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Spectra of turbulence in dilute polymer solutions
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Turbulence in dilute polymer solutions when polymers are strongly stretched by the flow is
investigated. We establish power-law spectra of velocity, that are not associated with a flux of a
conserved quantity, in two cases. First, such spectrum is formed in the elastic waves range of high
Reynolds number turbulence of polymer solutions above the coil-stretch transition. Second, such
spectrum is characteristic of the elastic turbulence, where chaotic flow is excited due to elastic
instabilities at small Reynolds numbers. ZD03 American Institute of Physics.
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I. INTRODUCTION consider its relaxation. Recent experiments with DNA mol-
ecules indicate that the relaxation is linear in the wide region
In this paper we continue theoretical investigation of tur-of scalesRy<R<R.«, WhereR,,, is the maximum mol-
bulence in dilute polymer solutions, started in Refs. 1 and 2ecule extensiof® In the case of polymers, theoretical argu-
As opposed to Newtonian fluids, such solutions possess agnents and numerics presented in Ref. 11 support the linear
ditional macroscopic degrees of freedom related to the elagelaxation. These results can be understood if we assume that
ticity of the polymer molecules. Relaxation times of elasticat R>R,, the role of excluded volume and hydrodynamic
stresses can be comparable with time scales of the flowteractions between the monomers are negligible. Then the
which means that the relation between the stress and thendom walk arguments suggest that the entropy of polymer
velocity gradient is nonlocal in time and, consequently, inmolecules is quadratic iR in the rangeRy<R<R, iM-
space. It is a striking property of dilute polymer solutions plying linear relaxation. Whether the polymers are excited by
that minute amounts of polymer can significantly modify thethe flow is determined by the softest relaxation mode that
flow. Probably, the most famous example is the drag reduceorresponds to the dynamics of the elongafirin the ab-
tion phenomenon. Addition of long-chain polymers in con-sence of stretching, the relaxation Rfis described by the
centrations as small as, say, TOby weight, can induce a equationd,R=—R/r, whereris a relaxation time, which is
substantial reduction of the drag force needed to push a tuexpected to béR-independent aRy<R<R,,. If the end-
bulent fluid through a pip&:° Another example is the elastic to-end distanc® is of the order of the maximum extension,
turbulencé,”® which is a chaotic flow, excited in the dilute 7 starts to depend oR and the dynamics of the molecule
polymer solutions at low Reynolds numbers. becomes nonlinedf. Possible statistical consequences of the
The reason why small amounts of polymer can signifi-nonlinearity have been investigated in Ref. 13.
cantly modify properties of the fluid is flexibility of polymer The behavior of the molecule in an inhomogeneous
molecules. At equilibrium a polymer molecule coils up into asteady flow depends on the value of the Weissenberg num-
spongy ball of a radiu®,. The value ofR, depends on the ber, Wi, defined as the product of the characteristic velocity
number of monomers in the molecule, which is usually verygradient andr. When a polymer molecule is placed in a flow,
large. For a dilute solution with the concentration of the mol-smooth at the scal®, the velocity difference between the
eculesn, satisfyingn R8< 1, an influence of equilibrium size end-points is proportional tB multiplied by the characteris-
molecules on the hydrodynamic properties of the fluid can beic value of the velocity gradient. At W& 1 the relaxation is
neglected. When placed in an inhomogeneous flow, such fast as compared to the stretching time and the polymer al-
molecule is deformed into an elongated structure, which camways relaxes to the equilibrium siZ&. The behavior of the
be characterized by its end-to-end distafcéf the number  polymer at Wi 1 depends on the geometry of the flow. For
of monomers in a typical polymer molecule is large, thepurely elongational flows the molecule gets aligned along the
elongationR can be much larger thaR,. The influence of principal stretching direction. If the velocity gradient is
the molecules on the flow increases with their elongation an¢arger than the inverse relaxation time, i.e. i, the elastic
may become substantial wh&»R,. response becomes too slow in comparison with the stretching
Deformation of a polymer molecule is determined byand the molecule gets substantially elongdfe@he sharp
two processes, stretching by the velocity gradients and relaxransition from the coiled state to the strongly extended state
ation due to elasticity of the molecule. To understand howis called the coil—stretch transition. Rotation can suppress the
the molecule resists the deformation by the flow, one shouldransition and even damp it completely since the molecule
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does not always point in the stretching directi@ee, e.g., It is caused by the collective contribution of coherently de-
Ref. 15. For example, no coil-stretch transition occurs informed polymer molecules into the stress tensor. This elastic
the case of the shear flow, which is a particular combinatiorpart of the stress grows with the molecule elongation. When
of the elongational and rotational flows. it becomes of the order of the viscous stresses existing in the

In contrast to the steady case, a polymer molecule, movilow, the polymers modify the flow around them suppressing
ing in a random flow, alternately enters regions of high andhe stretching. As a result, a dynamic equilibrium is realized
low stretching. As the intensity of the flow increases, theat a characteristic elongatioRy,.,. The total polymer stress
effect of the stretching becomes more pronounced. One cas proportional tonR?, so thatR,,.,depends on the polymer
generally assert existence of the coil-stretch transition in thisoncentratiomn. We assume that the concentration is large
case. This has been first demonstrated by Lurleyho  enough for the value dRy,.to be much smaller thaR .
considered the situation where the characteristic time oProbably, the conditiorR,,4<Rmax IS Necessary for exis-
variations of the velocity gradient is much larger than thetence of a stationary state, because the polymer molecules,
inverse of the characteristic value of the gradient. He showedtretched up tdR,a, are intensively destroyed by the flow.
that if the amplitude of the velocity gradient fluctuations is Above the coil-stretch transition the back reaction
large enough, the expectation valueRf¥ grows with time,  modifies the small-scale properties of turbulent flows, which
which signifies the coil—-stretch transition. We have shown ineads to the emergence of a new scale;> », where energy
Refs. 1 and 2 that the coil—stretch transition occurs in anyissipates mainly due to polymer relaxation. The sagle
random flow and established a general criterion for the tranplays the role of a new dissipation scale. Large-scale eddies
sition. In particular, the transition occurs in the situationwith the sizeg >r, do not excite elastic degrees of freedom
where the time of velocity gradient variation is of the orderso the usual inertial energy cascade is realized at these
of the inverse of its characteristic value, which is likely to bescales. At Re-Re, there appears a new region of scales,
the case for real flows. The coil—stretch transition in randomy, <r<r, , where elastic waves can propagaighich are
flows is controlled by the parametar =, where\ is the  analogous to the Alfven waves in magnetic hydrodynamics.
average logarithmic divergence rate of nearby Lagrangiadt the scalern, viscosity becomes essential, leading to the
trajectories, to be referred to as the principal Lyapunov exstrong damping of the elastic waves.
ponent(which is positive for an incompressible fl&%#). In this work we investigate the velocity spectrum in the
The molecules are weakly stretched\if7<<1 and strongly elastic wave rangkr, >1 (wherek is the wave vector We
stretched otherwise. Therefore, for random flows the paramshow that the spectrum obeys a power law. The ideas of the
eter\, 7 plays the role of the Weissenberg number. analysis go back to the works of Townséhdand

As it is well known(see, e.g., Refs. 18 and)1@urbulent  Batchelo? They recognized that fluctuations with scales,
flows in Newtonian fluids consist of chaotic eddies from asmaller than the smoothness scale of the figwn the case
wide interval of scalesy<r<L, wherelL is the integral of usual turbulence and, in our casg evolve in the linear
scale(where the flow is excitedand 7 is the viscous scale. velocity profiles. For the passive scalar at large Prandtl num-
The energy pumped at the scéleascades down to the scale bers Batchelor derived the spectrum with the power-law
7, where it dissipates. The size of the polymer molecules i%~*,?2 originating from the exponential character of stretch-
usually much smaller than the viscous scale. Viscosity makeig in the linear flow. Formally, it is explained by zero scal-
the flow smooth at scales< g, i.e., the velocity can be ing dimension of the advection term that implies scale invari-
approximated by linear profiles at these scales. Therefore, dnce. This property is not broken by a linear decay term
R< 7, then the stretching of molecules is determined by thevhere the power-law spectrum still holds, as it was shown
velocity gradient, which is random in the turbulent flow. The for a linearly decaying passive scalar by ChertkbMere we
Lyapunov exponent can be estimated as the characteristintroduce a consistent theoretical scheme for the description
value of the velocity gradient, which is determined by theof the small-scale fluctuations and show that though the dy-
eddies at the viscous scale. As the Reynolds number namics of the small-scale fluctuations is more complicated,
grows, the velocity gradient increases, and so dogs At  than in the case of the passive scdlagvection and linear
some value Reof the Reynolds number the produetr  decay accompanied by stretching and wayvese power-law
reaches the value 1 and the coil-stretch transition occurs. in the spectrum still holds. The wave oscillations break the

