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Dynamical phenomena in dilute lyotropic solutions are investigated. We consider the case when
lyotropic molecules form a system of membranes determining the main peculiarities of these systems.
We are interested in the effect of fluctuations of the membranes on dynamical characteristics of the
systems. A membrane possesses two soft degrees of freedom associated with its bending deformations
and with variations of the surface density n, of molecules constituting the membrane, which we term
elastic deformations. Bending fluctuations are governed by the Helfrich module x whereas the elastic
fluctuations (variations of n,) are governed by the “internal” compressibility of the membrane which
we characterize by an elastic module B. Correspondingly, there are two characteristic surface modes
where the motion of the solvent is localized near the membrane. In the linear approximation these
modes prove to be overdamped. Due to the softness of these modes, dynamic fluctuation effects
related to nonlinear interaction of the modes should be taken into account. To investigate these
effects the Wyld-diagram technique is used. It is constructed on the basis of nonlinear equations
describing the dynamics of a membrane immersed into a liquid. We have shown that bending
fluctuations are most important. Our investigation is performed in the framework of the perturbation
theory in g ~ T'/x which is believed to be a small dimensionless parameter, describing the “strength”
of the bending fluctuations. These fluctuations produce only small logarithmic corrections to the
characteristics of the bending mode whereas they essentially modify the dynamical behavior of the
elastic degree of freedom. Namely, these fluctuations drastically change the frequency dependence of
the susceptibility describing the relaxation of n, to the equilibrium. We consider also the influence
of dynamical fluctuations of membranes on the macroscopic characteristics of the system such as
viscosity coefficients. To find the fluctuation contribution ng to the viscosity coefficients, we calculate
a response of the system of membranes to a macroscopic (long-wavelength) motion of the liquid, with
fluctuations of the membranes taken into account. The main part of 75 is associated with the elastic
part of the membrane stress tensor but is strongly renormalized by the bending fluctuations. The
quantity ng possesses a complicated frequency dispersion. In the high-frequency region it behaves as
w™%/3, in the intermediate frequency region it behaves as w ™'/, and for small w it remains constant.
The ratio of this constant to the viscosity of the solvent is of the order of g™, i.e., 7a exceeds the

APRIL 1994

viscosity of a pure solvent.

PACS number(s): 82.70.—y, 05.40.+j, 64.60.Ht, 66.20.+d

INTRODUCTION

In recent years considerable attention has been paid
to the investigation of dilute lyotropic phases. Equilib-
rium (static) properties of these phases have been exten-
sively examined (see, e.g., books [1-3] and reviews [4-6]),
but research of dynamical characteristics (such as viscos-
ity, spectrum of eigenmodes, etc.) is unfortunately in
a rather primitive stage. It is largely accounted for by
a complexity of dynamical phenomena in these systems.
The present work is devoted to the theoretical investiga-
tion of dynamical properties of lyotropic systems which
prove to be sensitive to nonlinear fluctuation processes.

The most distinctive property of amphiphilic molecules
is their ability to spontaneously self-assemble into aggre-
gates of various shapes. This polymorphism is indeed a
source of a very rich variety of ordered phases. In our
paper we consider particular situations where molecules
spontaneously self-assemble into membranes which are
bilayers of a thickness of the order of a molecular length.
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As a rule, these bilayers are built up from two identi-
cal monolayers, oriented opposite each other. Hence a
membrane is locally symmetrical with respect to its mid-
surface.

At present different structures of lyotropic mem-
brane systems are identified in experiments. Lamellar
phases exhibit smectic order, cubic phases possess three-
dimensional long-range translational order, and sponge
or disordered phases show no long-range positional or-
der. Besides, solutions of vesicles or of fragments of mem-
branes are observed. Each type of these structures may
be characterized by a typical length scale £. For lamellar
phases it is an intermembrane distance, for cubic phases
it is a period of the structure, for solutions it is a char-
acteristic size of vesicles or of fragments of membranes,
and for sponge phases the role of £ is played by the char-
acteristic size of pores of the “sponge.” On scales smaller
than £ all the phases may be regarded as systems of in-
dependent membranes possessing a flat shape at zero ap-
proximation.

