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Three-point correlation function of a scalar mixed by an almost smooth random velocity field
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We demonstrate that if the exponenthat measures nonsmoothness of the velocity field is small then the
isotropic zero modes of the scalar’s triple correlation function have the scaling exponents proportional to
V7. Therefore, zero modes are subleading with respect to the forced solution that has normal scaling with the
exponenty. [S1063-651X97)51605-9

PACS numbe): 47.10+g, 47.27—i, 05.40+]j

Kraichnan’s model of passive scalar advection by awards an anomalous scaling at a nonsmooth velocity field is
Ssfunction-correlated velocity fieldl] has become a para- not to be easy. The formal reason for this perturbation theory
digm within which an analytical theory of anomalous scalingto be singular is that, at the limi¢=0, the many-point cor-
in turbulence starts to appef—10]. The instrument is the relation functions have singularitsmeared by molecular
perturbation theory around three limiting cases where scalatiffusion only) at the collinear geometry—smooth velocity
statistics are Gaussian(i) infinite space dimensionality provides for homothetic transformation that does not break
d== [1,5,6,1Q, (i) an extremely irregular velocity field collinearity[17]. Even weak nonsmoothness of the velocity
y=2 which corresponds to a smooth scalar figd7,9), and  smears the singularity, i.e., strongly influences the solution in
(iii) a smooth velocity fieldy=0 (the Batchelor-Kraichnan the narrow region near collinearity; such a situation calls for
limit) [1,2,4,11-14,1] The perturbation theory is regular in a boundary layer approach introduced into this problem by
the first two cases and the sets of the exponents obtaingshraiman and Siggig4,11].
agree when the limits intersegl@,7]. The perturbation theory The three-point correlation function of the scalar
around the Batchelor-Kraichnan limit is singudi, only the ~ F(ry,r,,rs) advected bys-function-correlated velocity field
dipole part of the three-point correlation function has beersatisfies the closed balance equafigh
found so faf{15]. In this paper, motivated bj4,15], we find IR
the isotropic part of the triple correlation function and show (L+Lg)F3=—x3. (1)

that the leading term has a normal scaling in the convectiv% . . . .
interval ere, x3(rq1,ro,rs) is the triple correlation function of the

It is instructive to first discuss the physics involved in (non-Gaussian pumping which depends on differences

understanding the significant difference between the first twéii =i ~Fj - If |rij| <L (whereL is the pumping lengththen

limits on the one hand and the third limit on the other. SinceX3=P3, WherePs is the third-order flux. At growindr;|
the scalar field, at any point, is the superposition of fielddn€ functionys tends to zero on distances larger thanrhe

. . . L. H ; — 2 2 2y i
brought fromd directions, then it follows from a central limit operator of molecular diffusioly=«(Vi+V3+V3) is ex-
theorem that the scalar’s statistics approach Gaussian whé¥féssed via the diffusivity, and the operator of turbulent
space dimensionalitgt increases. In the cage=2, an irregu-  diffusion

lar velocity field acts like Brownian motion so that turbulent 3
diffusion is much like linear diffusion: statistic is Gaussian “_ \vavs
provided the input is Gaussian. What is general in both limits £= (1/2)”2:1 Kap(rij) ViV @

d=« and y=2 is that the degree of Gaussianisay, flat-

ness$ is independent of the ratio/L, wherer is a typical is expressed via the eddy diffusivify]

distance in the correlation function amdis an input scale.

Quite contrary, In(/r) is the parameter of Gaussianity in the KB(r)=Dr =" r26°F—rerh+ d__1r25uzﬁ 3)
Batchelor-Kraichnan limif14,16 so that statistic is getting 2—y '

Gaussian at small scales whatever the input statistics. At ) ]

y=0 the mechanism of Gaussianity is temporal rather thafParameter y is a measure of velocity nonsmoothness
spatial: since the stretching is exponential in a smooth velod0<7=<2. ~ )