Several mechanisms can limit the polymer stretchingscale-invariance, but their influence on the energy balance is
above the coil-stretch transition. The first one is the internateduced to forcing the equipartition of kinetic and elastic
nonlinearity of the elasticity of the polymer molecules. If this energies of small-scale fluctuations. The power law spectrum
mechanism dominates, then above the transition the moterminates atk~(v7)~ 2, where viscosity overcomes
ecules are stretched up to the elongation of the ordBy,gf. stretching. The power-law interval widens as Re grows. Let
An alternative mechanism has been proposed by Tabor angs stress that this law is not related to a flux of any conserved
de Genne#’ It is based on the assumption that the elonga-quantity.
tion of the polymer molecule® becomes larger than the Another situation, where a power-law spectrum of the
viscous length of turbulence;, where the elastic force al- small-scale fluctuations is observed, is the elastic turbulence,
ways wins over the stretching at a certain value of the elonfealized in low-Reynolds polymer solutions, if the Weissen-
gation. Below, we assume th&<7, which seems to be berg number Wi is large enoudh® It was shown experimen-
reasonable for typical polymer solutions. Another limiting tally in Refs. 7-9, that the coil-stretch transition, occurring
mechanism is the back reaction of the polymers on the flowat increasing Wi, leads to a chaotic flow even though Re is
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small. Its existence is due to hydrodynamic instabilitieswherer is the polymer relaxation time, ardd, is related to
caused by the presence of the elastic stresses. The velocitye thermal fluctuations of the polymer conformatiénset
spectrum is observed to be power-like in a wide range ols briefly repeat applicability conditions of E@), discussed
scales in this cas€® We demonstrate that, in contrast to thein Ref. 2. Linearity of the decay term if2) assumesR
usual hydrodynamic turbulence, in the elastic turbulence theR.,,,, WhereR is the typical polymer molecule size. Equa-
power velocity spectrum is not related to the energy cascadé¢ion (2) implies that there is a single mode related to the
since the main energy dissipation occurs at the largest scalgsolymer deformations, which is an idealization. A polymer
The mechanism, leading to this power spectrum is, againnolecule has a lot of deformational degrees of freedom, that
similar to the linearly decaying passive scalar problem. have different relaxation times. A number of such degrees of
The structure of the paper is as follows. In Sec. Il wefreedom was observed in experiments with DiANever-
introduce a system of equations describing the coupled dytheless, in the turbulent flows, only the mode with the largest
namics of inertial and elastic degrees of freedom. This sysrelaxation time is strongly excited, whereas other modes are
tem is similar to the system of equations describing the magexcited at most weakly. Thus, E() should be treated as the
netohydrodynamic§MHD)?* with the important difference equation related to the principal mode.
of a linear decay term in the equation on the “magnetic  The concentration of the polymer moleculasenters
field.” In Sec. lll we present results, concerning statistics ofsystems(1) and (2) only via Ilg, IIycn and implicitly via
a passive scalar with a constant damping, embedded in the assumptiorR<R,,,, since[I=nR?. If n is inhomoge-
random flow. It is a prototype for the subsequent considerneous, then the system of equatidid$ and (2) has to be
ation. Section IV is devoted to the description of the princi-supplemented by the equation for the concentratipm
pal properties of the large Re turbulence in the presence of vVn=0 (we neglect small diffusivity of polymer mol-
polymers and to the derivation of the power-law spectrum irecule$. In this paper we consider the case when polymer
the elastic dissipation range. In Sec. V we establish thenolecules are strongly extended. THé&-11,, and the term
power-law spectrum for the elastic turbulence. In Conclusiorwith I, in Eq. (2) can be discarded. In this case any explicit
we summarize our results and discuss possible implicationdependence on the concentration of the polymer molecules
of our work for other subjects. The Appendix is devoted todrops from the system of equatiofi) and (2). Therefore,
some details of the Lagrangian statistics. the dynamics of the polymer solutions with different values
of nis identical in this regime as long asis large enough
for the conditionR< R, t0 be satisfied.
Il. BASIC RELATIONS

. . . A. Lagrangian description
We study dynamics of dilute polymer solutions at scales grang 3

much larger than the intermolecular distance where the poly- One can establish some properties of the polymer stress
mer solution can be regarded as a continuous medium arf@nsorll, using the Lagrangian description of a fluid. It is
described by macroscopic fields. Characteristic times of corPased on the notion of fluid particles trajectorieagrangian
sidered processes are regarded to be comparable with th@jectories x(t,r), which are determined by the relations
polymer relaxation timer. In this case, besides the usual
hydrodynamic degrees of freedom, one has to take into ac-

count degrees of freedom, related to the polymer elasticityrne pointr plays the role of a Lagrangian marker.I, in

These degrees of freedom can be described in terms of they (2) is neglected, then it is possible to write its solution as
polymer stress tensof.

We assume that the flow can be treated as incompress- II(t,x)=W(t,to)II(ty,r)W'(t,to)e 210/, (4)

ible, that isV-v =0, wherev is the velocity of the flow. This ) )
is justified provided processes at a given scale are slow ifynere the superscrifitdenotes a transposed matrix. Hgve

comparison with sound oscillations at the same scale. Thel§ the Lagrangian mapping matrix determined by the rela-

dx=v(t,x), X(tg,r)=r. 3)

the velocity dynamics can be described in terms of the foltions
. . 2
lowing equation: W) = o (OW(Lte), Wit uto) =1, 5
o+ (Vvi+o 'VP=vV% +VII; , 1
wit(vV)vi+e "ViP=vVe;+ VIl oy aij(t,r) = Viu;[t,x(t,r)]. (6)

which is a generalization of the Navier—Stokes equation to

the case of viscoelastic fluids. HePds the pressure; isthe  Above o is the tensor of the velocity derivatives along the
kinematic viscosity of the solvenp is the fluid mass den- Lagrangian trajectory(t) that includes the strain tensor and
sity, andIT;; is the polymer contribution into the stress tensorlocal rotations. The incompressibility condition-v=0 is

per unit mass. formulated in terms ofr as tiv=0. Then a consequence of
Equation(1) has to be supplemented by an equation forEg. (5) is detw=1.

the polymer stress tensdi;; .'* We assume the following The matrix W describes deformations of infinitesimal

equation: fluid volumes. For example, the separatior, between two

5 close fluid particles, moving along the Lagrangian trajectory
OL; + (v V)L = Viwi + iy Viw — ;(Hij ~11ed;), x(t), evolves according to
) OX(t)=W(t,t")ox(t"). (7

Downloaded 09 Jun 2003 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 7, July 2003 Spectra of turbulence in dilute polymer solutions 2063

Therefore,W;;(t,to,r)=dx;(t,r)/drj. Now it is easy to un- magnetic resistivity. The resemblance is made even stronger

derstand a meaning of E¢4). The polymers are advected by noting thatB has to be solenoidal. Indeed, it follows from

along the Lagrangian trajectories being stretched by the veEq. (10) that

locity gradient anc_i _relaxing to their equilibrium shape due to 9V -B+(vV)V-B=—V-BIr. (11)

the polymer elasticity.
We now briefly describe statistical properties of the ma-Therefore,V-B monotonically decays becoming zero in the

trix W: details can be found in the Appendix. We represent(Statistically steady state. Substituting the expressi@n

the matrix asw=MAN, whereM and N are orthogonal into Eqg. (1), and taking into account the constraikit B

matrices, whileA is a diagonal matrix. At times much larger =0, one obtains

than the velocity gradients correlation time the main ei- U2, -1

genvalue expf;) of A becomes much larger than the rest, dw+(V)p=vVv—g "VP+(BV)B. (12

under the condition that the set of the Lyapunov exponent®low the analogy of systemd0) and(12) with the system

\; is nondegenerate. If a statistically steady state is realizedlescribing MHG* at zero magnetic resistivity is almost

then the observation time is arbitrarily large, and we concomplete. The only difference is in the damping term in Eq.

clude from Eq.(4) that the matrixII has to be uniaxial (10).
The energy density per unit mass is given by the sum of

I1,,=BBy, (8) kinetic v2/2 and elasticB?/2 terms. The energy balance
equation, following from Eqs(10) and(12), is

as it was noted in Ref. 2. This conclusion is almost self- 2 279y _ -1
evident once one goes back to the derivation of Ej, (Gt oV)(v7/2+BY2)=(BV)(B-v)—¢ "0VP
recognizing that aR>R, the contribution of thermal fluc- +uVi(vViv)—v(Viv,)?
tuations intoll is negligible, so thafl;;>=R;R; holds. We 1m2
observe that the vectd characterizes the direction and the —7 "B% (13
strength of the coherent molecule elongations weighted bfrhe energy dissipation is due to the viscous and the polymer
their contribution into the stress tensor. Note, tBais de-  relaxation terms. Other terms in E(L3) represent energy
fined up to sign, in analogy with the director in nematic fluxes(in real spacg they can be written as full divergences
liquid crystals. It follows from Eqs(4) and(8) that due to the constraint§-v=0=V-B.

