v¹n50 ~we neglect small diffusivity of polymer mol-
ecules!. In this paper we consider the case when polym
molecules are strongly extended. ThenP@P0 , and the term
with P0 in Eq. ~2! can be discarded. In this case any expli
dependence on the concentration of the polymer moleculn
drops from the system of equations~1! and ~2!. Therefore,
the dynamics of the polymer solutions with different valu
of n is identical in this regime as long asn is large enough
for the conditionR!Rmax to be satisfied.

A. Lagrangian description

One can establish some properties of the polymer st
tensorP, using the Lagrangian description of a fluid. It
based on the notion of fluid particles trajectories~Lagrangian
trajectories! x(t,r), which are determined by the relations

] tx5v~ t,x!, x~ t0 ,r!5r. ~3!

The pointr plays the role of a Lagrangian marker. IfP0 in
Eq. ~2! is neglected, then it is possible to write its solution

P~ t,x!5W~ t,t0!P~ t0 ,r!WT~ t,t0!e22~ t2t0!/t, ~4!

where the superscriptT denotes a transposed matrix. HereW
is the Lagrangian mapping matrix determined by the re
tions

] tW~ t,t0!5s~ t !W~ t,t0!, W~ t0 ,t0!51, ~5!

s i j ~ t,r!5¹jv i@ t,x~ t,r!#. ~6!

Above s is the tensor of the velocity derivatives along th
Lagrangian trajectoryx(t) that includes the strain tensor an
local rotations. The incompressibility condition¹•v50 is
formulated in terms ofs as trs50. Then a consequence o
Eq. ~5! is detW51.

The matrix W describes deformations of infinitesima
fluid volumes. For example, the separation,dx, between two
close fluid particles, moving along the Lagrangian trajecto
x(t), evolves according to

dx~ t !5W~ t,t8!dx~ t8!. ~7!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Therefore,Wi j (t,t0 ,r)5]xi(t,r)/]r j . Now it is easy to un-
derstand a meaning of Eq.~4!. The polymers are advecte
along the Lagrangian trajectories being stretched by the
locity gradient and relaxing to their equilibrium shape due
the polymer elasticity.

We now briefly describe statistical properties of the m
trix W; details can be found in the Appendix. We repres
the matrix asW5MLN, where M and N are orthogonal
matrices, whileL is a diagonal matrix. At times much large
than the velocity gradients correlation timets the main ei-
genvalue exp(r1) of L becomes much larger than the re
under the condition that the set of the Lyapunov expone
l i is nondegenerate. If a statistically steady state is reali
then the observation time is arbitrarily large, and we co
clude from Eq.~4! that the matrixP has to be uniaxial

P ik5BiBk , ~8!

as it was noted in Ref. 2. This conclusion is almost se
evident once one goes back to the derivation of Eq.~2!,
recognizing that atR@R0 the contribution of thermal fluc-
tuations intoP is negligible, so thatP i j }RiRj holds. We
observe that the vectorB characterizes the direction and th
strength of the coherent molecule elongations weighted
their contribution into the stress tensor. Note, thatB is de-
fined up to sign, in analogy with the director in nema
liquid crystals. It follows from Eqs.~4! and ~8! that

B~ t,x!5exp@2~ t2t0!/t#W~ t,t0!B~ t0 ,r!. ~9!

If t2t0@t thenW in this relation can be estimated aser1.
There are some modifications of theW statistics with

respect to a Newtonian fluid, that are imposed by the ab
relations. As it follows from Eq.~9!, stationarity of theB
statistics implies thatr1(t)2t/t has a stationary distribution
In particular, we conclude that the principal Lyapunov exp
nent l15 limt→` r1 /t of the flow is equal to 1/t, indepen-
dently of the Reynolds number. This means that above
coil–stretch transition the characteristic value of the veloc
gradient is fixed at the scale 1/t. The above behavior is con
trasted to the Newtonian fluids for whichl1 grows with
increasing Re and fluctuations ofr12t/t grow with time.
The absence of the growth of the fluctuations is related
anticorrelations in the temporal dynamics of the compon
s̃11(t) of s i j along B. These anticorrelations show them
selves in the equality*dt^^s̃11(0)s̃11(t)&&50 ~double
brackets designate an irreducible correlation function! and
originate in the special interaction of the inertial and elas
degrees of freedom, explained in more detail in Sec. IV.

B. Dynamic equations for dilute polymer solutions

It is convenient to rewrite Eqs.~1! and~2! in terms of the
vector B thus getting rid of extra degrees of freedom. Su
stituting the decomposition~8! into Eq. ~2!, one obtains

] tBi1~v¹!Bi5Bk¹kv i2Bi /t. ~10!

This equation is similar to the one satisfied by the magn
field in MHD,24 with the constant damping instead of th
Downloaded 09 Jun 2003 to 128.165.156.80. Redistribution subject to A
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magnetic resistivity. The resemblance is made even stron
by noting thatB has to be solenoidal. Indeed, it follows from
Eq. ~10! that

] t¹•B1~v¹!¹•B52¹•B/t. ~11!

Therefore,¹•B monotonically decays becoming zero in th
~statistically! steady state. Substituting the expression~8!
into Eq. ~1!, and taking into account the constraint¹•B
50, one obtains

] tv1~v¹!v5v¹2v2%21¹P1~B¹!B. ~12!

Now the analogy of systems~10! and ~12! with the system
describing MHD24 at zero magnetic resistivity is almos
complete. The only difference is in the damping term in E
~10!.

The energy density per unit mass is given by the sum
kinetic v2/2 and elasticB2/2 terms. The energy balanc
equation, following from Eqs.~10! and ~12!, is

~] t1v¹!~v2/21B2/2!5~B¹!~B•v !2%21v¹P

1v¹i~v¹iv !2v~¹ivk!
2

2t21B2. ~13!

The energy dissipation is due to the viscous and the poly
relaxation terms. Other terms in Eq.~13! represent energy
fluxes~in real space!, they can be written as full divergence
due to the constraints¹•v505¹•B.

III. MECHANISM OF SCALE-INVARIANCE: PASSIVE
SCALAR WITH LINEAR DAMPING

Before investigating statistical properties of the polym
solutions, described by Eqs.~10! and~12!, we present statis-
tical properties of a passive scalar with constant dampin
scales smaller than the smoothness scale of the flow, ex
ined in Ref. 23. This simple case enables one to recog
the origin of a power spectrum for passively advected fiel

The equation for the passive scalaru in the considered
case is

] tu1v¹u52u/t1f, ~14!

wheret is the passive scalar decay time andf is a forcing
term needed to maintain the stationary state. It is assume
be concentrated at a finite range of wave vectors nearkf . We
have omitted the diffusive term which can be neglected
comparison with the constant damping~in some region of
scales! provided the diffusion coefficient is small enoug
Note that the constant damping of the passive scalar lead
a well-defined steady statistics even in the absence of
passive scalar diffusion.

