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Three-point correlation function of a scalar mixed by an almost smooth random velocity field
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We demonstrate that if the exponentg that measures nonsmoothness of the velocity field is small then the
isotropic zero modes of the scalar’s triple correlation function have the scaling exponents proportional to
Ag. Therefore, zero modes are subleading with respect to the forced solution that has normal scaling with the
exponentg. @S1063-651X~97!51605-9#

PACS number~s!: 47.10.1g, 47.27.2i, 05.40.1j
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Kraichnan’s model of passive scalar advection by
d-function-correlated velocity field@1# has become a para
digm within which an analytical theory of anomalous scali
in turbulence starts to appear@2–10#. The instrument is the
perturbation theory around three limiting cases where sc
statistics are Gaussian:~i! infinite space dimensionality
d5` @1,5,6,10#, ~ii ! an extremely irregular velocity field
g52 which corresponds to a smooth scalar field@3,7,9#, and
~iii ! a smooth velocity fieldg50 ~the Batchelor-Kraichnan
limit ! @1,2,4,11–14,17#. The perturbation theory is regular i
the first two cases and the sets of the exponents obta
agree when the limits intersect@6,7#. The perturbation theory
around the Batchelor-Kraichnan limit is singular@4#, only the
dipole part of the three-point correlation function has be
found so far@15#. In this paper, motivated by@4,15#, we find
the isotropic part of the triple correlation function and sho
that the leading term has a normal scaling in the convec
interval.

It is instructive to first discuss the physics involved
understanding the significant difference between the first
limits on the one hand and the third limit on the other. Sin
the scalar field, at any point, is the superposition of fie
brought fromd directions, then it follows from a central limi
theorem that the scalar’s statistics approach Gaussian w
space dimensionalityd increases. In the caseg52, an irregu-
lar velocity field acts like Brownian motion so that turbule
diffusion is much like linear diffusion: statistic is Gaussia
provided the input is Gaussian. What is general in both lim
d5` andg52 is that the degree of Gaussianity~say, flat-
ness! is independent of the ratior /L, where r is a typical
distance in the correlation function andL is an input scale.
Quite contrary, ln(L/r) is the parameter of Gaussianity in th
Batchelor-Kraichnan limit@14,16# so that statistic is getting
Gaussian at small scales whatever the input statistics
g50 the mechanism of Gaussianity is temporal rather t
spatial: since the stretching is exponential in a smooth ve
ity field then the cascade time grows logarithmically as
scale decreases. That leads to the essential differenc
small, yet nonzero, 1/d and 22g the degree of non-
Gaussianity increases downscales as one expects from
mittency and anomalous scaling, while at smallg the degree
of non-Gaussianity first decreases downscales u
ln(L/r).1/g, and then starts to increase, the first reg
grows with diminishingg. Already that simple reasonin
shows that the way from the Batchelor-Kraichnan limit t
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wards an anomalous scaling at a nonsmooth velocity fiel
not to be easy. The formal reason for this perturbation the
to be singular is that, at the limitg50, the many-point cor-
relation functions have singularity~smeared by molecula
diffusion only! at the collinear geometry—smooth veloci
provides for homothetic transformation that does not bre
collinearity @17#. Even weak nonsmoothness of the veloc
smears the singularity, i.e., strongly influences the solution
the narrow region near collinearity; such a situation calls
a boundary layer approach introduced into this problem
Shraiman and Siggia@4,11#.

The three-point correlation function of the scal
F(r1 ,r2 ,r3) advected byd-function-correlated velocity field
satisfies the closed balance equation@2#

~L̂1L̂d!F352x3 . ~1!

Here, x3(r1 ,r2 ,r3) is the triple correlation function of the
~non-Gaussian! pumping which depends on difference
r i j5r i2r j . If ur i j u!L ~whereL is the pumping length! then
x3.P3 , whereP3 is the third-order flux. At growingur i j u
the functionx3 tends to zero on distances larger thanL. The
operator of molecular diffusionL̂d5k(¹1

21¹2
21¹3

2) is ex-
pressed via the diffusivityk, and the operator of turbulen
diffusion

L̂52~1/2! (
i , j51

3

Kab~r i j !¹ i
a¹ j

b ~2!

is expressed via the eddy diffusivity@1#

Kab~r !5Dr2gF r 2dab2r ar b1
d21

22g
r 2dabG . ~3!

Parameterg is a measure of velocity nonsmoothne
0<g<2.