B(t,x)=exd — (t—tg)/ 7]W(t,t5)B(to,r). 9
I1l. MECHANISM OF SCALE-INVARIANCE: PASSIVE
If t—ty>7 thenW in this relation can be estimated &%. SCALAR WITH LINEAR DAMPING
There are some modifications of thWg statistics with
respect to a Newtonian fluid, that are imposed by the abovgoI
relations. As it follows from Eq(9), stationarity of theB
statistics implies thgt,(t) —t/ 7 has a stationary distribution.

Before investigating statistical properties of the polymer
utions, described by EgeL0) and(12), we present statis-
tical properties of a passive scalar with constant damping at
In particular, we conclude that the principal Lyapunov exp()__scaleg smaller than. thg smoothness scale of the flow, exam-

' ined in Ref. 23. This simple case enables one to recognize

nentA,=Ilim_. p,/t of the flow is equal to X, indepen- - . .
) the origin of a power spectrum for passively advected fields.
dently of the Reynolds number. This means that above the . . . ;
. . o . The equation for the passive scalain the considered
coil-stretch transition the characteristic value of the velocity

gradient is fixed at the scale71/The above behavior is con- casels
trasted to the Newtonian fluids for whick; grows with 90+vVe=—0l1+ ¢, (14)

increasing Re and fluctuations pf —t/7 grow Wi_th time. where 7 is the passive scalar decay time agds a forcing
The_ absem_:e Of. the growth of the fluc_tuat|ons is related Qerm needed to maintain the stationary state. It is assumed to
gntlcorrelatlons in the temporal d_ynam|cs_ of the componenf . .oncentrated at a finite range of wave vectors keatVe
a1.(1) of oij along B..These~ant|co~rrelat|ons show them- |\ ove omitted the diffusive term which can be neglected in
selves in th_e equahty_fdt((0_11(0)011(t)>}=O (dO.Uble comparison with the constant dampifig some region of
brggkets QeS|gnate an _|rredu0|.ble correlgmon_ fungtiand . scale$ provided the diffusion coefficient is small enough.
originate in the special mtgracﬂpn of the |ne.rt|'al and eI"’ls'“CNote that the constant damping of the passive scalar leads to
degrees of freedom, explained in more detail in Sec. IV. a well-defined steady statistics even in the absence of the
passive scalar diffusion.

A flow is smooth on scales smaller than the velocity

It is convenient to rewrite Eq$l) and(2) in terms of the  gradients correlation length The smoothness means that a
vector B thus getting rid of extra degrees of freedom. Sub-velocity difference between two points can be approximated
stituting the decompositio(B) into Eq. (2), one obtains by a linear profile

5Ui:O'ij5rj, (15)

where Jr; is the separation between the points ands a
This equation is similar to the one satisfied by the magnetidunction of time. Obviouslyg;; = Vjv;. For the usual turbu-
field in MHD,?* with the constant damping instead of the lent velocity the correlation lengthis equal to the viscous

B. Dynamic equations for dilute polymer solutions

O”tBi‘F(UV)Bi:BkaUi_Bi/T. (10)
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scale,|=#. The smoothness of the turbulent velocity at{¢) are zero(which can always be achieved by a shift ®f
scales less tham was first exploited by Batcheléf,who and ¢ by a constant The product of the fields is given by
considered statistical properties of a passive scalar at the&s. (19) [remind thatx(ty) =r;] and depends on; via the
scales. argument ofW. The average over spaeverr,) is equiva-
The linearity of the velocity difference leads to a powerlent to the average over the velocity statistics, or over the
law for the passive scalar spectri(k), which is defined as velocity gradients statistics along the Lagrangian trajectories.
(0(K)8(k"))=(27)35(k+k")E(K), where §(k) is Fourier If \;to>1 then the average over the intervak0<t, and
transform of 6(r) with the wave vectok, angular brackets negative times can be done independently. Inde€t), has a
designate averaging over the statisticswpfind we assume Lagrangian correlation tima; . Thus velocity at negative
homogeneity and isotropy of the statistics. Indeed, the timéimes is correlated withr only at |t|~)\l’l while W(ty) is
of the energy transfer fronk to 2k at kI>1 is scale- not sensitive to the value ef there, due ta[1<t0 (see the
independent due to the linearity of the velocity profile. OnAppendi®. Therefore, we can write
the other hand, during the spectral transfer time the energy d
decay is als&-independengsince the damping term is scale- —a—2tgl7 i
independent As a result the spectral functida(k) satisfies fry=e"% f (2m)3 explikn) (E[kW(to)]), 0
a relationE(2k) = CE(k) (with a constantC<1). The solu-
tion of this equation is a power-la(k)<k™® with 2“C
=1
Now we put the above consideration into a more rigor-
ous frame. We consider the passive scalar specE(k) at
kI>1. The evolution of wave packets with such wave vec-  E(k)=(exp —2t/7)E(kW)), (21
tors is determined by the velocity gradientLet us consider
the evolution during a timé, and expres®(t,) via 60). A~ whereW=W(t,0). Equation(21) is applicable akl>1, as
value of 6(to) near a point, is determined by an evolution follows from the conditiorr <I in Eq. (19).
of 6 in the vicinity of the Lagrangian trajecton(t,r;). To The relation(21) has a simple meaning. The wave vec-
examine this evolution, one may perform the Taylor expaniors of small-scale fluctuations of the passive scalar evolve
sion of the velocityo in Eq. (14) up to the first order ir  according to k(t)=k(0)W~*(t) as was shown by
—x since the homogeneous advection does not affect equal](raichnanz.6 Thus the energy of a fluctuation with the wave
time correlation functions due to the Galilean invariance Vectork is equal to its energy timeago at the wave vector

whereE(K) is the spectrum function introduced above. Not-
ing that E(k) equals the Fourier transform of the pair-
correlation function we obtain the following stationarity con-
dition for the spectrunfwe substitutet, by t)

Then one obtains kW(t,0) multiplied by the decaying factor exp@t/7). Note
that we could equally well start directly frofd7) to derive
df+[uto-(r=x)]Veo=—6l7+o. (16 Eq. (21). One can show that in the spatially homogeneous

Here u(t)=wv(t,x) and o= o (t,x) are the velocity and the situation one can always introduce such equation for the in-
velocity gradients matrix along the Lagrangian trajectery VeStigation of the spectrum &t>1.