A flow is smooth on scales smaller than the veloc
gradients correlation lengthl. The smoothness means that
velocity difference between two points can be approxima
by a linear profile

dv i5s i j dr j , ~15!

where dr j is the separation between the points ands is a
function of time. Obviously,s i j 5¹jv i . For the usual turbu-
lent velocity the correlation lengthl is equal to the viscous
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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scale, l 5h. The smoothness of the turbulent velocity
scales less thanh was first exploited by Batchelor,22 who
considered statistical properties of a passive scalar at t
scales.

The linearity of the velocity difference leads to a pow
law for the passive scalar spectrumE(k), which is defined as
^u(k)u(k8)&5(2p)3d(k1k8)E(k), where u(k) is Fourier
transform ofu(r) with the wave vectork, angular brackets
designate averaging over the statistics ofv, and we assume
homogeneity and isotropy of the statistics. Indeed, the t
of the energy transfer fromk to 2k at kl@1 is scale-
independent due to the linearity of the velocity profile. O
the other hand, during the spectral transfer time the ene
decay is alsok-independent~since the damping term is scale
independent!. As a result the spectral functionE(k) satisfies
a relationE(2k)5CE(k) ~with a constantC,1). The solu-
tion of this equation is a power-lawE(k)}k2a with 2aC
51.

Now we put the above consideration into a more rig
ous frame. We consider the passive scalar spectrumE(k) at
kl@1. The evolution of wave packets with such wave ve
tors is determined by the velocity gradients. Let us consider
the evolution during a timet0 and expressu(t0) via u~0!. A
value ofu(t0) near a pointr1 is determined by an evolution
of u in the vicinity of the Lagrangian trajectoryx(t,r1). To
examine this evolution, one may perform the Taylor exp
sion of the velocityv in Eq. ~14! up to the first order inr
2x since the homogeneous advection does not affect eq
time correlation functions due to the Galilean invarian
Then one obtains

] tu1@u1s•~r2x!#¹u52u/t1f. ~16!

Here u(t)5v(t,x) and s5s(t,x) are the velocity and the
velocity gradients matrix along the Lagrangian trajectoryx.
Fourier transformuk of the field ũ measured in the moving
frame ũ(t,r)[u(t,r1x) satisfies

] tuk2S ks•
]

]kD uk52
uk

t
1fk exp@ ik•x#. ~17!

Further we confine ourselves to wave vectorsk@kf , that is
much larger than those on which the pumpingf is sup-
ported. In this caseuk is determined by the convection from
smaller wave vectors and the forcing term can be neglec
Then Eq.~17! can be solved explicitly, and we find

u~ t,k!5e2t/tu~0,kW!, ~18!

where W5W(t,0) is the Lagrangian mapping matrix, se
Sec. II A. Returning to the real space, we obtain

u~ t,r1x!5e2t/tE dk

~2p!3 eik@r1Wx~0!#u0~kW!, ~19!

whereu0(k) is the Fourier transform ofu(0,r). The above
formula is valid foruW21ru! l , the condition means that th
passive scalar coming to a pointr1r1 was all the time in the
l-vicinity of x allowing the Taylor expansion for the velocity

Let us now consider the pair correlation function of t
passive scalarf (r )[^u(t0 ,r1)u(t0 ,r11r)&, defined as the
spatial average overr1 . We assume that the averages^u& and
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^f& are zero~which can always be achieved by a shift ofu
and f by a constant!. The product of the fields is given b
Eq. ~19! @remind thatx(t0)5r1] and depends onr1 via the
argument ofW. The average over space~over r1) is equiva-
lent to the average over the velocity statistics, or over
velocity gradients statistics along the Lagrangian trajector
If l1t0@1 then the average over the interval 0,t,t0 and
negative times can be done independently. Indeed,s(t) has a
Lagrangian correlation timel1

21. Thus velocity at negative
times is correlated withs only at utu;l1

21 while W(t0) is
not sensitive to the value ofs there, due tol1

21!t0 ~see the
Appendix!. Therefore, we can write

f ~r !5e22t0 /tE dk

~2p!3 exp~ ikr!^E@kW~ t0!#&, ~20!

whereE(k) is the spectrum function introduced above. No
ing that E(k) equals the Fourier transform of the pai
correlation function we obtain the following stationarity co
dition for the spectrum~we substitutet0 by t!

E~k!5^exp~22t/t!E~kW!&, ~21!

whereW5W(t,0). Equation~21! is applicable atkl@1, as
follows from the conditionr ! l in Eq. ~19!.

The relation~21! has a simple meaning. The wave ve
tors of small-scale fluctuations of the passive scalar evo
according to k(t)5k(0)W21(t) as was shown by
Kraichnan.26 Thus the energy of a fluctuation with the wav
vectork is equal to its energy timet ago at the wave vecto
kW(t,0) multiplied by the decaying factor exp(22t/t). Note
that we could equally well start directly from~17! to derive
Eq. ~21!. One can show that in the spatially homogeneo
situation one can always introduce such equation for the
vestigation of the spectrum atkl@1.

Equation~21! is the quantification of the heuristic argu
ments given in the beginning of the section taking into a
count that the energy transfer time is by itself a rand
quantity. Its solution is a power lawE(k)}k2a. Substituting
the expression into Eq.~21!, one gets the relation

exp~2t/t!5^ukW/ku2a&, ~22!

which determines the exponenta. At l1t@1 the moments of
ukW/ku behave exponentially with time. Indeed, they a
roughly equal to the product ofl1t independent identically
distributed random variables. Besides at these times the
ments are independent ofk/k due to the isotropization o
W(t0) described in the Appendix. As a result the above eq
tion has a unique physical solution examined in more de
in Appendix 3, where the inequalitya.3 is established. The
inequality has simple meaning that the spectrum has to de
faster than the Batchelor spectrumk23 (k21 in the spherical
normalization! holding at infinitet.

Let us now extend the above results. The power l
spectrum persists, even if the relaxation timet is
k-dependent, but scales as zero power ofk, that is if t de-
pends on the direction ofk only. This dependence can b
regular~which makes the spectrum anisotropic! or random.
Another remark is that addition of an oscillating term~with
vk) into the equation foruk
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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] tuk2S ks•
]

]kD uk52uk /t2 ivk~ t !uk , ~23!

does not change its spectrum even though the oscilla
term breaks the scale-invariance. Indeed, let us pass frou

to ũ, which is ũ5exp(iwk)u, with the phase, satisfying

] twk2S ks•
]

]kDwk5vk . ~24!

Then for ũ we return to Eq.~19!, which leads to the powe
spectrum. It remains to note that the spectra ofu and ũ co-
incide. In other words, oscillating terms conserve energy
are, consequently, irrelevant for the energy balance.