As was shown by Porte et al. (see, e.g., [5]) the statis-

3003 ©1994 The American Physical Society



3004 E.I. KATS AND V. V. LEBEDEV 49

tics of dilute membrane solutions in the main approxima-
tion is scale invariant (since Helfrich’s energy is invariant
with respect to any isotropic dilation [7]). It means, for
example, that the free energy has to be proportional to
¢3, where ¢ is the membrane volume fraction. Fluctua-
tion corrections break up the scale invariance, since each
change in scale implies a renormalization of membrane
parameters. But in static the renormalization is only
logarithmic and hence it is weak. More dramatic are con-
sequences of fluctuation effects in dynamics, since fluctu-
ation contributions to the dynamical coefficients stronger
depend on scale.

It proves that a separately taken membrane has two
characteristic modes where the motion of the liquid is
localized near the membrane. One of these modes is re-
lated to the relaxation of the shape of a membrane to-
wards a flat shape. We will term this mode a bending
mode. It occurs instead of conventional capillary waves,
propagating over the surface with nonzero surface ten-
sion. The other characteristic mode is related to the
relaxation of the surface density of molecules, constitut-
ing the membrane. We will term this mode an elastic
mode, since it is related to variations of the density of
the membrane. This mode can be interpreted as a surface
sound, overdamped due to the bulk shear motion. The
said above in this paragraph is valid for isotropic liquid
membranes. Anisotropic and crystalline membranes need
separate consideration, and these objects are beyond the
scope of our paper.

In the present work we are interested in fluctuation
effects induced by a nonlinear interaction of modes, asso-
ciated with a membrane. These effects should be consid-
ered in the framework of the mode-coupling theory. We
examine also the influence of bending and elastic fluc-
tuations on the dynamics of long-wavelength degrees of
freedom. These effects prove to be important due to the
softness of the bending mode. In many respects the sit-
uation resembles the critical dynamics (see, e.g., review
[8]) associated with a critical soft mode. To take into
account dynamic fluctuation effects we may first study
only self-interaction of this soft mode and then include
the interaction of this mode with other degrees of free-
dom. For orientational phase transitions in liquid crystals
such a program was performed in [9].

Our paper is organized as follows.

Section I covers static properties of a separately taken
membrane. As is well known, thermal fluctuations of a
membrane lead to a logarithmic renormalization of differ-
ent parameters, also discussed in this section. Dynamic
fluctuation effects prove to be stronger than static effects.
To study these effects we must utilize nonlinear dynam-
ical equations of a membrane, derived in Sec. II. Us-
ing these nonlinear equations we construct an effective
action, enabling us to represent dynamical correlation
functions in terms of functional integrals. Such a rep-
resentation generates a diagram technique of the Wyld
type [10]. The effective action for systems of membranes
is derived in Sec. IIIL.

Further we study fluctuation contributions to observ-
able physical characteristics. To do this we perform an
expansion of the effective action in variables, describing

surface degrees of freedom (Sec. IV). The renormaliza-
tion of the bending mode is studied in Sec. V. It turns
out that fluctuation corrections to the dispersion law of
the bending mode are logarithmic and therefore small in
the region of scales under study. The influence of the
fluctuations on the elastic degree of freedom is discussed
in Sec. VI. The dynamics of the elastic degree of freedom
is essentially modified by fluctuations.

Finally, the fluctuation contribution to the viscosity is
calculated (Sec. VII). The main fluctuation contribu-
tion is related to fluctuations of membranes with wave
vectors ¢ > £71. Therefore fluctuation effects mani-
fest themselves explicitly in a relatively high-frequency
(but reasonable for measurements) region, but the low-
frequency viscosity will, of course, also be influenced by
these fluctuations. Let us stress that in spite of the fact
that the lyotropic systems are very dilute, fluctuations
of membranes lead to an important contribution to vis-
cosity coefficients. In this respect dynamical fluctuations
drastically differ from static fluctuations which in this
region of parameters give only small logarithmic correc-
tions to thermodynamical properties. In the Conclusion
we summarize and discuss briefly the results of our work.