Fourier transformg, of the field’® measured in the moving Equ§t|on(.21) s the gue}ntlﬁcatmn of the heurlsth argu-
~ L ments given in the beginning of the section taking into ac-
frame 6(t,r)=6(t,r+x) satisfies

count that the energy transfer time is by itself a random

9 0, _ quantity. Its solution is a power la®(k) o<k~ “. Substituting
dO—| ko ﬁ) 0=~ — T rexdik-x]. (170 the expression into Eq21), one gets the relation
Further we confine ourselves to wave vectlesk; , that is exp(2t/7) = ([kW/k| ™), (22

much Iarger. than th?’se on WhiCh the pumpiqbgisf SUP” " \which determines the exponemtAt \;t>1 the moments of
ported. In this casé, is determmegl by the convection from KW/k| behave exponentially with time. Indeed, they are
smaller wave vectors and the for_(:l_ng term can _be r‘eglecte‘ﬁoughly equal to the product of;t independent identically
Then Eq.(17) can be solved explicitly, and we find distributed random variables. Besides at these times the mo-
6(t,k)=e"Y70(0 kW), (18) ments are independent &fk due to the isotropization of

) ) ) _ W(t,) described in the Appendix. As a result the above equa-
where W=W(t,0) is the Lagrangian mapping matrix, S€e tjon has a unique physical solution examined in more detail

Sec. Il A. Returning to the real space, we obtain in Appendix 3, where the inequality>3 is established. The
dk inequality has simple meaning that the spectrum has to decay
0(t,r+x)=e‘”’f B )3e'k[r+W"(°)]00(kW), (19)  faster than the Batchelor spectrikm® (k™! in the spherical
7 normalization holding at infiniter.
where 6y(k) is the Fourier transform of(0,r). The above Let us now extend the above results. The power law

formula is valid for)W~1r|<I, the condition means that the spectrum persists, even if the relaxation time is
passive scalar coming to a point r, was all the time in the k-dependent, but scales as zero powek,othat is if 7 de-
[-vicinity of x allowing the Taylor expansion for the velocity. pends on the direction df only. This dependence can be

Let us now consider the pair correlation function of theregular(which makes the spectrum anisotrgpar random.
passive scalaf(r)={6(tq,r1)6(tg,r,+r)), defined as the Another remark is that addition of an oscillating tefmith
spatial average ovey . We assume that the averagésand o)) into the equation fog,
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d , to behave as rigid bodies with si,,,. In the latter case
b~ | ko k) =~ Ol =Ty (1) b, (23 the fluid becomes Newtonian again with renormalized vis-
) . cosity.
does not change its spectrum even though the oscillating \ye assuma/7<L. whereV is the velocity at the turbu-
term breaks the scale-invariance. Indeed, let us pass l0M e integral scale. Then the gradient related to the large

to 6, which is 6=exp(ey 6, with the phase, satisfying eddies is smaller than L. Therefore, the large eddies do not
9 excite polymers, which means that the elastic stress tensor is
O Py — ( ko- %) o= Wy . (29 not correlated at these scales. Since only coherent excitations
of the elastic stress tensor can influence the flow, we con-
Then for® we return to Eq(19), which leads to the power clude that the elasticity is negligible for large eddies. The
spectrum. It remains to note that the spectr@@indd co-  interaction of inertial and elastic degrees of freedom be-
incide. In other words, oscillating terms conserve energy an§0mMes essential at a scale, where velocity gradients are of
are, consequently, irrelevant for the energy balance. the order of 1#. Here the energy starts to dissipate due to the
Below we generalize the simple picture, presented in thif0lymer relaxation, that is the inertial cascade terminates at
section, to the polymer solutions. r~r, . Since the velocity gradients fluctuate near the value

1/7, reached at, , atr<r, velocity difference scales lin-
early with the distance that is, is the smoothness scale of
the flow. Near the coil—stretch transition characteristic veloc-
Here we consider turbulence in dilute polymer solutions,ity gradient is determined by the viscous scale and is of the
when the Reynolds number exceeds the critical valug, Re order of 1f, hencer,~». As the Reynolds number in-
corresponding to the coil-stretch transition. Then the polycreases, velocity fluctuations increase, so that the sgale
mer molecules are strongly elongated. Two different casegrows which is very different from the Newtonian fluids
are possible, depending on the concentration of the polymeghere the smoothness scaledecreases with Re. As the
moleculesn. If it is very small, the elastic stresses are smallenergy input increases the viscous energy dissipation rate,
in comparison with the viscous stresses. Then the polymers(Vv)?, remains of the order af/ 7. Therefore, far above
are stretched to their maximal elongatidR,,.., and the the transition the principal part of the energy is dissipated by
properties of the fluid do not differ significantly from those the polymer relaxation. Then the viscous term in 8@) can
of the pure solvent. Below we consider the second, moréye neglected and we obtain
interesting, case, when the concentration of the polyméss 5
large enough, so that elastic stresses can be larger than the (B)=er, (25
viscous stresses. Then the polymer back reaction substawheree is the energy injection rate per unit mass, estimated
tially modifies the flow. asV3/L. The relation(25) means that a typical value d&
Whereas in the pure solvent typical velocity gradientsgrows as the energy input increases, and, consequently, the
grow unlimited as the Reynolds number increases, in polyelastic stress tensor does.
mer solutions above the coil—stretch transition the balance of The above quantities can be estimated, using the
inertial and elastic degrees of freedom fixes the characteristi€olmogorov-type reasoning. Then we obtain from E2pH)
value of the velocity gradient at 4/Indeed, if the instanta- thatB~ \/er. Next, as follows from Eq(12), at the scale,
neous velocity gradient exceeds;lit extends the polymers, we havev ~B. Equating then the characteristic velocity gra-
so that the elastic stress grows and damps the gradient. Qiient v/r, to 1/r, one obtaing, ~(e7°)¥% Note that this
the other hand, if the velocity gradient is smaller than tie  agrees with the direct Kolmogorov theory estimatergf
molecules contract and their influence on the flow dimin-based onduv(r, )~ (er,)Y*~r, /7. Near the coil-stretch
ishes. Then the velocity gradients tend to grow up to theransition the viscous and elastic dissipation terms in the en-
value characteristic of the pure solvent, which is larger tharergy balance equatioii3) are of the same order. Estimating
1/7. Thus the velocity gradients fluctuate near,that ex- € by the viscous dissipation terma/7> one finds Rg
plains the statistically steady state realized above the coil—[L%(v7)]?® for the value of the Reynolds number at the
stretch transition. Let us derive the condition for the exis-transition. The same answer can be found by equatjrand
tence of this steady state, related to the existence of ththe Kolmogorov-41 estimatevf/ €)Y for the viscous scale
maximal sizeR,, of the polymer molecules. In the vicinity .
of the coil—stretch transitioWv~1/r so thatBZ,.,~vVv Near the onset of drag reductiior Re close to Rg not
~v/ 7 as it follows from Eq(12). This leads to the condition all the polymer molecules are strongly stretched, see Ref. 2.
for the existence of the back reaction regiB@_>v/7,  Therefore, it is impossible to neglect the term wiifl in Eq.
whereBﬁ1ax is the maximal value of the elastic stress tensor(2), and the uniaxial expressi@8) for the stress tensor is not
achieved alR~ R, Using estimates for the microscopic valid. Sincell, is proportional to the polymer concentration,
parameters, proposed in Ref. 25, one can rewrite this condproperties of the polymer solution near the onset are sensi-
tion asn>(RyR2,,,) 1. Below we will assume that there ex- tive to the concentration. Particularly, the onset itself has to
ists an interval in Re such th&,,,, exceeds the value & be dependent of the concentration, in accordance with
prescribed by the flow. The latter increases as Re grows sexperiment® And only far above the onset, where it is
that the condition will break down at certain Re. After this possible to neglect the term witl, in Eqg. (2), the system
happens either polymer degradation occurs or polymers stapasses to a universal behavior corresponding to the maxi-

IV. HIGH REYNOLDS FLOWS
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mum drag reduction asymptozteNote also, that near the on- 4B’ + (vV)B' +(v'V)B=(BV)v'+(B'V)v—B’/7,

set properties of the system could be sensitive to a possible (26)
inhomogeneity of the polymer space distributi@yain, be- v’ +(@V)v'+(v'V)v
cause of the term witHI, in the constitutive equation =—Vp'+(BV)B'+(B'V)B+0vV2’,

though the inhomogeneity seems to be effectively smeared

by the turbulent diffusion. But in the regime correspondingWherep’=P’/o.

to the maximum drag reduction asymptote the properties of The inequalitiesVv'<Vy, VB'<VB imply that atr

the solution are insensitive to the polymer concentration='« the differencessv and B, taken at points, separated