Below we generalize the simple picture, presented in
section, to the polymer solutions.

IV. HIGH REYNOLDS FLOWS

Here we consider turbulence in dilute polymer solutio
when the Reynolds number exceeds the critical value Rc ,
corresponding to the coil–stretch transition. Then the po
mer molecules are strongly elongated. Two different ca
are possible, depending on the concentration of the poly
moleculesn. If it is very small, the elastic stresses are sm
in comparison with the viscous stresses. Then the polym
are stretched to their maximal elongation,Rmax, and the
properties of the fluid do not differ significantly from thos
of the pure solvent. Below we consider the second, m
interesting, case, when the concentration of the polymersn is
large enough, so that elastic stresses can be larger tha
viscous stresses. Then the polymer back reaction subs
tially modifies the flow.

Whereas in the pure solvent typical velocity gradie
grow unlimited as the Reynolds number increases, in po
mer solutions above the coil–stretch transition the balanc
inertial and elastic degrees of freedom fixes the character
value of the velocity gradient at 1/t. Indeed, if the instanta
neous velocity gradient exceeds 1/t, it extends the polymers
so that the elastic stress grows and damps the gradient
the other hand, if the velocity gradient is smaller than 1/t, the
molecules contract and their influence on the flow dim
ishes. Then the velocity gradients tend to grow up to
value characteristic of the pure solvent, which is larger th
1/t. Thus the velocity gradients fluctuate near 1/t, that ex-
plains the statistically steady state realized above the c
stretch transition. Let us derive the condition for the ex
tence of this steady state, related to the existence of
maximal sizeRmax of the polymer molecules. In the vicinity
of the coil–stretch transition¹v;1/t so thatBback

2 ;v¹v
;v/t as it follows from Eq.~12!. This leads to the condition
for the existence of the back reaction regimeBmax

2 @v/t,
whereBmax

2 is the maximal value of the elastic stress ten
achieved atR;Rmax. Using estimates for the microscop
parameters, proposed in Ref. 25, one can rewrite this co
tion asn@(R0Rmax

2 )21. Below we will assume that there ex
ists an interval in Re such thatBmax exceeds the value ofB
prescribed by the flow. The latter increases as Re grow
that the condition will break down at certain Re. After th
happens either polymer degradation occurs or polymers
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to behave as rigid bodies with sizeRmax. In the latter case
the fluid becomes Newtonian again with renormalized v
cosity.

We assumeVt!L, whereV is the velocity at the turbu-
lence integral scale. Then the gradient related to the la
eddies is smaller thant21. Therefore, the large eddies do n
excite polymers, which means that the elastic stress tens
not correlated at these scales. Since only coherent excita
of the elastic stress tensor can influence the flow, we c
clude that the elasticity is negligible for large eddies. T
interaction of inertial and elastic degrees of freedom
comes essential at a scaler * , where velocity gradients are o
the order of 1/t. Here the energy starts to dissipate due to
polymer relaxation, that is the inertial cascade terminate
r;r * . Since the velocity gradients fluctuate near the va
1/t, reached atr * , at r ,r * velocity difference scales lin-
early with the distance that isr * is the smoothness scale o
the flow. Near the coil–stretch transition characteristic vel
ity gradient is determined by the viscous scale and is of
order of 1/t, hencer * ;h. As the Reynolds number in
creases, velocity fluctuations increase, so that the scaler *
grows which is very different from the Newtonian fluid
where the smoothness scaleh decreases with Re. As th
energy input increases the viscous energy dissipation r
v(¹v)2, remains of the order ofv/t2. Therefore, far above
the transition the principal part of the energy is dissipated
the polymer relaxation. Then the viscous term in Eq.~13! can
be neglected and we obtain

^B2&5et, ~25!

wheree is the energy injection rate per unit mass, estima
as V3/L. The relation~25! means that a typical value ofB
grows as the energy input increases, and, consequently
elastic stress tensor does.

The above quantities can be estimated, using
Kolmogorov-type reasoning. Then we obtain from Eq.~25!
thatB;Aet. Next, as follows from Eq.~12!, at the scaler *
we havev;B. Equating then the characteristic velocity gr
dient v/r * to 1/t, one obtainsr * ;(et3)1/2. Note that this
agrees with the direct Kolmogorov theory estimate ofr *
based ondv(r * );(er * )1/3;r * /t. Near the coil–stretch
transition the viscous and elastic dissipation terms in the
ergy balance equation~13! are of the same order. Estimatin
e by the viscous dissipation termv/t2 one finds Rec
;@L2/(vt)#2/3 for the value of the Reynolds number at th
transition. The same answer can be found by equatingr * and
the Kolmogorov-41 estimate (v3/e)1/4 for the viscous scale
h.

Near the onset of drag reduction~for Re close to Rec) not
all the polymer molecules are strongly stretched, see Re
Therefore, it is impossible to neglect the term withP0 in Eq.
~2!, and the uniaxial expression~8! for the stress tensor is no
valid. SinceP0 is proportional to the polymer concentratio
properties of the polymer solution near the onset are se
tive to the concentration. Particularly, the onset itself has
be dependent of the concentration, in accordance w
experiment.3–6 And only far above the onset, where it
possible to neglect the term withP0 in Eq. ~2!, the system
passes to a universal behavior corresponding to the m
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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mum drag reduction asymptote.2 Note also, that near the on
set properties of the system could be sensitive to a poss
inhomogeneity of the polymer space distribution~again, be-
cause of the term withP0 in the constitutive equation!,
though the inhomogeneity seems to be effectively smea
by the turbulent diffusion. But in the regime correspondi
to the maximum drag reduction asymptote the properties
the solution are insensitive to the polymer concentrati
Particularly, a possible inhomogeneity of the polymer co
centration does not influence dynamics of the system.

Below we investigate the case Re@Rec that elucidates
most clearly the role of the polymer elasticity. Since the co
dition implies that the viscous term is negligible at the sc
r * , a new interval of scales, where viscosity is negligib
but elasticity is not, has to exist belowr * . The analogy with
the magnetic hydrodynamics, noted above, helps us to un
stand dynamics of fluctuations in this interval. These sm
scale fluctuations, which occur on the background of stres
excited atr;r * , are elastic waves similar to the Alfve´n
waves propagating in the presence of a large-scale mag
field in plasma.24,27 The dispersion relation for the waves
v5Bk, wherev is the wave frequency andk is its wave
vector. Therefore, the group velocity of these waves isB
which can be estimated in accordance with Eq.~25! asAet.
The wave velocity fluctuates, but the fluctuations occur
times ;t and are slower than the wave oscillations atkr*
@1, showing that the waves are well-defined. There e
two mechanisms of the elastic waves attenuation: poly
relaxation and viscous dissipation. The first mechanism le
to the scale-independent attenuation;t21, which is smaller
than the frequency, atkr* @1. The second mechanism pro
duces the attenuation;vk2, which is much smaller than th
frequency forkh* !1 whereh* 5v(et)21/2. Thus the elas-
tic waves attenuate weakly in the intervalr

*
21&k&h

*
21.