ity field then the cascade time grows logarithmically as the At ¥=0, the operator£ is singular for collinear
scale decreases. That leads to the essential difference: @@ometry—see E(8) below. That leads to an angular sin-
small, yet nonzero, @/ and 2-y the degree of non- gular_|ty in the co_rrel_atlon functions which is smoothed only
Gaussianity increases downscales as one expects from intdly diffusion, which is therefore relevant at all scald].
mittency and anomalous scaling, while at smathe degree ~ Contrarily, aty>0 the operator is not singular at the col-
of non-Gaussianity first decreases downscales untinear geometry and therefore the angular singularity is ab-
In(L/r)=1/y, and then starts to increase, the first regionS€Nnt, as was pointed out ji5]. Therefore we can omit the
grows with diminishingy. Already that simple reasoning diffusive term Ly in Eq. (1) in comparison withZ. This is
shows that the way from the Batchelor-Kraichnan limit to- possible as long ag< yDr2.
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In the following we believey; to be an isotropic function  Then a solution of the equatiofiyF 3= — x5 can be written
of rj; which dictates the symmetry of the solution of Efj). by using the explicit expression for the resolvent of Laplac-
In this caseF ; can be treated as a function of three distancesan (cf. [17]):
1o, 13, andro3 only. Then the operatof can also be

rewritten in terms of the separatiofi4] dX1dX2
Fa(s,X1,X2)= 87D f f
-~ D(d-1) B
szy; ri a0+ @) ) (xi—x1)2+(x§+x2)2 o
(X;—X1)%+ (X5 —Xp)? X3(S:X1:Xp).
where the dots stand for the terms with cross derivatives 9
dijdk - Sinceyz=P3 atr;;<L we can easily find a solution
of Eq. (1) in the regionr;;<L (cf. [14]). Using Eq.(4) we We are interested in the behaviorfef atr;;<L which is
get not sensitive to the particular form of the pumpigg Thus
we can choose any convenient form gf supplying the
(2—1y) P3L7/ riotristri; convergence of the integral in E(Q). We take the Lorentz-
Fforc:gD(d_l)dy\ - LY ' ®  jan xX3=P3/[1+(r3,+r2,+r5)/L?], perform the integra-

tion overx; and obtain
whereC is an arbitrary constant. We call E¢p) the forced ) ) )
solution, it satisfies the equatian, <L but not necessarily - L"Ps f”ﬂ N [X2(1+0)+W]™+(x,— 1/2)
matching conditions at;;=L. The solution that satisfies the 16sD Jo tw | (Xo|1—t|+w)?+(x;—1/2)? |’
conditions can be written at; <L asF=F,+Z,, Where
Z, is a zero mode of the operator of the turbulent diffusion:where w=/3/4+x5t>+L2x,t/(2s). The asymptotic at
LZ,=0. We examine here different solutions of the equatiorfij<L  is  F3= (P3/2D)IN[2L2/(r%,+ r {5+ 155+ 243s) |
£Z=0. Whether the given modg contributes the correla- +const, which can be rewritten as
tion function has to be determined from the matching at

3 2,2 2442
rij~L which is beyond the scope of our paper. Note that wep, — 3 L_+ E n OaHxe)L(x1 = 1"+ ;]
consider isotropic zero modes while anisotrofgipole) zero 3D " rifidas 6D [(Xy—1/2)2+ (x4 \/3/2)2]3
modes for the more physical problem with an imposed mean
gradient were treated ifl5]. +const. (10)

We introduce instead of;; the new set of variables Here, the first term is the forced solutiéh,,. which can be

obtained from Eq(5) at y—0,d=2,C=3. The second term

r r ) ) : T
X =r—1scoa9 x2=r—135in0, S=T 1,r 135IN6), (6) in Eq_. _(10)_ is the zero mod&,, which has Iogarlthmlc sin-
12 12 gularities in the pointg=0, z=1, andz=< that is where

) one of ther;; tends to zero. Note that the whole function
where ¢ is the angle between; andryz and —=<x,;<®,  E_ has no singularity where one of thg tends to zero. As
0<xp<=, 0<s<x=. Note thats is the only dimensional fo|iows from Eq.(10) the zero mode, has the linear term
parameter among, X;, andx,. The operator and both j, the expansion ovex, which, by virtue of Eq.(6), corre-
correlation functionsy; and F3 should be invariant under sponds tdé| term at small angles. That is just the angular
permutations of 15, 13, andrys. In terms of the variable  gingularity mentioned above. Let us emphasize again that the
z=X;tix, these transformations can be written as follows: singularity is smoothed only by diffusion at=0 [17].