At g50, the operator L̂ is singular for collinear
geometry—see Eq.~8! below. That leads to an angular sin
gularity in the correlation functions which is smoothed on
by diffusion, which is therefore relevant at all scales@17#.
Contrarily, atg.0 the operatorL̂ is not singular at the col-
linear geometry and therefore the angular singularity is
sent, as was pointed out in@15#. Therefore we can omit the
diffusive termL̂d in Eq. ~1! in comparison withL̂. This is
possible as long ask!gDr 2.
R4881 © 1997 The American Physical Society
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In the following we believex3 to be an isotropic function
of r i j which dictates the symmetry of the solution of Eq.~1!.
In this case,F3 can be treated as a function of three distan
r 12, r 13, and r 23 only. Then the operatorL̂ can also be
rewritten in terms of the separations@14#

L̂5
D~d21!

22g (
i. j

r i j
12d] i j r i j

11d2g] i j1••• ~4!

where the dots stand for the terms with cross derivati
] i j ]kl . Sincex35P3 at r i j!L we can easily find a solution
of Eq. ~1! in the regionr i j!L ~cf. @14#!. Using Eq.~4! we
get

F forc5
~22g!P3L

g

3D~d21!dgSC2
r 12

g 1r 13
g 1r 23

g

Lg D , ~5!

whereC is an arbitrary constant. We call Eq.~5! the forced
solution, it satisfies the equationr i j!L but not necessarily
matching conditions atr i j*L. The solution that satisfies th
conditions can be written atr i j!L asF5F forc1Z0, where
Z0 is a zero mode of the operator of the turbulent diffusio
L̂Z050. We examine here different solutions of the equat
L̂Z50. Whether the given modeZ contributes the correla
tion function has to be determined from the matching
r i j;L which is beyond the scope of our paper. Note that
consider isotropic zero modes while anisotropic~dipole! zero
modes for the more physical problem with an imposed m
gradient were treated in@15#.

We introduce instead ofr i j the new set of variables

x15
r 13
r 12

cosu, x25
r 13
r 12

sinu, s5r 12r 13sinu, ~6!

whereu is the angle betweenr12 and r13 and2`,x1,`,
0,x2,`, 0,s,`. Note thats is the only dimensiona
parameter amongs, x1 , and x2 . The operatorL̂ and both
correlation functionsx3 and F3 should be invariant unde
permutations ofr 12, r 13, and r 23. In terms of the variable
z5x11 ix2 these transformations can be written as follow

1↔2: z→12z* , 2↔3: z→
1

z*
,

1↔3: z→11
1

z*21
, 1→2→3: z→

1

12z
,

1→3→2: z→12
1

z
, ~7!

wherez* is complex conjugated toz. The variables ~which
is the doubled area of the triangle! is obviously invariant
under the permutations.

Below we treat the dimensionalityd52. We start with the
caseg50. Then the operator~2! is rewritten in terms of the
variables~6! as follows@17#:

L̂052Dx2
2~]1

21]2
2!. ~8!
s

s

:
n

t
e

n

:

Then a solution of the equationL̂0F352x3 can be written
by using the explicit expression for the resolvent of Lapla
ian ~cf. @17#!:

F3~s,x1 ,x2!5
1

8pD E
2`

1`E
0

` dx18dx28

x28
2

3 lnF ~x182x1!
21~x281x2!

2

~x182x1!
21~x282x2!

2Gx3~s,x18 ,x28!.

~9!

We are interested in the behavior ofF3 at r i j!L which is
not sensitive to the particular form of the pumpingx3. Thus
we can choose any convenient form ofx3 supplying the
convergence of the integral in Eq.~9!. We take the Lorentz-
ian x35P3 /@11(r 12

2 1r 13
2 1r 23

2 )/L2#, perform the integra-
tion overx18 and obtain

F35
L2P3

16sD E
0

` dt

tw
lnF @x2~11t !1w#21~x121/2!2

~x2u12tu1w!21~x121/2!2 G ,
where w5A3/41x2

2t21L2x2t/(2s). The asymptotic at
r i j!L is F35(P3/2D)ln@2L2/(r12

2 1r 13
2 1r 23

2 12A3s)#
1const, which can be rewritten as

F35
P3

3D
ln

L3

r 12r 13r 23
1

P3

6D
ln

~x1
21x2

2!@~x121!21x2
2#

@~x121/2!21~x21A3/2!2#3

1const. ~10!

Here, the first term is the forced solutionF forc which can be
obtained from Eq.~5! atg→0, d52,C53. The second term
in Eq. ~10! is the zero modeZ0 , which has logarithmic sin-
gularities in the pointsz50, z51, andz5` that is where
one of ther i j tends to zero. Note that the whole functio
F3 has no singularity where one of ther i j tends to zero. As
follows from Eq.~10! the zero modeZ0 has the linear term
in the expansion overx2 which, by virtue of Eq.~6!, corre-
sponds touuu term at small anglesu. That is just the angular
singularity mentioned above. Let us emphasize again that
singularity is smoothed only by diffusion atg50 @17#.