This interval can be called the elastic waves range.
The dynamics at scalesr !r * is also characterized b

the stretching that takes place at a time scalet and is slower
than the wave’s oscillations. It is this dynamics that det
mines the velocity spectrum atkr* @1, since the wave oscil
lations do not influence the spectrum, like in the exam
presented at the end of Sec. III. As a result, we come t
power spectrum, which is examined in the next subsecti

A. Power-law spectrum in the elastic waves range

As we explained, statistical stationarity implies, that t
velocity gradients fluctuate near 1/t, the value characteristic
of the scalesr;r * . Therefore, velocity gradients have
decrease with diminishing scaler at r ,r * , which can be
formulated as¹v8!¹v. Herev8 is the small-scale compo
nent of the velocity containing only harmonics with wa
vectors satisfyingkr* @1. The existence of elastic waves
these scales leads to equipartition of kinetic and elastic
ergies~see Ref. 27 and the proof below! so that¹B8!¹B
holds too. As a result the influence ofv8 andB8 on motions
at scales;r * is negligible, that isv8 andB8 can be treated
as passively advected and stretched byv and B. Equations
for v8 andB8 can be found by linearizing Eqs.~10! and~12!
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] tB81~v¹!B81~v8¹!B5~B¹!v81~B8¹!v2B8/t,
~26!

] tv81~v¹!v81~v8¹!v

52¹p81~B¹!B81~B8¹!B1v¹2v8,

wherep85P8/%.
The inequalities¹v8!¹v, ¹B8!¹B imply that at r

&r * the differencesdv and dB, taken at points, separate
less, thanr * , scale linearly with the separation according

dv i5s i j dr j , dBi5g i j dr j , ~27!

which is a generalization of Eq.~15!. Both matricess ik

5¹kv i andg ik5¹kBi have typical values 1/t and correlation
times of the order oft. To investigate the statistics of th
small-scale components we may use the same schem
was developed in Sec. III for the passive scalar, expand
Eqs. ~26! near a Lagrangian trajectory, like in Eq.~16!. As
we explained in Sec. III, the velocity should be expanded
the first order~because of the Galilean invariance!. The need
to expandB to the first order too follows from the fact tha
zeroth order term produces Alfve´n waves that do not affec
energy balance of the waves of the same type as explaine
the end of Sec. III. Passing to Fourier components~of the
functions of the argumentr2x), we obtain the equations

] tvk82S ks•
]

]kDvk81S kg•
]

]kDBk81svk8

52 ikpk81 i ~B•k!Bk81gBk82vk2vk8 , ~28!

] tBk82S ks•
]

]kDBk81S kg•
]

]kDvk81gvk8

5 i ~B•k!vk81sBk82
Bk8

t
, ~29!

analogous to Eq.~17!. The quantitiess, g, andB in Eqs.~28!
and ~29! are measured in the Lagrangian frame~they are
functions of time and the Lagrangian marker!. Correlation
functions of the fieldsv8 andB8 are defined as averages ov
volume ~or, what is the same, over different Lagrangian t
jectories!, that is over a statistics ofs, g, andB. There is a
new ingredient in comparison with the consideration of S
III, which is the stretching terms likesvk8 . However, these
terms preserve zero scaling dimension of the time-evolu
operator and, consequently, they are not expected to des
the power character of the velocity spectrumE(k).

From now on we neglect the viscous term in~28! which
is justifiable for not too large wave vectors~a criterion is
determined below!. Using the incompressibility condition
we express the pressurepk852i @ksv82kgB8#/k2. The de-
scription is significantly simplified in terms of the Elsass
variablesg65vk86Bk8 , which satisfy

] tg62S ks6•
]

]kDg656 i ~B•k!g62
g6

2t
1

k

k S k

k
s6g6D

1S 1

2t
2s7Dg71

k

k S k

k
s7g7D ,

~30!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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wheres65s7g. Of course, Eqs.~30! are compatible with
the conditionsk•g650 following from the solenoidality of
v andB. The right-hand side of~30! contains the Alfve´n term
iB•k, describing the wave oscillations. As we explained
the end of Sec. III, it is convenient to eliminate the oscil
tions, introducing the corresponding phase and amplit
g65a6 exp@iw6# with w6 satisfying

] tw62S ks6•
]

]kDw656~B•k!, ~31!

w656E
0

t

dt8B~ t8!W6
21,T~ t8!W6

T ~ t !k, ~32!

where ] tW65s6W6 , W6(0)51. The equations for the
amplitudesa6 are

] ta62S ks6•
]

]kDa6

5
k~ks6a6!

k2 2
a6

2t
1F S 1

2t
2s7Da7

1
k~ks7a7!

k2 Gexp~7 if!, ~33!

f5E
0

t

dt8k@W1~ t !W1
21~ t8!1W2~ t !W2

21~ t8!#B~ t8!.

The above equations are, again, compatible with the c
straintsk•a650.

We observe that a characteristic time of the variations
the amplitudes ist while the phase in the last term varies b
2p during the characteristic time (kB)21!t ~the last in-
equality coincides with the previously derived condition f
the existence of waves!. Indeed, the exponent appearing
the last line of Eq. ~33! at t@t can be estimated a
B(t)tket/t, whereket/t is the current value of the wave vec
tor, increasing due to the stretching process. Averaging~33!
over times much larger than (kB)21 but much smaller thant
~the procedure is nothing but the Bogolubov–Krylov avera
ing method!, we find the following amplitude equation:

] ta62S ks6•
]

]kDa65
k

k S k

k
s6a6D2

a6

2t
. ~34!

We observe that the equations fora1 anda2 decouple. This
is in accordance with the qualitative considerations
Kraichnan27 who argued that the interaction of the wave
described by the amplitudesa1 and a2 , is weak because
their propagation directions are reverse.

Equation~34! has the same structure as the equation
the linearly decaying scalar, considered in Sec. III. The d
ference is in its vectorial nature and in the presence of
term directed alongk that comes from the solenoidality con
dition ka650. A formal solution of Eq.~34! can be written
as

a6~ t,k!5e2t/2tM 6@ t,q6#a6@0,q6#, ~35!