There are three appendixes to our paper devoted to
bulky computations. The problem is that any dynamical
process in the membrane induces a motion of the liquid
surrounding the membrane. Therefore at the investiga-
tion of eigenmodes one must solve the overall system of
equations, including conventional hydrodynamical equa-
tions. The solution of the equations expressed through
the surface value of the velocity should be utilized to de-
termine the right-hand side of the equation for the surface
momentum density, which enables us to close the system
of equations for the surface variables. In the three ap-
pendixes we collected these technical (but important for
the theoretical investigation of dynamical properties of
lyotropic systems) details.

Some preliminary results concerning fluctuation con-
tributions to the viscosity have been published in our
paper [11].

I. THERMODYNAMICS OF A MEMBRANE

In this section we will discuss static properties of a
free membrane. As was explained in the Introduction, we
may apply results of this investigation to dilute lyotropic
systems at scales smaller than the characteristic scale .

The energy related to variations of a shape of the mem-
brane can be written in the form proposed by Canham
[12] and Helfrich [7]

E, = /dS (g(R;1 + RN+ RR;IR;I) )

Here R; and R, are local radii of the membrane curva-
ture and the coefficients s,k are elastic modules. The
quantity Ry *R; ' is the Gaussian curvature of the mem-
brane and the combination R1_1 +R5 ! is referred to as its
mean curvature. The term (1) may be called a bending
energy. Since we consider bilayer membranes, the bend-
ing energy of the membrane must be invariant to the
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change of the sign of the curvature, and therefore terms
odd in radii R;, R, are missing from the expansion of E,,
which particularly explains the absence of the term with
the spontaneous curvature in (1).

One of the conditions of the equilibrium of a free mem-
brane with the solution of monomers, constituting the
membrane, is the zero value of its surface tension. For ly-
otropic systems under study the surface tension of mem-
branes may be finite as a consequence of a long-range
interaction between membranes. But on the relatively
short scales we are interested in, the role of this surface
tension is negligible. Therefore we have omitted the cor-
responding term in expression (1).

In addition to the energy (1) one must also take into
account the “elastic” energy, related to variations of the
surface density of molecules n,, constituting the mem-
brane. In the approximation we need, such a contribu-
tion to the energy reads

Ea=3 / dSBe. )
Here
S = (’l’l, — ’no)/no, (3)

where n, — ng is a deviation of the surface density of
molecules n, from its equilibrium value ng and the coef-
ficient B has the meaning of the inverse compressibility
of the membrane.

When the surface tension coefficient of the membrane
is negligible, thermal fluctuations of the shape of the
membrane are relevant. As was noted by de Gennes and
Taupin, these fluctuations give rise to the destruction
of a correlation between orientations of sufficiently dis-
tant pieces of the membrane [13]. The scale, starting
from which this destruction happens, is called a persis-
tent length £,. A membrane of sizes exceeding the per-
sistent length cannot in any approximation be treated as
flat.

These fluctuations also lead to the logarithmic renor-
malization of the modules « and & and of other quantities,
characterizing the surface energy of the membrane. First,
an attempt to calculate the renormalization of the mod-
ule k was taken by Helfrich [14] and later by Férster [15].
The correct renormalization-group (RG) equation for the
module & in the one-loop approximation was derived by
Peliti and Leibler [16], Kleinert [17], and Polyakov [18]
and the equations for & and for the spontaneous curva-
ture in the same approximation were found by Kleinert
[19]. Besides, the module B, introduced by (2), is loga-
rithmically renormalized.

The explicit form of the one-loop RG equations for the
introduced quantities is

ds ___3_1: 4
dL =~ 4rn’ (4)
di 5T

dB _TB 5
dL ~ 4wk’ (
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Here T is the temperature (expressed in energy units)
and L = In(r/a,,), where r is a characteristic scale and
@, is a cutoff parameter (the length of the order of the
molecular size). These equations describe the behavior
of the modules k,%,B at a variation of the characteristic
scale 7.

The right-hand sides of the renormalization-group
equations, found in the framework of the perturbation
theory, always contain the module x but not K. The
problem is that the term in the energy (1), proportional
to the module & (i.e., the surface integral of its Gaus-
sian curvature), is a topological invariant, therefore it is
not changed at small perturbations of the shape of the
membrane.