We see that the zero modg at y=0 does not depend on

1020 721-7%, 253 z—>i*, the dimensional parameter Be.sidAes, any function crf'is a
z zero mode of the operator sinag&, does not contain the

derivative overs, which is a remarkable property of the case
1 d=2 and y=0. Nevertheless, all thoss-dependent zero
1230 221+ o, 192230 -7, modes do not contribute By
Because of the scaling properties Df it is possible to
seek the zero mode in the scale-invariant form

s
Z= (X_
wherez* is complex conjugated ta. The variables (which ?
is the doubled area of the trianglés obviously invariant The functionX(x;,X,) should be invariant under all trans-
under the permutations. formations (7) and have no angular singularities since the
Below we treat the dimensionality=2. We start with the proportionality coefficient betwee@ and X is equal to
casey=0. Then the operatd®) is rewritten in terms of the  r23+r25+r25 as follows from Eq(6).

variables(6) as follows[17]: _ The equationCZ=0 can be rewritten a&xX=0, where

- o > o Ly is a differential operator of the second order over
Lo=2Dx5(d1+d3). (8  9,=aldx, andd,=dldx,. Coefficients at the derivatives are

1
1-3—-2: Zﬂl—E, (7) A

{1+ (x3+X3) +[(1—x1) 2+ X3T X (X1, X0).
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quite complicated functions of;,Xx,,A which can be found axis are negligible in this case. Separate consideration of the

from Eq.(2). Fortunately only particular parts of the operator vicinities of the singular points 0,&, (see belowshows that

Ly will be needed by us. the logarithmic derivative o has to be bounded there. Thus
At y=0 the operatoiZy is determined by Eq(8). The the only possible contribution to the zero mode associated,

operator tends to zero ay— 0. Therefore, at smak,, be- ~ Say, with the singular poing=0 is «Re Inz=Inyxj+Xj.

sides Eq.(8), we should also take into account the residue.The complete zero mode should be symmetric under trans-

The term leading to smak, can be written as formations (7). Performing all the transformations to
A In\/leerz2 and summing the results we obtain zero. That
Ly Ly=[2X5+Co(X1)]05— 4AX0,+ 2A(A+1), means that the function possessing the required symmetry

does not exist.

Another(equivalent way of showing that there is no zero
mode with A<y is to continueZ to negativex, by
Z(X1,X2)=2Z(X1,—X,). Because in our case we can believe
Note that c,>0. Expression (11) is correct if  9,Z(x;,X,)=0 the function should be harmonic in semi-
Xo<|Xq|,|X1—=1|;  |X4],|x1—1|>exp(=1ly); |xi|,|x1—1]  circles surrounding the singular points G¢1,Then one can
<exp(lky). The asymptotic behavior of a solution of use the properties of the analytical functions in the circles to

Co(X)=— ?;—y(l—x)x[xln|x|+(l—x)|n|1—x|]. (11

L,X=0 atx,</cg is exclude the existence of zero modes with bounded logarith-
mic derivatives near the singular points. Note the difference
X=A1(X1) +Ax(X1)X2, (12)  with the dipole case where such a mode has been fpLBid

) . Here, we describe the set of zero modes that do not have
whereA,(x) andA,(x) are arbitrary functions. The analyt- ,qgitional smallness of relative to 5 so that the whole
icity o.f X a_\t small angles excludes _the.second t_erm in Eqboundary conditior(14) is to be taken into account. Neces-
(12) since it would supply the contribution % which be- 51 information about the structure of the modes can be
havesx|6|. The equationC,X=0 can be solved explicitly, a extracted from the analysis of the vicinities of the singular
solution having the asymptotid2) with A,=0 is expressed points z=0, z=1, andz=%, where one needs a separate

via the hypergeometric function consideration. Using the symmetry properti@swe can re-
14A A 1 252 duce the consideration to the vicinity of one of the points,
Xo=A,(xy)F| — * —— o X2 . (13 sayz=1.Atx,<1 and|x,;—1|<1 the operatoLy acquires
2 2727 colxy) the following form:

Expression(13) gives the behavior of the zero mode L= 242 2 ir? 2.2 2
. =290 X ul[p95+3pd,+335]+2 sirte[ pdi+pd,+d%]
in the vicinity of the boundary layex,~+/c,. To describe X ? e PR

the zero mode outside the boundary layer it is more con- —4A[sirfppd,+cosp singd,]+2A(A+1), (16)
venient to return toZ which is a harmonic function

there since£ can be approximated by Eq@8). The X;—1=pcosp, X,=psing, u=3(p "—1).
asymptotic of Eq. (13), valid at x,>\co, gives (17)

Zo(A+1)coserA/2) — x,sin(mAl2)[ co(x4)/2] Y2 That be-
havior occurs outside the boundary layer but at smalWe
are interested id<<1. Thus we come to the following prob-
lem: find the harmonic functio#(x,,X5) in the upper half-
planex,>0 at the boundary condition