] tM 6~ t,k!5~ f 6
22f6!~ f6s6M 6!T, ~36!
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whereq65kW6(t), f65kW6
21(t), and the initial condition

for the matricesM 6 is Mik(t50,k)5d ik2kikk /k2. The term
kikk /k2 in the initial condition forM 6 vanishes after con-
traction with solenoidal fielda(t,k), that leads to the correc
initial condition for a6 . Note thatf6M 6(t,k)50. Indeed,
kM 6(0,k)50 and ] t@ f6M 6(t,k)#50, as follows from Eq.
~36! and the equations] tf652f6s6 .

Remind thatB is defined up to sign. Therefore, all th
statistical properties of the solution have to be invariant
der the transformationB→2B. This transformation inter-
changesg1 and g2 . Therefore, statistical properties ofg1

and g2 are identical. Particularly, the spectra ofg1 and g2

coincide, that is ^g6 i(k)g6 j (k8)&5(2p)3d(k1k8)(d i j

2kikj /k2)E(k). Thus, without any loss of generality, on
can considerg1 solely. At calculating the correlation func
tion of g1 , entering the definition ofE, we can exploit an
independence ofW1(t) andM 1(t) of a1(0,k) that holds at
t much larger than the correlation timet of s1 ~this is again
in complete analogy with the consideration of Sec. III!. Then
the stationarity condition forE(k) reads

2E~k!5exp~2t/t!^Z~ t,q1!E~q1!&,
~37!

Z~ t,k!5trM 1
T ~ t,k!M 1~ t,k!2

kM 1
T ~ t,k!M 1~ t,k!k

k2 ,

where we usedM (t,2k)5M (t,k). Note thatZ52. Indeed,
using Eq.~36! and f6M 6(t,k)50 one easily shows that th
time derivative of MT(t,k)M (t,k) vanishes so tha
MT(t,k)M (t,k)5d i j 2kikj /k2 andZ(t,k)52. Thus Eq.~37!
simplifies to

E~k!5exp~2t/t!^E~q1!&, ~38!

almost identical to Eq.~21! established in Sec. III. Similarly
one can formulate an equation for the cross-correlation sp
trum functionE8(k) defined by^(g1) i(k)(g2) j (k8)&5d(k
1k8)(d i j 2kikj /k2)E8(k). The fast oscillating phase doe
not cancel in this equation leading to the inequalityE8(k)
!E(k). It leads to the conclusion that the spectra ofv andB
coincide and are equal toE(k)/2 each. This proves the equ
partition of the elastic and the kinetic energies claim
above.

In analogy with the consideration of Sec. III one ca
establish that the solution of~38! is power-likeE(k)}k2a

wherea is determined implicitly by

15exp~2t/t!K 1

ukW1~ t !/kuaL . ~39!

Again, a.3 ~see Appendix 3!. In fact a stronger inequality
follows from the stationarity condition. Namely, the spe
trum has to decay faster thank25 (k23 in the spherical nor-
malization!. Otherwise^(¹v)2&5*E(k)k2dk is determined
by scales smaller thanr * , violating the condition that the
gradients have to be saturated at the value 1/t reached atr * .
The conditiona.5 coincides with the applicability condi
tion of the above consideration that usesv(x1r)2v(x)
'sr for r !r * . Indeed, then*E(k)k2dk is determined by
kr* &1 and^(v(x1r)2v(r)2sr)2&!^(sr)2& for r !r * .

It is natural to ask, whethera is a universal number
independent of Re. The above analysis shows thata is de-
termined by the statistics ofs andg. Within the framework
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of the Kolmogorov theory the statistics is independent of
inertial interval length and can be characterized by a sin
parameterl151/t. We conclude that the dimensionle
quantitya is a universal number in the Kolmogorov theor
In fact, due to intermittency the statistics of velocity grad
ents depends on the length of the inertial interval and, c
sequently, on the Reynolds number. The current underst
ing of intermittency does not allow us to estimatea for a
given Re, yet some qualitative assertions can be formula
Intermittency enhances the probability of large gradie
which leads to faster transfer of energy to large wave vect
Therefore the velocity spectrum becomes flatter as the in
mittency increases. As we established, the length of the
ertial interval decreases with the growth of the Reyno
number for polymer solutions~since the lower boundary o
the inertial intervalr * increases!. Consequently, the intermit
tency decreases as Re grows. We conclude thata should be a
monotonically increasing function of Re.

Now we establish the region of scales where the po
spectrum exists. Its lower boundary is related to the visc
dissipation, which grows with increasingk, destroying the
power spectrum at large wave vectors. Comparing the
cous termvk2v8, the last one in Eq.~28!, with, say, the
stretching termsv8, we find, that the viscous term wins a
the scale;Avt. As a result the power-law terminates atk
;(vt)21/2. For larger wave vectors the velocity spectru
diminishes faster than a power ofk, that is the power spec
trum occurs in the intervalr

*
21!k!(vt)21/2. Note that at

Re@Rec we haveAvt@h* so that the power spectrum oc
curs in the interval, where the elastic waves are well-defin

V. ELASTIC TURBULENCE

We pass to the case of low Reynolds numbers. The
random~chaotic! flow can be excited due to elastic instabi
ties, if the Weissenberg number Wi is larger than unity. T
is the situation of the recently discovered ‘‘elas
turbulence.’’7–9

We investigate the case Re!1 where the substantial de
rivative in Eq.~12! can be neglected. Then systems~10! and
~12! become

r21¹P5~B¹!B1v¹2v, ¹•v50, ~40!

] tB1~v¹!B5~B¹!v2B/t, ¹•B50. ~41!

The inequality Re!1 implies, that the kinetic energy of th
solution can be neglected in comparison with the elastic o
The dissipation of the elastic energy is, however, due to b
energy dissipation mechanisms~solvent viscosity and poly-
mer relaxation!:

d

dt E dr
B2

2
52

1

t E dr
B2

2
2vE dr~¹ivk!

2, ~42!

as follows from Eqs.~40! and~41! and is in accordance with
Eq. ~13!.

The system of equations~40! and~41! has to be comple-
mented by the boundary conditions for the velocity, which
the absence of polymers would lead to Wi.1 so that the
equilibrium state of polymers is unstable. The instabil
Downloaded 09 Jun 2003 to 128.165.156.80. Redistribution subject to A
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eventually leads to a chaotic, statistically steady state m
tained by the nonlinear dynamics ofB, see Eq.~41!. Station-
arity of the statistics, again, impliesl151/t and stationarity
of ther12t/t statistics, as it stems from Eq.~41!. It follows
that the velocity gradients are of the order of 1/t in the bulk.
Therefore, a boundary layer has to be formed, where
velocity gradient, exceeding 1/t, at the boundary, drops to
the value 1/t in the bulk. In the boundary layer the flow i
mainly shear and the polymers are weakly stretched.
existence of the boundary layer is observed also experim
tally ~A. Groisman, private communication!.