As follows from Eq. (4), the role of the “invariant
charge” (dimensionless coupling constant) is played by
the quantity

3T
9= g (7)
For the perturbation theory to be applicable and, conse-
quently, for Egs. (4)—(6) to hold, the coupling constant
g must be small. Henceforth we will treat g as a small
quantity, enabling us to employ the perturbation theory.
A consequence of Eq. (4) is an expression

9o
9= 1oL (8)
Here g¢ is the short-wavelength coupling constant. We
see that with increasing scale (i.e., with increasing L)
the coupling constant grows. Thus we come to a situa-
tion which in the quantum field theory is called asymp-
totic freedom. The scale on which g reaches a value of
the order of unity, and the perturbation theory becomes
inapplicable, is no other than the persistent length &,.
Using (8) we may derive an estimation

€ ~ amexp(gg ')- (9)

Note the exponential character of the dependence of ¢,
on go.

The static behavior of the modules «,%,B at increasing
scale is determined by Egs. (4)—(6) from which it follows
that at increasing scale the module ¥ becomes smaller,
whereas the modules &,B grow together with the coupling
constant. Using the relation (7) we find the following first
corrections:

Ak = —gokL, AB= %goBL. (10)

One can say that due to thermal fluctuations the mem-
brane becomes less compressible and softer with respect
to fluctuations of the shape.

II. DYNAMIC EQUATIONS

To formulate equations describing dynamics of a mem-
brane it is necessary to introduce a certain parametriza-
tion, setting its position in space. In this section we will
use a general parametrization demonstrating the explicit
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rotational invariance of the equations. Namely, we will
assume that the position of the membrane is set by an
equation

®(r) =0, (11)
where ® is a function of three coordinates.

All expressions presented below have to be invariant
under a transformation

® - f(®), (12)

where f is an arbitrary function satisfying the conditions
f0)=0, f(0)#0. (13)

The transformation (12) does not influence the posi-
tion of the membrane in space and, consequently, cannot
change any physical quantity. For example, the expres-
sion for the unit vector, normal to the membrane

| _ Vi
l‘|v¢|7

(14)

is invariant with respect to the transformation (12).

The vector [; is formally defined in the whole space. It
is a general feature of all surface quantities (e.g., the sur-
face density of molecules n,) which are introduced below.
Formally they will be considered as functions of all three
coordinates, whereas they are meaningful, of course, only
on the surface (11).

Nonlinear equations, describing the dynamics of the
membrane in terms of ®, are presented in the work by
Lebedev and Muratov [20]. They can be derived as equa-
tions of dynamics of a Langmuir film (see the work by
Kats and Lebedev [21]). We give here the ultimate form
of these equations without deriving them in detail.

The dynamical equation for the quantity ®, setting the
position of the membrane, has the form

é‘;—f = —v,,,-V,-@, (15)
where v, is a velocity of the membrane which should
coincide with the velocity of a liquid near the membrane.
This fact is a consequence of correct boundary conditions
of hydrodynamical equations on the membrane [21,20].
Let us stress that derivatives of the velocity (as we will
see below) have jumps on the membrane. The meaning
of Eq. (15) is that the membrane moves together with
the liquid, surrounding it. From Eq. (15) and from the
relation (14) the following equation for the unit vector 1
ensues:

al;

ot = Ve Vili — Vi vk (16)

Here and henceforth we utilize designations

8k = bi — Lilg, Vi =64 Ve. 1n

Note that not only the surface quantities such as [;, v,
figure in the right-hand side of Eq. (16), but also three-
dimensional derivatives. Nevertheless one can check that
this relation does not depend on the concrete form of a

continuation of functions ! and v, from the membrane
into the third dimension. Any redefinition of this contin-
uation implies the transformation of the following kind:

l,‘(l‘) — l,'(l‘ + R(@)),

where functions R(®) possess the same properties (13)
as the function f in (12). Bearing in mind Eq. (15) for
® it is not difficult to prove that at such redefinition of
l and v, Eq. (16) does not change its form. Therefore
Eq. (16) is indeed the equation for the surface variable.
The same statement is valid for all equations presented
below in this section.