We see that the zero modeZ0 at g50 does not depend on
the dimensional parameters. Besides, any function ofs is a
zero mode of the operator sinceL̂0 does not contain the
derivative overs, which is a remarkable property of the ca
d52 and g50. Nevertheless, all thoses-dependent zero
modes do not contribute toZ0.

Because of the scaling properties ofL̂, it is possible to
seek the zero mode in the scale-invariant form

Z5S sx2D
D

$11~x1
21x2

2!D1@~12x1!
21x2

2#D%X~x1 ,x2!.

The functionX(x1 ,x2) should be invariant under all trans
formations ~7! and have no angular singularities since t
proportionality coefficient betweenZ and X is equal to
r 12
2D1r 13

2D1r 23
2D ,as follows from Eq.~6!.

The equationL̂Z50 can be rewritten asL̂XX50, where
L̂X is a differential operator of the second order ov
]1[]/]x1 and]2[]/]x2. Coefficients at the derivatives ar
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quite complicated functions ofx1 ,x2 ,D which can be found
from Eq.~2!. Fortunately only particular parts of the operat
L̂X will be needed by us.

At g50 the operatorL̂X is determined by Eq.~8!. The
operator tends to zero atx2→0. Therefore, at smallx2 , be-
sides Eq.~8!, we should also take into account the resid
The term leading to smallx2 can be written as

L̂X}L̂25@2x2
21c0~x1!#]2

224Dx2]212D~D11!,

c0~x!52
3g

4
~12x!x@xlnuxu1~12x!lnu12xu#. ~11!

Note that c0.0. Expression ~11! is correct if
x2!ux1u,ux121u; ux1u,ux121u@exp(21/g); ux1u,ux121u
!exp(1/g). The asymptotic behavior of a solution o
L̂2X50 at x2!Ac0 is

X5A1~x1!1A2~x1!x2 , ~12!

whereA1(x) andA2(x) are arbitrary functions. The analy
icity of X at small angles excludes the second term in
~12! since it would supply the contribution toX which be-
haves}uuu. The equationL̂2X50 can be solved explicitly, a
solution having the asymptotic~12! with A250 is expressed
via the hypergeometric function

X05A1~x1!FS 2
11D

2
,2

D

2
;
1

2
; 2

2x2
2

c0~x1!
D . ~13!

Expression~13! gives the behavior of the zero mod
in the vicinity of the boundary layerx2;Ac0. To describe
the zero mode outside the boundary layer it is more c
venient to return toZ which is a harmonic function
there since L̂ can be approximated by Eq.~8!. The
asymptotic of Eq. ~13!, valid at x2@Ac0 , gives
Z}(D11)cos(pD/2)2x2sin(pD/2)@c0(x1)/2#21/2. That be-
havior occurs outside the boundary layer but at smallx2. We
are interested inD!1. Thus we come to the following prob
lem: find the harmonic functionZ(x1 ,x2) in the upper half-
planex2.0 at the boundary condition

A2c0]2Z1pDZ50, ~14!

which is imposed on the functionZ at x250 since at small
g the width of the boundary layer is negligible.

Let us show that there is no zero mode withD!Ag. A
harmonic functionZ(x1 ,x2) inside the region can be pre
sented as an integral of its normal derivative]Z/]n along the
contour which is the boundary of the region

Z~z!5
1

p R udtu
]Z~ t !

]n
lnuz2tu, ~15!

wherez5x11 ix2 and t is the complex variable going alon
the contour. Let us consider the contour consisting of
semicircles around the singular points 0,1,` and the parts
near the real axis~outside the boundary layer but at sma
x2) that link the semicircles. IfD!Ag then Eq.~14! tells us
that only contributions to Eq.~15! from the semicirles are
relevant, since the contributions from the parts of the r
.

.

-

e

l

axis are negligible in this case. Separate consideration of
vicinities of the singular points 0,1,̀ ~see below! shows that
the logarithmic derivative ofZ has to be bounded there. Thu
the only possible contribution to the zero mode associa
say, with the singular pointz50 is }Re lnz5lnAx121x2

2.
The complete zero mode should be symmetric under tra
formations ~7!. Performing all the transformations t
lnAx121x2

2 and summing the results we obtain zero. Th
means that the function possessing the required symm
does not exist.