The above picture means, that instabilities lead to vel
ity fluctuations with scales determined by the size of t
system and a characteristic gradient 1/t. The following esti-
mates for the values of these large-scale fluctuations ho

B2;vs;
v
t

, v2;
L2

t2 ,
v2

B2 ;
L2

vt
;Re!1, ~43!

whereL is the linear system size. The estimates~43! imply
that both dissipative terms in Eq.~42! are of the same order
The correlation time ofB andv is determined by the typica
value of the stretching and is of the order oft. The large-
scale velocity fluctuations produce smaller scale fluctuati
of B that in turn induce small-scale fluctuations of veloci
The velocity gradients become smaller when the scale
creases, since the large-scale velocity gradient is of the o
of 1/t and the total velocity gradient is fixed at this value
the stationarity condition. This is in complete analogy w
the consideration of the previous section.

Now we are going to consider statistical properties of
small-scale fieldsv8 andB8. The fields evolve passively in
the large-scale fieldsv and B. However, there is a majo
qualitative difference from the high-Reynolds case which
in the role of the large-scale component ofB. In the high-
Reynolds number case~see Sec. IV! the terms with the large-
scale fieldB in the equations for the small-scale fields co
serve energy and, consequently, do not enter the equatio
the spectrum~37!. That is why the correct description of th
dynamics required account of the small gradient¹iB on the
background ofB. In the elastic turbulence case the term
with B are dissipative and, consequently, one can for
about the gradient terms, as subleading ones. Thus the e
tions for the small-scale components of the fields, followi
from Eqs.~40! and ~41!, are

¹p85~B¹!B81v¹2v8, ~44!

] tB81~v¹!B85~B8¹!v1~B¹!v82B8/t. ~45!

Let us stress that the above equations assume onlyB@B8
~not ¹B@¹B8, which is in fact wrong for the elastic turbu
lence!.

To analyze the above equations for the small-scale c
ponents we use the same scheme as in the previous sec
As we explained above there is no need to account for
spatial variation ofB so that~for the Fourier components!
Eqs.~44! and ~45! take the form

v85
i ~k•B!

vk2 B8, p850, ~46!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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] tB82S ks•
]

]kDB85sB82
B8

t
2

~k•B!2

vk2 B8. ~47!

The constraintsk•B850, k•v850 that follow from ¹•v
505¹•B are consistent with Eqs.~46! and ~47!. The last
term in the equation forB8 is due to the viscous dissipation
the term is of the same order as the elastic dissipation t
2B8/t as follows from ~43!. We observe that, again, th
time-evolution operator forB8 has zero scaling dimensio
and~in accordance with the discussion at the end of Sec.!
one expects that the spectrumF(k) of B obeys a power-law.
To demonstrate this power behavior we use a formal solu
of Eq. ~47!

B8~ t,k!5WB8~0,kW!expF2
t

t
2E

0

t

dt8j~ t8!G ,
vj~ t8!5@B~ t8!n~ t8,t,k!#2, ] t8n52ns1n~nsn!,

~48!

whereW5W(t,0), andn(t8,t,k) is determined by the abov
equation with the final conditionnk(t,t,k)5k/k.

Let us analyze the stress spectrum functionF(k):
^Bi8(k)Bj8(k8)&5d(k1k8)F(k)(d i j 2kikj /k2). Assuming
that t is much larger than the correlation timet of B ands,
we may average independently over the velocity statistic
negative and positive times, as we did in the previous s
tions. Then we find

2F~k!5K Z expF22E
0

t

dt8j~ t8!GF~kW!L , ~49!

Z5exp~22t/t!F trWTW2
k@WWT#2k

kWWTk G . ~50!

The coefficient ofF in the right-hand side of Eq.~49! is
independent of the absolute valuek of k. Therefore, Eq.~49!
admits a power solutionF(k)}k2b, whereb has to be de-
termined from the equation

25K Z exp@22*0
t dt8j~ t8!#

ukW~ t !/kub L . ~51!

Note that att@t the average in Eq.~51! is determined by the
events withk directed along the eigen vector of the matr
WWT, corresponding to the smallest eigen value~in this case
the denominator in the expression achieves a minimu!.
Then the second term in the right-hand side of Eq.~50! can
be neglected, and we obtainZ'exp(2r122t/t) ~therefore,
due to the stationarity of ther12t/t probability distribution,
a statistics ofZ is time-independent!. The positive noisej(t)
can be considered as stationary with the correlation timt.
Indeed, it follows from Eq.~48! that n(t8) forgets its final
direction ~and thus also becomesk-independent! at t2t8
@t. Thus the situation is similar to the one analyzed in Se
III and IV A. Again, we can prove the inequalityb.3, see
Appendix 3.

We are now in a position to establish the spectrum of
velocity E(k). Indeed, it follows from Eq.~46! that E(k)
}k2b22 and the spherically normalized spectra obey

Esph~k!;v2L~kL!2b, Fsph~k!;B2L~kL!22b. ~52!
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The estimates for the valuesv2 and B2 are written in Eq.
~43!. We observe that our scheme that assumes¹v8!¹v
and B8!B is self-consistent due to the inequalityb.3
proved above. It agrees with the experiment, whereb is
3.3–3.5.7,8

Finally, let us discuss the question concerning the va
ity region of the power spectrum. Probably, it is determin
by the finite diffusivityk of the polymer molecules which is
described by adding the termk¹2P i j to the right-hand side
of Eq. ~2!. Comparing this term with, say, the relaxation ter
with t, one concludes that the power spectrum terminate
kdif;Akt. At smaller scales the velocity spectrum dimi
ishes much faster due to diffusivity.

VI. CONCLUSION

We have investigated properties of turbulence in dilu
polymer solutions in the cases where polymer molecules
strongly stretched. We established power-law distributions
kinetic and elastic energies over scales in some regio
where these power-laws are not related to an energy or o
conserved quantity cascade~in contrast to the usual turbu
lence!. In fact, excitation of elastic degrees of freedom at a
scale leads to energy dissipation since the elastic dissipa
is scale-independent. However, precisely this sca
independence can lead to a scale-invariance in the dissip
intervals, where the flow can be treated as smooth. Sm
scale fluctuations are relatively weak and evolve passivel
the smooth flow. As a result, the evolution of fine-scale flu
tuations depends trivially on the scale and power-law spe
are formed. Let us now describe the cases where the ab
general ideas are applicable.