Particularly, a possible inhomogeneity of the polymer con-less, tharr, , scale linearly with the separation according to

centration does not influence dynamics of the system. Svi=0 8, SBj=7,0r;, (27)
Below we investigate the case RRe, that elucidates

most clearly the role of the polymer elasticity. Since the conWhich is a generalization of Eq15). Both matricesoi

dition implies that the viscous term is negligible at the scale= %kvi @ndyi,=VB; have typical values ¥/and correlation

r,, a new interval of scales, where viscosity is negligiblet'mes of the order ofr. To investigate the statistics of the

but elasticity is not, has to exist belaw . The analogy with ~Small-scale components we may use the same scheme, as

the magnetic hydrodynamics, noted above, helps us to undef/@s developed in Sec. lll for the passive scalar, expanding
stand dynamics of fluctuations in this interval. These small F9s- (26) near a Lagrangian trajectory, like in EGL6). As

scale fluctuations, which occur on the background of stressét%e ?xptlalnded ll_')n Sec. III,ftPhe Vgl(ﬁ'ty s_houlo_l be g;}(pand%d to
excited atr~r, , are elastic waves similar to the Alfwe e first ordebecause of the Galilean invariapcehe nee

to expandB to the first order too follows from the fact that

waves propagailgl?g n thg presence of a large-scale magnetzl%roth order term produces Alfuevaves that do not affect
field in plasm&*2” The dispersion relation for the waves is

. L energy balance of the waves of the same type as explained at
=Bk, wherew is the wave frequency ankl is its wave 9y yp P

. - the end of Sec. lll. Passing to Fourier compone(ofsthe
vector. Therefore, the group velocity of these wavesis functions of the argument—x), we obtain the equations
which can be estimated in accordance with E25) as \/er. ’

The wave velocity fluctuates, but the fluctuations occur at_ a\ a\_, .
times ~7 and are slower than the wave oscillationskaf ﬁtvk—(kg' ok vt | ky: ok Byt o
>1, showing that the waves are well-defined. There exist o ) , -
two mechanisms of the elastic waves attenuation: polymer — —1kp +1(B-K) B+ By —vkuy, (28)

relaxation and viscous dissipation. The first mechanism leads
to the scale-independent attenuatien*, which is smaller atBlg—(

J J
: ko-%)B{(+(ky-%)vﬁ+yv{(
than the frequency, &r, >1. The second mechanism pro-

duces the attenuatiorvk?, which is much smaller than the _ By

frequency fork 7, <1 wheren, =v(er) Y2 Thus the elas- =i(B-Kvy+oB——, (29)
tic waves attenuate weakly in the interva] '<k= 7, *. N _

This interval can be called the elastic waves range. analogous to Eq17). The quantitiesr, y, andB in Eqgs.(28)

The dynamics at scales<r, is also characterized by and (29) are measured in the Lagrangian frarfieey are
the stretching that takes place at a time seadmd is slower functions of time and the Lagrangian markeCorrelation
than the wave’s oscillations. It is this dynamics that deterfunctions of the fieldy " andB’ are defined as averages over
mines the velocity spectrum kt, >1, since the wave oscil- vVolume (or, what is the same, over different Lagrangian tra-
lations do not influence the spectrum, like in the exampldectories, that is over a statistics af, y, andB. There is a
presented at the end of Sec. Ill. As a result, we come to §8W ingredient in comparison with the consideration of Sec.

power spectrum, which is examined in the next subsection !l Which is the stretching terms likew, . However, these
terms preserve zero scaling dimension of the time-evolution

A. Power-law spectrum in the elastic waves range operator and, consequently, they_ are not expected to destroy
. o ) S the power character of the velocity spectritk).

As we explained, statistical stationarity implies, that the  From now on we neglect the viscous term(28) which
velocity gradients fluctuate nearz]the value characteristic s justifiable for not too large wave vectofa criterion is
of the scales ~r, . Therefore, velocity gradients have to determined below Using the incompressibility condition,
decrease with diminishing scafeat r <r, , which can be e express the pressupg =2i[kov’ —kyB']/k?. The de-
formulated asvv’<Vuv. Herev' is the small-scale compo-  scription is significantly simplified in terms of the Elsasser
nent of the velocity containing only harmonics with wave variablesg. =v,+ B, which satisfy

vectors satisfyingr, > 1. The existence of elastic waves at

the_se scales leads to equipartition of kinetic and elastic en- 3G — ( Koo - i) g.=*i(B-K)g. — g_t+5 E%gt)
ergies(see Ref. 27 and the proof belpwo thatVB’'<VB ok 27 klk
holds too. As a result the influence of andB’ on motions

. . . 1 k(k
at scales~r, is negligible, that iws’ andB’ can be treated +l=——o0:|gs+ X Eg'zg: ;
as passively advected and stretchedvbgnd B. Equations 2t
forv’ andB’ can be found by linearizing Eq&L0) and(12) (30
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whereo. = o ¥ y. Of course, Eqs(30) are compatible with  whereq. =kW..(t), f.= kW;l(t), and the initial condition
the conditionsk-g. =0 following from the solenoidality of for the matriceV .. is M, (t=0k) = 8 — kK, /k?. The term
v andB. The right-hand side df30) contains the Alfva term  k;k,/k? in the initial condition forM . vanishes after con-
iB-k, describing the wave oscillations. As we explained attraction with solenoidal fielé(t,k), that leads to the correct

the end of Sec. Ill, it is convenient to eliminate the oscilla-initial condition for a... Note thatf-M .(t,k)=0. Indeed,
tions, introducing the corresponding phase and amplitud&M . (0k)=0 andd[f.M_(t,k)]=0, as follows from Eq.
0+ =a. exdie. ] with ¢ satisfying (36) and the equationgf.=—f.o .
Remind thatB is defined up to sign. Therefore, all the
J statistical properties of the solution have to be invariant un-
e+ —|kKor ——lo.=*(B-k), (31 prop . . . .
ok der the transformatio— —B. This transformation inter-

. changesy, andg_. Therefore, statistical properties gf.
0. = iJ' dt’B(t YW T (tHYWT (D), (32) an_d g- are |dent|gal. Particularly, the spectgragﬁ andg_

0 coincide, that is (g+i(kK)g+j(k’))=(2m7)>8(k+k")(5;;
—kikj/kz)E(k). Thus, without any loss of generality, one
can consideg, solely. At calculating the correlation func-
tion of g, , entering the definition oE, we can exploit an
independence oiV, (t) andM , (t) of a, (0K) that holds at

where oW, =0o.W., W.(0)=1. The equations for the
amplitudesa.. are

J
dias—| ko - K a. t much larger than the correlation timeof o, (this is again
in complete analogy with the consideration of Seg. Mhen
k(kora.) a. ( 1 the stationarity condition foE(k) reads
=t | a-
KZ 27 |\27 7F)%F 2E(K)=exp( —t/7)(Z(t,q,)E(q,)),
37)
k(kosas) , kMT (kM. (t,k)k
2 exp(Fig), (33 Z(t,k)=trM1(t,k)M+(t,k)— + 2 i ,
¢ where we used (t,—k)=M(t,k). Note thatZ=2. Indeed,
¢>=J’ dt’ K[ W, ()W 1(t") +W_(H)W-1(t")]B(t"). using Eq.(36) andf.M . (t,k)=0 one easily shows that the
0

time derivative of MT(t,k)M(t,k) vanishes so that

The above equations are, again, compatible with the con'y_lT(t'_k_)M(t'k):5ij_kikj/k2 andZ(t,k)=2. Thus Eq(37)
straintsk-a. =0. simplifies to

We observe that a characteristic time of the variations of  E(k)=exp(—t/7){E(q.)), (39
the amplitudes is- while the phase in tt‘? last term varies by gimost identical to Eq(21) established in Sec. Il Similarly,
2m during the characteristic timekB) ~“<7 (the last in- g can formulate an equation for the cross-correlation spec-
equality coincides with the previously derived condition for ., functionE’ (k) defined by((g.)i(K)(g_);(k'))= 8(k
the existepce of wavesindeed, the exponent appearing in +k’)(5ij—kikj/k2)E’(k). The fast oscillatingJ] phase does
the last line of Eq.(33 at t>7 can be estimated as ot cancel in this equation leading to the inequaty(k)
B(t) ke, whereke!” is the current value of the wave vec- <E(K). It leads to the conclusion that the spectra@ndB

tor, increasing due to the stretgf;ing process. Avera@®)  (gincide and are equal ®(k)/2 each. This proves the equi-
over times much larger thakB) ~* but much smaller tham 5 ition of the elastic and the kinetic energies claimed
(the procedure is nothing but the Bogolubov—Krylov averag-,pove.

ing method, we find the following amplitude equation: In analogy with the consideration of Sec. Ill one can