In the exponentially narrow vicinity of the singular point,

where p<exp(-1/y) one hasu>1 and the equation

LyxX=0 is reduced td p?3’+3pd,+3J5]1X=0. Solutions

of that equation can be expanded into the Fourier sejgs

xsin(mg)p™m, with \,,=—1+1+3m? where only non-
\V2¢03,Z+ wAZ=0, (14)  negative \,, are taken sinceX should remain finite at

p—0. We thus come to the conclusion that the matching
which is imposed on the functiod at x,=0 since at small condition on the boundary of the vicinitp~exp(—1/y)
v the width of the boundary layer is negligible. should be imposed on the logarithmic derivative Xf(or
Let us show that there is no zero mode witk<\'y. A Z) which remains constant there.
harmonic functionZ(x,,X,) inside the region can be pre- Now, let us consider the regiors>exp(—1/y), where
sented as an integral of its normal derivati#& dn along the ~ 2u=1yIn(l/p)<1. We can consider separately small angles

contour which is the boundary of the region o<1 whereLyX=0 is reduced to
1 dZ(t Bu+t2¢2)d2—4Apd,+2A(A+1)]X=0, (18
Z(z):;é|dt| &ﬁl)ln|z—t|, (15) [Bu+2¢7)0,~48¢d T 28(A+1)] (18

which exactly corresponds t6,X=0. Again an appropriate
wherez=x,+ix, andt is the complex variable going along solution of Eq.(18) is as follows:
the contour. Let us consider the contour consisting of the
semicircles around the singular points €land the parts oE| — 1+A A 1 2¢°
near the real axigoutside the boundary layer but at small 2 ' 2’2 3u)’
X,) that link the semicircles. IA <y then Eq.(14) tells us
that only contributions to Eq(15) from the semicirles are that gives the asymptotiZ=1— mAe/\6u at 1> ¢>u.
relevant, since the contributions from the parts of the reaNow substitutingu we come to the boundary condition

2
(19
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imposed on the harmonic functiah at ¢=0. Note that Eq.
(20) is nothing but the limit of Eq(14) at p<<1. That bound-

(20
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Symmetry requirement, with respectxtp—1—x;, leads
to the conditiond,Z(1/2,x,)=0 which can be used as the
quantization rule for the zero modes having the asymptotic
(23). They can be classified in accordance with the number

ary condition is simple enough and permits explicit expres-0f zerosn which the functionZ has wherex; goes from

sion for Z near the singularity. Let us representin the
following form:

Z=Re{f(Inp~*+ig)+f(Inp~t+im—ie)}, (2D

which is harmonic and invariant under—m—¢. Taking
into account Il/p)>1, we obtainZ=2 Regf(InInp™ 1)},
dZldp=m Re[f"( Inp~H} at ¢=0. Thus we see thaft(x)
satisfies the equatior”(x)+2Af(x)/\/3yx=0 with the
asymptotic behavior of the solution a1

1/4

X3/4 )

4 [4A?
3y

f(x)=exr{ i§ i

Expanding Eq(21) with Eq. (22) over In"1(1/p) we obtain

alan\ Y 1
ZMCO{§<3—7> (In;
{ _iso(w—qo)]
V3y ViIn(Lp) |

where ¢, is some phase. We can belieg,| < ; its actual
value has to be determined by the matching-&tp~ .

(22

3/4

+ o

(23

1/2 to 1-exp(—7). Using expressioii23) we conclude that
Amin=ay and A,=B\/yn? for n>1 with yet unknown
numerical factorse and B, which are of order unity. Note
that nonsymmetric zero modés (with another values oé
andB) may exist, yet they cannot contributeZg. For all the
modes, the dependenedy) obtained here has an infinite
slope at zero which has also been observed in numigir&is
Phenomenological arguments in favorf /'y were given
before in[11]. We conclude that the set of zero modes thus
found at smally has exponents larger than the expongnf
the forced solution. Therefore, the isotropic part of the triple
correlation function is shown here to have a normal scaling
for sufficiently smally. Since aty=2 the lowest zero mode
hasA=4, it is likely that the scaling of the isotropic part of
the triple correlation function is normal for ajl.

Note that forced solution does not contribute to the struc-
ture function &((61/6)2)3); therefore, it scales with the ex-
ponent which isxy/y.
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