The first case, we examined, is the high Reynolds nu
ber flow above the coil–stretch transition, when elastic
grees of freedom are activated. Strong interaction betw
the elasticity and the flow modifies the latter below the sc
r * ~at this scale the velocity gradients are of the order
1/t!, which is the new energy dissipation scale. This scale
of the order of the Kolmogorov scale at the transition a
becomes larger as Re is increased. Atr *r * the properties of
turbulence are the same as in Newtonian fluids. The ene
cascade downscales from the pumping scale and dissip
due to polymer relaxation atr;r * . The flow is smooth at
r &r * with the principal Lyapunov exponentl1 fixed at the
value 1/t by the elastic back reaction. Fluctuations in t
interval of scalesv(et)21/2&r &r * are elastic waves. Tha
leads to the equipartition of the kinetic and of the elas
energies, that is the velocity spectrumE(k) and the elastic
spectrumF(k) coincide at these scales. The smoothness
the flow atr &r * leads to the conclusion that these spec
are power-like and in the spherical normalization decre
faster thank23 at kr* *1. The power spectra terminate at th
scale (vt)1/2, where the viscous dissipation overcom
stretching.

It is well known that the hydrodynamic turbulence
characterized by strong intermittency~see, e.g., Ref. 18!.
That means, strictly speaking, that the estimationr *
;(et3)1/2, obtained in the framework of the Kolmogoro
phenomenology, has to be corrected. Nevertheless, say, s
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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first structure functions are satisfactory described in term
the phenomenology. That is why we believe that this estim
tion is reasonable. Next, due to the intermittency one
imagine a picture, where the crossover scale, separating
Kolmogorov cascade and the elastic waves region, stron
fluctuates in space and time. Nevertheless, the boun
scale fluctuates aroundr * and the fluctuations seem to b
characterized by this single scaler * . Let us stress that the
strong fluctuations do not contradict to out scheme, wh
implies such fluctuations. Moreover, the power spectrum,
predict, is formed as a result of such fluctuations.

Note, that in our theory the elastic and the kinetic en
gies are balanced at the scaler * . Thus, we disagree with d
Gennes34 who claimed that there is an additional scaler ** ,
r ** !r * , where the polymer stresses balance the Reyn
stresses. As de Gennes suggested, polymers are esse
distorted atr ** ,r ,r * but their feedback on the flow i
negligible in the range, and therefore, the Kolmogorov c
cade remains unaltered by polymer additives down tor ** .
This is possible only if the equation for the elastic stress
nonlinear, since this nonlinearity can stop the polymers el
gation before the feedback becomes essential even th
the Lyapunov exponent is larger than the inverse polym
relaxation time. Contrary, we accept the linear equation
the polymer stress~2!, which is motivated in the book, Ref
12 ~see also our paper, Ref. 2!. In this case the only mecha
nism which can stop the polymer elongation is just the fe
back. That is why in our theory the elastic stresses bala
the Reynolds stresses atr * .

The second case, we examined, is the elastic turbule
regime.7–9 It is a chaotic state which is realized at sm
Reynolds numbers Re. The velocity gradient imposed on
system by the boundary conditions exceeds 1/t which acti-
vates polymer degrees of freedom leading to hydrodyna
instability and chaotization. Again, the power spectraF(k)
andE(k) are power-like in this case. However there are
elastic waves that would lead to equipartition. The main
ergy is carried by the polymers:E(k);Re(kL)22F(k), where
L is the size of the system. The velocity spectrumE(k) de-
cays faster thank23 in the spherical normalization, whic
corresponds to the experimental data.7–9

The above-described mechanism of forming power-l
spectrum for small-scale fluctuations in a chaotic flow see
rather general to be realized for other systems. We expe
to occur in certain regimes in magnetohydrodynamics, flo
in liquid crystals and low-dimensional flows on a substra
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APPENDIX: LONG-TIME LAGRANGIAN STATISTICS

Let us briefly review the long-time statistical properti
of the Lagrangian mapping matrixW, determined by Eqs.~5!
and ~6!. We considerW(t1 ,t2) at t1.t2 and assume tha
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t12t2 is much larger than the Lagrangian correlation tim
ts of the velocity derivatives matrix~6!, where one expects a
universal statistics.28

If the velocity statistics is homogeneous in time, t
probability distribution ofW(t1 ,t2) depends on the differ-
encet12t2 only. Equation~5! implies that att12t2@ts

the matrixW is a product of a large number of independe
matrices. This is the main reason for the universality of
W statistics.

It is convenient to decompose the matrixW as

W~ t1 ,t2!5MLN, ~A1!

whereL is a diagonal matrix, andM and N are orthogonal
matrices.29 We denote the diagonal elements ofL as er1,
er2, and er3, and assume that they are ordered:r1.r2

.r3 . As a consequence of the constraint detW51 we have
r11r21r350. Equation~5! can be rewritten in terms ofr i ,
and the matricesM andN. The equations forr i are

]r i /]t15s̃ i i , ~A2!

wheres̃5MTsM and no summation over the repeating i
dex i is implied. The matricesM and N satisfy ] tN5V1N
and] tM5MV2 , where

~V1! ik5
s̃ ik1s̃ki

2 sinh~r i2rk!
, ~V2! ik5

s̃ ike2rk1s̃kie
2r i

e2rk2e2r i
,

for iÞk and (V1) ik5(V2) ik50 for i 5k. It is possible to
show that the eigenvalues ofW repel each other, so that th
inequalities er1@er2@er3 are satisfied att12t2@ts .30

Then the matrixV1 tends to zero exponentially fast, i.e.,N is
determined by times of the order ofts in the vicinity of t2 .
The matrix V2 becomesr-independent att12t2@ts and
the evolution ofM is decoupled from that ofr i . Then the
value of M is determined by the time of the order ofts at
t't1 , i.e. att12t2@ts it becomest2-independent.

The solution of Eq.~A2! is

r i5E
t2

t1

dt8s̃ i i ~ t8!, ~A3!

where the right-hand side of Eq.~A3! is an integral of a
random process independent ofr i . Equation~A3! shows that
the variablesr i fluctuate around their average valuesl i(t1

2t2). Here the constantsl i are equal tô s̃ i i &. They are
called the Lyapunov exponents of the flow. Generally,
spectrum of the Lyapunov exponents is nondegeneratel1

.l2.l3 , which is a necessary condition for the formalis
to be self-consistent. The incompressibility condition ensu
the identity l11l21l350, which impliesl1.0 and l3

,0. Using the relation~7! one can show thatl1 is indeed the
average logarithmic divergence rate of two nearby Lagra
ian trajectories:

^d lnudxu/dt&5l1 .

Similarly, l11l252l3 is the average logarithmic rate o
the area growth.

Note that att12t2@ts the statistics ofM, L andN are
independent. Indeed, the values ofr i are accumulated during
the whole evolution timet12t2 @see~A3!# and are not sen-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sitive both to the interval (t2 ,t21ts) determiningN and
interval (t12ts ,t1) determiningM. Both matricesM andN
are distributed isotropically because of the assumed isotr
of the velocity statistics~this is the isotropization ofW re-
ferred in the main text!.