P K[k a. establish that the solution @B8) is power-like E(k)ck™ ¢
dia.—| ko K a+=E(Ea+a+ - 2—; (34  wherea is determined implicitly by
1
We observe that the equations for anda_ decouple. This 1:exq_t/7)<|kw+(—t)/k|“>' (39

is in accordance with the qualitative considerations of . ] .
Kraichnar¥’” who argued that the interaction of the waves,Adain, «>3 (see Appendix B In fact a stronger inequality
described by the amplitudes, anda_, is weak because follows from the stationarity condition. Namely, the spec-
their propagation directions are reverse trum has to decay faster th&n® (k2 in the spherical nor-
: ot - 2 _ 201 i -

Equation(34) has the same structure as the equation fofnalization. Otherwise((Vv)<)=[E(k)k°dk is determined
the linearly decaying scalar, considered in Sec. IIl. The difPy scales smaller than, , violating the condition that the
ference is in its vectorial nature and in the presence of thgradients have to be saturated at the valueddched at, .
term directed alongs that comes from the solenoidality con- "€ conditiona>5 coincides with the applicability condi-
dition ka. = 0. A formal solution of Eq(34) can be written tion of the above consideration that useéx+r)—wv(x)

as ~ot for r<r, . Indeed, thenE(k)k?dk is determined by
kr, =<1 and{(v(x+r)—v(r)—or)®)<((or)?) for r<r, .
a.(t,k)=e "M .[t,q.]a.[0,0.], (35 It is natural to ask, whethew is a universal number,
independent of Re. The above analysis shows éhit de-
M= (t,K) = (F2%) (FeoM)T, (36)  termined by the statistics af and y. Within the framework
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of the Kolmogorov theory the statistics is independent of theeventually leads to a chaotic, statistically steady state main-
inertial interval length and can be characterized by a singl¢ained by the nonlinear dynamics Bf see Eq(41). Station-
parameterA;=1/7. We conclude that the dimensionless arity of the statistics, again, implies, = 1/7 and stationarity
quantity « is a universal number in the Kolmogorov theory. of the p; —t/ 7 statistics, as it stems from E@1). It follows

In fact, due to intermittency the statistics of velocity gradi- that the velocity gradients are of the order of il the bulk.
ents depends on the length of the inertial interval and, conTherefore, a boundary layer has to be formed, where the
sequently, on the Reynolds number. The current understandelocity gradient, exceeding 4/at the boundary, drops to
ing of intermittency does not allow us to estimatefor a  the value 1# in the bulk. In the boundary layer the flow is
given Re, yet some qualitative assertions can be formulatednainly shear and the polymers are weakly stretched. The
Intermittency enhances the probability of large gradientexistence of the boundary layer is observed also experimen-
which leads to faster transfer of energy to large wave vectorgally (A. Groisman, private communicatipn

Therefore the velocity spectrum becomes flatter as the inter- The above picture means, that instabilities lead to veloc-
mittency increases. As we established, the length of the inity fluctuations with scales determined by the size of the
ertial interval decreases with the growth of the Reynoldssystem and a characteristic gradient. Ihe following esti-
number for polymer solutionésince the lower boundary of mates for the values of these large-scale fluctuations hold:
the inertial interval, increasep Consequently, the intermit- v L2 p2 L2

tency de(;reasgs as Rg grows. We concludedisdiould be a B2~vo~—, v?~—5, —5~—~Re<l, (43)
monotonically increasing function of Re. T ™' B° wvr

Now we establish the region of scales where the POWE{yhereL is the linear system size. The estimaté8) imply

spectrum exists. Its lower boundary is related to the VisCoug, -+ poth dissipative terms in E(2) are of the same order
dissipation, which grows with increasirig destroymg the . The correlation time oB andv is determined by the typical
power spectrzum at large wave vectors. Comparing the Visga e of the stretching and is of the order ofThe large-
) . .

cous rt](_armvk ' ,the Iafs_,t(;)n(:] n Eq(Z_S)’ with, say, _the scale velocity fluctuations produce smaller scale fluctuations
stretching tjﬂm’ » We find, that the viscous term wins at ¢ g that in turn induce small-scale fluctuations of velocity.
the Scélf; v7. As a result the power-law terminateskat e yelocity gradients become smaller when the scale de-
~(v7)" % For larger wave vectors the velocity Spectrum reaqes since the large-scale velocity gradient is of the order
diminishes faster than a power kfthat is the power Spec- ¢ 1. anq the total velocity gradient is fixed at this value by

. - -1 —1/2
trum occurs in the interval, “<k<(v7) " Note that at ¢ gationarity condition. This is in complete analogy with
Re>Re, we haveyv 7> 7, so that the power spectrum oc- hq consideration of the previous section.

curs in the interval, where the elastic waves are well-defined. Now we are going to consider statistical properties of the

small-scale fielde’ andB’. The fields evolve passively in
the large-scale fielde and B. However, there is a major
qualitative difference from the high-Reynolds case which is
We pass to the case of low Reynolds numbers. Then & the role of the large-scale componentBfIn the high-
random(chaotig flow can be excited due to elastic instabili- Reynolds number cageee Sec. IYthe terms with the large-
ties, if the Weissenberg number Wi is larger than unity. Thisscale fieldB in the equations for the small-scale fields con-
is the situation of the recently discovered “elastic serve energy and, consequently, do not enter the equation for
turbulence.””~° the spectrun{37). That is why the correct description of the
We investigate the case R& where the substantial de- dynamics required account of the small gradi€® on the
rivative in Eq.(12) can be neglected. Then systef§) and  background ofB. In the elastic turbulence case the terms
(12) become with B are dissipative and, consequently, one can forget
about the gradient terms, as subleading ones. Thus the equa-

V. ELASTIC TURBULENCE

p 'VP=(BV)B+uV’, V-0=0, (40) tions for the small-scale components of the fields, following
4B+ (vV)B=(BV)v—B/7, V-B=0. (41)  from Egs.(40) and(41), are
The inequality Re&l implies, that the kinetic energy of the Vp'=(BV)B' +vV’, (44)
solution can be neglected in comparison with the elastic one.
The dissipation of the elastic energy is, however, due to both 4B+ (vV)B'=(B'V)v +(BV)v'—B'/7. (49)
energy diss_ipation mechanisngolvent viscosity and poly- | ot us stress that the above equations assume BHIB’
mer relaxation (not VB>VB’, which is in fact wrong for the elastic turbu-
d B2 1 B2 lence.
rrll ;j dr 7—Uf dr(Vivy)?, (42) To analyze the above equations for the small-scale com-

o _ponents we use the same scheme as in the previous sections.
as follows from Eqs(40) and(41) and is in accordance with  As we explained above there is no need to account for the

Eq. (13. spatial variation ofB so that(for the Fourier components

The system of equatior(d0) and(41) has to be comple- Egs. (44) and (45) take the form
mented by the boundary conditions for the velocity, which in
the absence of polymers would lead to ¥\ so that the , i(k-B) B p'=0 46
equilibrium state of polymers is unstable. The instability °  ok? = p=0 (46
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B (k-B)? The estimates for the values and B? are written in Eq.

)B':UB'— — @ B (47)  (43). We observe that our scheme that assuifie$<Vo
and B’'<B is self-consistent due to the inequalig>3

The constraintk-B’'=0, k-v'=0 that follow fromV-»  proved above. It agrees with the experiment, whgrés
=0=V.B are consistent with Eq$46) and (47). The last 3.3-3.5"8
term in the equation foB’ is due to the viscous dissipation, Finally, let us discuss the question concerning the valid-
the term is of the same order as the elastic dissipation termy region of the power spectrum. Probably, it is determined
—B’/7 as follows from(43). We observe that, again, the by the finite diffusivity « of the polymer molecules which is
time-evolution operator foB’ has zero scaling dimension described by adding the termVZHij to the right-hand side
and(in accordance with the discussion at the end of Seg. Il of Eq. (2). Comparing this term with, say, the relaxation term
one expects that the spectrufgk) of B obeys a power-law. with 7, one concludes that the power spectrum terminates at
To demonstrate this power behavior we use a formal solutiok ~ \/x . At smaller scales the velocity spectrum dimin-

B'—|k i
&t U%

of Eq. (47) ishes much faster due to diffusivity.
t t
B'(t,k)=WB (0,kW)eXP[—;— Ldt s(t )} VI. CONCLUSION
vE ) =[BE)N(t',t,k)]%, dyn=—no+n(non), We have investigated properties of turbulence in dilute