Another~equivalent! way of showing that there is no zer
mode with D!Ag is to continueZ to negative x2 by
Z(x1 ,x2)5Z(x1 ,2x2). Because in our case we can belie
]2Z(x1 ,x2)50 the function should be harmonic in sem
circles surrounding the singular points 0,1,`. Then one can
use the properties of the analytical functions in the circles
exclude the existence of zero modes with bounded logar
mic derivatives near the singular points. Note the differen
with the dipole case where such a mode has been found@15#.

Here, we describe the set of zero modes that do not h
additional smallness ofD relative toAg so that the whole
boundary condition~14! is to be taken into account. Nece
sary information about the structure of the modes can
extracted from the analysis of the vicinities of the singu
points z50, z51, andz5`, where one needs a separa
consideration. Using the symmetry properties~7! we can re-
duce the consideration to the vicinity of one of the poin
sayz51. At x2!1 andux121u!1 the operatorL̂X acquires
the following form:

L̂X5m@r2]r
213r]r13]w

2 #12 sin2w@r2]r
21r]r1]w

2 #

24D@sin2wr]r1cosw sinw]w#12D~D11!, ~16!

x1215r cosw, x25r sinw, m5 1
2 ~r2g21!.

~17!

In the exponentially narrow vicinity of the singular poin
where r!exp(21/g) one has m@1 and the equation
L̂XX50 is reduced to@r2]r

213r]r13]w
2 #X50. Solutions

of that equation can be expanded into the Fourier seriesXm

}sin(mw)rlm, with lm5211A113m2 where only non-
negative lm are taken sinceX should remain finite at
r→0. We thus come to the conclusion that the match
condition on the boundary of the vicinityr;exp(21/g)
should be imposed on the logarithmic derivative ofX ~or
Z) which remains constant there.

Now, let us consider the region 1@r@exp~21/g!, where
2m5g ln~1/r!!1. We can consider separately small ang
w!1 whereL̂XX50 is reduced to

@~3m12w2!]w
224Dw]w12D~D11!#X50, ~18!

which exactly corresponds toL̂2X50. Again an appropriate
solution of Eq.~18! is as follows:

X}FS 2
11D

2
,2

D

2
;
1

2
;2

2w2

3m D , ~19!

that gives the asymptoticZ}12pDw/A6m at 1@w@Am.
Now substitutingm we come to the boundary condition
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A3g ln~1/r!]wZ52pDZ, ~20!

imposed on the harmonic functionZ at w50. Note that Eq.
~20! is nothing but the limit of Eq.~14! at r!1. That bound-
ary condition is simple enough and permits explicit expr
sion for Z near the singularity. Let us representZ in the
following form:

Z5Re$ f ~ lnr211 iw!1 f ~ lnr211 ip2 iw!%, ~21!

which is harmonic and invariant underw→p2w. Taking
into account ln~1/r!@1, we obtainZ52 Re$ f (ln lnr21)%,
]Z/]w5p Re$ f 9( lnr21)% at w50. Thus we see thatf (x)
satisfies the equationf 9(x)12D f (x)/A3gx50 with the
asymptotic behavior of the solution atx@1

f ~x!5expF6
4

3
i S 4D2

3g D 1/4x3/4G . ~22!

Expanding Eq.~21! with Eq. ~22! over ln21(1/r) we obtain

Z}cosF43 S 4D2

3g D 1/4S ln1r D 3/41f0G
3H 12

D

A3g

w~p2w!

Aln~1/r!
J , ~23!

wheref0 is some phase. We can believeuf0u,p; its actual
value has to be determined by the matching at2lnr;g.
,

-

Symmetry requirement, with respect tox1→12x1 , leads
to the condition]1Z(1/2,x2)50 which can be used as th
quantization rule for the zero modes having the asympt
~23!. They can be classified in accordance with the num
of zerosn which the functionZ has wherex1 goes from
1/2 to 12exp(2g). Using expression~23! we conclude that
Dmin5aAg and Dn5bAgn2 for n@1 with yet unknown
numerical factorsa and b, which are of order unity. Note
that nonsymmetric zero modesZ ~with another values ofa
andb! may exist, yet they cannot contribute toZ0. For all the
modes, the dependenceD~g! obtained here has an infinit
slope at zero which has also been observed in numerics@18#.
Phenomenological arguments in favor ofD}Ag were given
before in@11#. We conclude that the set of zero modes th
found at smallg has exponents larger than the exponentg of
the forced solution. Therefore, the isotropic part of the trip
correlation function is shown here to have a normal scal
for sufficiently smallg. Since atg52 the lowest zero mode
hasD54, it is likely that the scaling of the isotropic part o
the triple correlation function is normal for allg.

Note that forced solution does not contribute to the str
ture function 35^~Q1/Q2!

3&; therefore, it scales with the ex
ponent which is}Ag.
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