1. Lagrangian statistics in usual turbulent or random
flows

Here we consider the Lagrangian statistics in the cas
a usual random~turbulent or chaotic! flow, when the velocity
has finite correlation time and no constraints are imposed
the flow. Then the quantityr i can be treated as a sum of
large number of independent random variables, providedt1

2t2@ts . It is known from the statistical mechanics~see,
e.g., Ref. 31! that the distribution of such quantities is give
by the exponent of an extensive function. In our case
probability distribution function~PDF! of r i is

P~ t,r1 ,r2 ,r3!}
1

t
expF2tSS r12l1t

t
,
r32l3t

t D G
3d~r11r21r3!, ~A4!

wheret5t12t2 andr1.r2.r3 is implied.30 The main ex-
ponential factor of the PDF has a self-similar form describ
by the functionS, which can be called entropy function~see
Refs. 30, 32 and 33!. It is positive convex and has a min
mum at zero values of its arguments. The precise form ofS is
determined by details of the velocity statistics. The PDF
a sharp maximum atr i5l i t. In its vicinity the functionS
has a quadratic expansion, i.e., the distribution ofr is Gauss-
ian. However, if one is interested in the expectation value
exponential functions ofr i , they are determined by th
wings of the PDF where the Gaussian approximation is
valid. This entails the use of the whole entropy function.

To average the functions ofr1 only, one can introduce
the reduced probability distribution function

P~ t,r1!}
1

At
expF2tS1S r12l1t

t D G , ~A5!

which is an integral ofP(t,r1 ,r2 ,r3) over r2 and r3 . At
small x the functionS1(x) can be written as

S1~x!'x2/~2D!. ~A6!

Here D5*dt^^s̃11(t)s̃11(0)&& ~where double brackets des
ignate irreducible correlation function! determines the dis
persion ofr1 : ^(r12l1t)2&'tD. Expansion~A6! is suffi-
cient to describe typical fluctuations ofr1 , whereas the
whole functionS is needed to describe rare events.

2. Special properties of the long-time Lagrangian
statistics above the coil–stretch transition

Above the coil–stretch transition the Lagrangian sta
tics acquires new qualitative features caused by the poly
back reaction. They can be inferred from Eq.~9! which leads
to

lnuB~ t,x!u2 lnuB~ t0 ,r!u'r1~ t,t0!2
t2t0

t
. ~A7!
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The expression~A7! is correct, providedt2t0@t ~since the
polymer relaxation timet determines also the velocity gra
dients correlation time!. The left-hand side of the equatio
~A7! has stationary statistics which leads to dramatic chan
in the statistics ofr1 . Upon averaging one findŝr1&5t/t
which meansl15^s̃11&51/t as it was already explained i
the main text. Stationarity of the dispersion ofr1 leads to the
conclusion that*2t/2

t/2 dt8^^s̃11(0)s̃11(t8)&&}t21 in the limit
t→`. This is related to the anticorrelation property ofs̃11,
mentioned in the main text. That means that the dispersioD,
defined by Eq.~A6!, vanishes above the coil–stretch tran
tion. In fact, this vanishing is not abrupt and occurs with
1/ln(Rback/R0) vicinity of Rec . Finally one concludes tha
^^s̃11(0)s̃11(t)&&}t22 at larget which is again very differ-
ent from a Newtonian fluid where exponential decay is o
served, see Ref. 28.

3. Inequality for the exponents a, b

Here we establish the inequality for the exponenta,
characterizing the passive scalar spectrum, see Sec. III,
the inequality for the exponentb appearing in the elastic
turbulence problem, see Sec. V. In both cases we investi
the solutionD of the equation of the type

K ukWuD expF2E
0

t

dt8y~ t8!G L ;kD, ~A8!

wheret is much larger than the correlation time of a rando
positive noisey(t) and s. At these times the behavio
of the moments is exponential and one can defi
^exp@2*0

t dt8y(t8)#ukWud&;kd exp@g̃(d)t# where g̃(d) is a
convex function due to Ho¨lder inequality. This function is
strictly smaller than another convex functiong~d! defined by
^ukWud&;kd exp@g(d)t#.

The functiong~d! has a universal behavior which w
describe now. It is convenient to write

^ukWud&5E dk8k8d^d~k2k8W21~ t !!&, ~A9!

making it explicit that the wave vectors evolve according
k(t)5k(0)W21(t).26 Introducingk8W21(t)5k8 exp@r(t)#n,
wheren is a unit vector, one finds

r~ t !5E
0

t

dt8z~ t8!,
dn

dt
5ns1nz, z[nsn.

One observes thatz is independent ofr~0! which leads to the
conclusion that att@tc(s), wheretc(s) is the correlation
time of s, the probability distribution ofr is described by an
entropy functionS.

It can be shown that̂r(t)&5ul3ut, where ul3u is the
lowest in the hierarchy of the Lyapunov exponents of t
flow. This fact is intuitively clear asl3 determines contrac
tion in the real space and thus stretching ink-space. We note
thatr(t) is determined by the whole interval (0,t) while n(t)
only by l1

21 vicinity of t. As a result,r andn are indepen-
dent atl1t@1. Sincen is isotropically distributed over the
unit sphere one finds ^d@k2k8W21(t)#&5^d(r
2 ln(k/k8))exp@23r#&/(4pk83). Substituting this into~A9! and
performing the integral one finds
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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E dr

N
expF2~d13!r2tSS r2ul3ut

t D G>exp@g~d!t#,

whereN}At is the normalization factor insignificant for th
following considerations. It follows that besides the zero
the origin following from the definition, the functiong~d!
vanishes atd523. This is a general consequence of t
isotropy employed above, see also Ref. 17. Besides, we
serve thatg8(23)5l3,0. Combining these properties wit
the convexity ofg~d! we conclude thatg~d! is negative for
23,d,0 and positive otherwise.

To prove the inequality onD appearing in Eq.~A8! one
notes that bothg~d! and g̃(d) tend to` as udu→`. Then it
follows from g̃(d),g(d) that there are two solutions of Eq
~A8!: One positive and one smaller than23. Substituting
y(t)52/t and recognizing that the exponenta appearing in
~22! must be positive we conclude thata.3. Analogously,
substitutingy(t)52j(t) we conclude that the solution of Eq
~51! satisfiesb.3.

Finally, let us give an example of calculatinga in a
limiting case. The exponent is determined by the equatio

E dr

N
expF ~a23!r2tSS r2ul3ut

t D G5expF2t

t G . ~A10!

Note thata23 vanishes in the limitul3ut→` since in this
limit the linear decay term is negligible in Eq.~14! and
Batchelork23 spectrum must result. Therefore at largeul3ut
the integral ~A10! is determined by the maximum of th
probability concentrated atr5ul3ut which leads to

E~k!;k2322~ ul3ut!21
, ul3ut@1. ~A11!

For a general value oful3ut the exponenta is determined by
the concrete form of the entropy function.
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