(49 polymer solutions in the cases where polymer molecules are
) ] strongly stretched. We established power-law distributions of
whereW=W(t,0), andn(t’,t,k) is determined by the above inetic and elastic energies over scales in some regions,
equation with the final condition,(t,t,k)=k/k. where these power-laws are not related to an energy or other
Let us analyze the stress spectrum functib(k):  conserved quantity cascadie contrast to the usual turbu-
(B{ (K)Bj (k")) = o(k+ k") F(K) (6 — kik; /k?).  Assuming lence. In fact, excitation of elastic degrees of freedom at any
thatt is much larger than the correlation timeof B ando,  scale leads to energy dissipation since the elastic dissipation
we may average independently over the velocity statistics gg scale-independent. However, precisely this scale-
negative and positive times, as we did in the previous seGndependence can lead to a scale-invariance in the dissipative

tions. Then we find intervals, where the flow can be treated as smooth. Small-
t scale fluctuations are relatively weak and evolve passively in
2F (k)= < Z ex;{ — Zf dt’§(t’)} F(kW)> , (49 the smooth flow. As a result, the evolution of fine-scale fluc-
0

tuations depends trivially on the scale and power-law spectra
are formed. Let us now describe the cases where the above
(500  general ideas are applicable.
The first case, we examined, is the high Reynolds num-
The coefficient ofF in the right-hand side of Eq49) is  ber flow above the coil-stretch transition, when elastic de-
independent of the absolute valkef k. Therefore, Eq(49) grees of freedom are activated. Strong interaction between
admits a power solutiofr (k)<k #, wherep has to be de- the elasticity and the flow modifies the latter below the scale

K[ WW' %k

T"W— —— —
tr'w'w KWWK

Z=exp(—2t/7)

termined from the equation r, (at this scale the velocity gradients are of the order of

Cor e 1/7), which is the new energy dissipation scale. This scale is

:<Zexp[—2f0dt &(t )]> (51 Of the order of the Kolmogorov scale at the transition and
[kW(t)/k[” becomes larger as Re is increasedr Atr, the properties of

turbulence are the same as in Newtonian fluids. The energy
cascade downscales from the pumping scale and dissipates
due to polymer relaxation at~r, . The flow is smooth at
r=r, with the principal Lyapunov exponent, fixed at the
value 1f by the elastic back reaction. Fluctuations in the
interval of scales) (e7) Y?<r=<r, are elastic waves. That
leads to the equipartition of the kinetic and of the elastic
energies, that is the velocity spectrugik) and the elastic
spectrumF (k) coincide at these scales. The smoothness of
Indeed, it follows from Eq(48) thatn(t’") forgets its final the flow atr=r, Iea_ds to the copclusion thgt these spectra
are power-like and in the spherical normalization decrease

direction (and thus also becomdsindependent at t—t’ taster thark 2 atkr. =1. Th tra terminate at th
> 1. Thus the situation is similar to the one analyzed in Secgastertha atkr, =~. The power spectra terminate at the

1/2 i issi i
Il and IV A. Again, we can prove the inequalitg>3, see Stcalteh@ 7)7'%, where the viscous dissipation overcomes
Appendix 3. Sreﬁ'mg' Il k that the hydrod ic turbul i
We are now in a position to establish the spectrum of the s we' Known that e nycrocynamic frousnce s

velocity E(k). Indeed, it follows from Eq.(46) that E(k) iﬁi’t'acéf’;zrfsd b;riitt'lr;”ip‘g;iri;";te?h‘ﬁ;eeths'ge';st:;e;ti D]’;
7,872 H H 1 ]
“k and the spherically normalized spectra obey ~(e7®)¥2 obtained in the framework of the Kolmogorov

Esph(K)~v2L(KL) " #, Fso(k)~B2?L(kL)?>"#.  (52)  phenomenology, has to be corrected. Nevertheless, say, some

Note that at> 7 the average in Eq51) is determined by the
events withk directed along the eigen vector of the matrix
WW', corresponding to the smallest eigen valinethis case
the denominator in the expression achieves a minijnum
Then the second term in the right-hand side of &) can
be neglected, and we obtaifrexp(2p,—2t/7) (therefore,
due to the stationarity of the, —t/r probability distribution,

a statistics o is time-independent The positive noise(t)
can be considered as stationary with the correlation time
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first structure functions are satisfactory described in terms of, —t_ is much larger than the Lagrangian correlation time
the phenomenology. That is why we believe that this estimas,, of the velocity derivatives matrit6), where one expects a
tion is reasonable. Next, due to the intermittency one camniversal statistic&®

imagine a picture, where the crossover scale, separating the If the velocity statistics is homogeneous in time, the
Kolmogorov cascade and the elastic waves region, stronglgrobability distribution ofW(t, ,t_) depends on the differ-
fluctuates in space and time. Nevertheless, the boundagncet, —t_ only. Equation(5) implies that att, —t_>17,
scale fluctuates around, and the fluctuations seem to be the matrixW is a product of a large number of independent
characterized by this single scalg. Let us stress that the matrices. This is the main reason for the universality of the
strong fluctuations do not contradict to out scheme, whichV statistics.

implies such fluctuations. Moreover, the power spectrum, we It is convenient to decompose the matvikas

predict, is formed as a result of such fluctuations.

Note, that in our theory the elastic and the kinetic ener- W(t,,t_)=MAN, (AD)
gies are balanced at the scale. Thus, we disagree with de where A is a diagonal matrix, ant and N are orthogonal
Genne who claimed that there is an additional scalg , matrices?® We denote the diagonal elements Afas e’1,
lex <I., Where the polymer stresses balance the Reynolde’2, and e”s, and assume that they are ordergd>p,
stresses. As de Gennes suggested, polymers are essentially,,. As a consequence of the constraint @&t 1 we have
distorted atr,, <r<r, but their feedback on the flow is p,+ p,+ p;=0. Equation(5) can be rewritten in terms @f; ,

negligible in the range, and therefore, the Kolmogorov casand the matriced andN. The equations fop; are
cade remains unaltered by polymer additives down,tp.

This is possible only if the equation for the elastic stress is 9P [t =5, (A2)

nonlinear, since this nonlinearity can stop the polymers elonghereg=MToM and no summation over the repeating in-

gation before the feedback becomes essential even thougfax  is implied. The matriced and N satisfy ,;N=Q ;N
the Lyapunov exponent is larger than the inverse polymegnds,M=MQ,, where

relaxation time. Contrary, we accept the linear equation for o P,

the polymer stres&2), which is motivated in the book, Ref. Q)= Tik T Oki Q). _ Okt G

12 (see also our paper, Ref).2n this case the only mecha- ViK™ 2 sinhp;— py) ’ 2k e?Pk—eZri

nism which can stop the polymer elongation is just the feed- . B B . . .

back. That is why in our theory the elastic stresses balancfe(:)hr '7&'; ancri] (Q.l)“‘_((llZ)‘k_o forll _k'hlt 'ﬁ pos&b&e toh
the Reynolds stresses g . show that the eigenvalues W repel each other, so that the

The second case, we examined, is the elastic turbulené?hequam'eS ep?>ep2>ep3 are satisfied a.tt+_t’>.7-”'.
regime’~ It is a chaotic state which is realized at small en the matm(_)ltends to zero exp(_)nentlal_ly_fgst, Bljs
Reynolds numbers Re. The velocity gradient imposed on th etermme_d by times of th? order of, in the vicinity oft_ .
system by the boundary conditions exceedsvitich acti- he matr|>_<QZ bec_omeSp-mdependent at, —t_>7, and
vates polymer degrees of freedom leading to hydrodynamiEh('lJ evo]!l;;[llc_)n ng IS _degott:ple;i fr_om thfathof)i ' dThen the
instability and chaotization. Again, the power spedrk) }[/Etue O‘e ;t e_t?m;ne i g’e(t:;ngge_% dte eeﬁ[jeer:tﬁé at
andE(k) are power-like in this case. However there are no '+I'h € | - gETUAIZ ) --ihdep :
elastic waves that would lead to equipartition. The main en- € solution of Eq(A2) is

ergy is carried by the polymerg(k) ~ RekL) 2F(k), where e

L is the size of the system. The velocity spectrEifk) de- pi= JI dt’Gi (1), (A3)
cays faster thatk 2 in the spherical normalization, which N

corresponds to the experimental d&ta. where the right-hand side of E@A3) is an integral of a

The above-described mechanism of forming power-lawrandom process independentepf Equation(A3) shows that
spectrum for small-scale fluctuations in a chaotic flow seemghe variables; fluctuate around their average valuegt .
rather general to be realized for other systems. We expect itt_). Here the constants; are equal to(a;;). They are
to occur in certain regimes in magnetohydrodynamics, flowsalled the Lyapunov exponents of the flow. Generally, the
in liquid crystals and low-dimensional flows on a substrate.spectrum of the Lyapunov exponents is nondegenenate:
>N\,>\3, Which is a necessary condition for the formalism
to be self-consistent. The incompressibility condition ensures
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We thank E. Balkovsky, M. Chertkov, G. Falkovich, A. <0. Using the relatiori7) one can show that, is indeed the
Groisman, |. Kolokolov, and V. Steinberg for valuable dis- average logarithmic divergence rate of two nearby Lagrang-
cussions. A.F. was supported by the grants of ISF and Minian trajectories:
erva foundations. (dln|ox|/dty=x,.