The dynamical equation for the surface density of
molecules n, of the membrane can be written as

% = —v,iV,-n, - n,V;"v,i. (18)
Using Eq. (15) we may rewrite Eq. (18) as
20 V2D — 9, 9% | npva). (19)

Equation (19) has the meaning of the conservation law
of the number of molecules, constituting the membrane.
Therefore this equation becomes inapplicable in the fre-
quency range, where the exchange of molecules between
the membrane and the liquid surrounding it becomes rel-
evant. Apparently this range is beyond our considera-
tion.

The dynamical equation for the surface momentum
density of the membrane j, = p,v, (where p, is the sur-
face density of mass) is

({)(IVG;?M + Vi [] Ve l (Psvaivsk + Tsik)}
= —|P|V:® — [IL;x]| Vi ®. (20)

Here T,;; is the surface stress tensor, P is the bulk pres-
sure of the liquid, and II;; is its viscous stress tensor.
Namely,

ILix = —n (Vivk + Vi; — géikvv) —(Vvéy, (21)

where 7 and ( are coefficients of the first and second
viscosities. The “floors” in (20) designate the jump of the
corresponding variable on the membrane. For example,
|P] is the difference of values of the pressure “above”
and “below” the membrane, with the vector ! marking
the “top” of the membrane.

An expression for the surface stress tensor T,;; enter-
ing Eq. (20) was derived in the work by Lebedev and
Muratov [20] by means of the Poisson brackets method.
We will cite the explicit form of the surface stress ten-
sor, obtained from expressions (1) and (2) for the main
contributions to the surface energy of the membrane

K
Toin = (Bs = 5(Vala)?) 65
+.V ol Vil — kL,VEV oL, (22)

For the derivation of (22) the quantities B,x were re-
garded as constants, and the quantity ¢ is defined by (3).
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The stress tensor Ty;x given by (22) is not symmetric.
Therefore a special concern is to formulate the angular
momentum conservation law. Formally the divergence
of the tensor figuring in Eq. (20) can be rewritten as
a divergence of a symmetric tensor. Unfortunately the
expression for this symmetric tensor proposed in the work
by Lebedev and Muratov [20] proves to depend not only
on the position of the membrane, but also on the function
®. Nevertheless the angular momentum conservation law
can be formulated in a form invariant with respect to the
choice of the function ®. Let us demonstrate this.

It is not difficult to check that for any function A it is

€jik | Ve l l,‘V,‘i’A = ej,-ka(i ve | liA). (23)

The nonsymmetric part of the stress tensor (22) has just
the form ;Vi A, and therefore the angular momentum
conservation law may be written in the form

a .
E-t- (Ejn,"l‘nj"‘ | Vo I) + V. (Ejm; | vo | nl,-Vklk)

+Vk (ejnirn(Taik + pavivk) ‘ Ve |)
= —e,-m-'r,,([PJ V;® + LH,ijk{)) (24)

On the right-hand side of (24) there is a torque applied
to the membrane from the liquid. The explicit expression
for this torque was derived by substitution of the right-
hand side of Eq. (20).

These equations can be employed to study the eigen-
modes of a membrane. The linear dispersion law of the
bending mode [see (50) below] was derived first in [22].
The linear dispersion law of the elastic mode [see (54) be-
low] is analogous to the one for Langmuir films [21]. The
results for a membrane may be deduced from the results
for micelles in the limit of zero spontaneous curvature

(see the work by Lebedev [23]).

III. EFFECTIVE ACTION

To investigate dynamic fluctuation effects we will make
use of the diagram technique, especially adapted for hy-
drodynamical systems. Such diagram technique was first
developed by Wyld [10], who studied velocity fluctua-
tions in a turbulent fluid. The next step was made in the
work by Martin, Siggia, and Rose [24], where the Wyld
technique was generalized for a broad class of dynamical
systems. The textbook description of the diagram tech-
nique can be found in the monograph by Ma [25]. The
diagram technique may be formulated in terms of path
integrals as was first suggested by de Dominicis [26] and
Janssen [27]. We will use this representation in our work.