Similarly, N\;+X,=—N\3 is the average logarithmic rate of
the area growth.

Let us briefly review the long-time statistical properties Note that at , —t_> 7, the statistics oM, A andN are
of the Lagrangian mapping matri%, determined by Eq<5) independent. Indeed, the valuesppfare accumulated during
and (6). We consideW(t, ,t_) att,>t_ and assume that the whole evolution time, —t_ [see(A3)] and are not sen-

APPENDIX: LONG-TIME LAGRANGIAN STATISTICS
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sitive both to the intervalt( ,t_+7,) determiningN and ~ The expressioitA7) is correct, provided—to> 7 (since the
interval (t, — 7, ,t.) determiningM. Both matricesM andN p_olymer relaxgtlon _tlme- determines al_so the velocity gra-
are distributed isotropically because of the assumed isotrop§ients correlation time The left-hand side of the equation

ferred in the main text in the statistics ofp,. Upon averaging one findg,)=t/7
which means\;=(&,)=1/7 as it was already explained in
flows conclusion thatf2 ,dt’ ((711(0)a4(t")))et 1 in the limit

t—oo. This is related to the anticorrelation property®f;

Here we consider the Lagrangian statistics in the case cHwentioned in the main text. That means that the dispersjon
a usual randontturbulent or chaoticflow, when the velocity defined by Eq(A6), vanishes above the coil-stretch transi-

has finite correlation time and no constraints are imposed %Bon. In fact. this vanishing is not abrupt and occurs within

the flow. Then the quantity; can be treated as a sum of a 1IN(Ryaei/ Ry) Vicinit .
. . y of Re.. Finally one concludes that
large number of independent random variables, provided <<511(5‘;1‘&M‘(’t)>>mt,2 at larget which is again very differ-

—t>r,. s known.fro'm the statistical meqhanlftseg, ent from a Newtonian fluid where exponential decay is ob-
e.g., Ref. 31that the distribution of such quantities is given

. . served, see Ref. 28.
by the exponent of an extensive function. In our case the

probability distribution functionPDF) of p; is 3. Inequality for the exponents  a, 8

(Pl_hlt p3_)\3t” Here we establish the inequality for the exponent

t 7t characterizing the passive scalar spectrum, see Sec. lll, and
the inequality for the exponen® appearing in the elastic
X +p,+ ; i

O(patp2tps), (Ad) turbulence problem, see Sec. V. In both cases we investigate

wheret=t, —t_ andp;>p,>p5 is implied® The main ex-  the solutionA of the equation of the type
ponential factor of the PDF has a self-similar form described .
by the functionS, which can be called entropy functideee <||<W|A exp{ _f dt’y(t’)
Refs. 30, 32 and 331t is positive convex and has a mini- 0
mum at zero values of its arguments. The precise for@isf  yheret is much larger than the correlation time of a random
determined by details of the velocity statistics. The PDF ha?)ositive noisey(t) and o. At these times the behavior
a sharp maximum gp;=A;t. In its vicinity the functionS  of the moments is exponential and one can define
has a quadratl_c expansion, i.e., the distributiop qa‘Gauss- exp[—f{)dt’y(t’)]|kw| 5 ~k®exg A At] where 3(d) is a
ian. However, if one is interested in the expectation values oty vex function due to Hder inequality. This function is

exponential functions of;, they are determined by the gyictly smaller than another convex functigf) defined by
wings of the PDF where the Gaussian approximation is N7 1kW[) ~ k? exd {(I)t].

valid. This entails the use of the whole entropy function. The function W& has a universal behavior which we
To average the functions @f; only, one can introduce yescribe now. It is convenient to write

the reduced probability distribution function
pl—xlt” (A5) <||<W|">=f dk’k"*(8(k—k'W™(1))), (A9)
' A5

1
Iij(t,pl):>c —eX[{ —'[Sl( t
Vt making it explicit that the wave vectors evolve according to
which is an integral ofP(t,py,p.ps) OVer p, and ps. At K()=K(0)W~(t).?® Introducingk’W~(t) =k’ exdp(t)In,

1
P(t,p1,p2,p3) ?ex;{ —tS

> ~k4, (A8)

small x the functionS;(x) can be written as wheren is a unit vector, one finds
2 t dn
Si(X)=x“/(24). (AB) p(t)zf dt’ z(t"), g ~neng, {=non.
0

Here A= [dt((T11(t)T14(0))) (where double brackets des-

ignate irreducible correlation functiprdetermines the dis- One observes thdtis independent gf(0) which leads to the
persion ofp,: {(p1—\1t)?)~tA. Expansion(A6) is suffi-  conclusion that at>r.(o), wherer.(o) is the correlation
cient to describe typical fluctuations @f;, whereas the time of o, the probability distribution op is described by an

whole functionSis needed to describe rare events. entropy functionS

It can be shown thafp(t))=|\3|t, where|\;| is the
2. Special properties of the long-time Lagrangian lowest in the hierarchy of the Lyapunov exponents of the
statistics above the coil—stretch transition flow. This fact is intuitively clear aa 5 determines contrac-

Above the coil—stretch transition the Lagrangian statis{ion in the real space and thus stretchinddspace. We note

tics acquires new qualitative features caused by the polyméhatp(t) is determined by the whole interval {pwhile n(t)

_1 « & w .
back reaction. They can be inferred from E@). which leads ~ ONly by A, ~ vicinity of t. As a resultp andn are indepen-
to dent at\,t>1. Sincen is isotropically distributed over the

unit sphere one finds (Sk—k'W (t)])=(&(p

t—1p —In(k/k"))exd —3p])/(4mk’3). Substituting this intdA9) and
. (A7) / ) .

performing the integral one finds

In[B(t,X)[—In|B(to,1)[~pa(t,to) -
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d gt
prexp{—(aju?,)p—ts(#”

whereN=/t is the normalization factor insignificant for the

=exd y(o)t],
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the origin following from the definition, the function(s)
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vanishes ats=—3. This is a general consequence of the Polymer in solution,” Phys. Rev. LetB2, 3548(1999.

isotropy employed above, see also Ref. 17. Besides, we ob-

serve thaty’ (— 3)=\3<0. Combining these properties with
the convexity ofy(é) we conclude that/(6) is negative for
—3<6<0 and positive otherwise.

To prove the inequality ok appearing in Eq(A8) one
notes that bothy(8) and¥() tend tox as|s|—c. Then it
follows from%y(8) < y(6) that there are two solutions of Eq.
(A8): One positive and one smaller than3. Substituting
y(t) =2/ and recognizing that the exponemtappearing in
(22) must be positive we conclude that>3. Analogously,
substitutingy(t) = 2£(t) we conclude that the solution of Eq.
(51) satisfiesp>3.

Finally, let us give an example of calculating in a
limiting case. The exponent is determined by the equation

d —|\3|t 2t
J Wpexr{(a—S)p—tS(#H=exr{7.

Note thata— 3 vanishes in the limit\ 3| 7— o since in this
limit the linear decay term is negligible in Eql4) and
Batchelork ~3 spectrum must result. Therefore at lafyg| 7
the integral (A10) is determined by the maximum of the
probability concentrated at= |\t which leads to

E(K)~k 220 (A1)

For a general value df 5| 7 the exponentr is determined by
the concrete form of the entropy function.

(A10)

|)\3|T>1
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