In the framework of this approach apart from hydro-
dynamical variables ¢, one should introduce auxiliary
fields p, “conjugated” to the hydrodynamical variables
¢a. Then dynamical correlation functions of the hydro-
dynamic variables can be presented as functional inte-
grals over both types of fields—conventional and auxiliary.
These integrals are taken with the weight exp(iI), where
I is an effective action, which is a functional of both
the hydrodynamical and auxiliary variables. Namely, the

pair correlation function is

(Paps) = / Dy Dp exp(il)paips. (25)

We will use a special designation for this correlation func-
tion

Dgp(ts — t2,r1 — r2) = (pa(t1,T1)ps(t2, r2))- (26)

It is also useful to introduce a correlation function

Gab(tl — 3,11 — l‘z) = (soa(t1,r1)Pb(t2,l'2)); (27)

where the average is defined as in (25). The function G is
the response function (or the generalized susceptibility)
of the system under study, and therefore G is equal to
zero at t; — t; < 0. In the following we will present ex-
pressions for the function G(w, q) (where w is a frequency
and q is a wave vector), which is (27) in the Fourier rep-
resentation. The function G(w) is analytical in the upper
w half plane and its singularities in the lower w half plane
determine dispersion laws of eigenmodes of the system.
At the thermal equilibrium the functions G and D are re-
lated by the fluctuation-dissipation theorem. Note that
the third pair correlation function (p,ps) is identically
equal to zero.

The effective action I is constructed on the basis of
nonlinear hydrodynamical equations of the system. As
was noted by de Dominicis and Peliti [28], apart from
the terms directly related to the equations, in the ef-
fective action I there appears a logarithm of a functional
determinant which may also be represented as an integral
over auxiliary Fermi fields (see the papers by Feigelman
and Tsvelik [29] and Lebedev, Sukhorukov, and Khalat-
nikov [30], and our book [31]). It can be demonstrated
that for the system under consideration the determinant
is equal to unity because of the causality properties of
the Green’s function G. Therefore we will omit the cor-
responding term in the effective action.

The representation (25) of the correlation function en-
ables us to develop a diagram technique where bare val-
ues of the correlation functions are determined by the
linearized hydrodynamical equations, and the interaction
vertices are related to the nonlinear terms in the equa-
tions. A textbook description of the functional integra-
tion methods can be found in the monograph by Popov
[32].

The dynamics of a pure liquid is described by the con-
ventional hydrodynamical equations (see, e.g., the vol-
ume [33] by the Landau-Lifshitz course). The corre-
sponding part of the effective action is represented as

. dp;
I=— /dt d3r (Vkpi(P‘sik + pvive + Iie) + lel‘pvz) ,
(28)
where p is the mass density of the liquid, v is its veloc-

ity, p is the auxiliary field conjugated to the momentum
density of the liquid pv, P is the pressure, and
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Mix = —7 (V,-f;k + Vii; — gaikvv> —(V¥u. (29)

Here 1 and (¢ are coefficients of the first and second vis-
cosity and

’l.J,' =v; + iTp,‘, (30)
where T is the temperature of the system (expressed in
energy units). This combination will often appear in the
following sections.

The form of the effective action of the liquid in the
presence of membranes immersed in the liquid was found
in the work by Lebedev and Muratov [20]. The method
of its construction is close to the one for Langmuir films
(see the work by Kats and Lebedev [21]). We will use
the results of noted works referring the reader interested
in their derivation to the original papers.

The contribution to the effective action supplied by the
membrane is

I, = —/dtdsr 5(®) | V| (VkpiTsik + %I‘)t—ips”i> .
(31)

The variables figuring here were introduced in Sec. II; we
have omitted in (31) the term nonlinear in v. Although
formally there is a three-dimensional integral in expres-
sion (31), I is indeed determined by the surface integral
due to the presence of the factor 6(®) in the integrand.
The latter term in expression (31) may be neglected. The
problem is that this term is proportional to the frequency
of fluctuations and, consequently, is small in comparison
with the first term in (31) for eigenmodes of the mem-
brane.

In the study of the dynamics of the membrane, apart
from the effective action (31), we have to take into ac-
count the term attributed to the bulk motion of the lig-
uid. This contribution appears as a boundary term after
exclusion of the bulk degrees of freedom from the action
(28). As was demonstrated in the work by Lebedev and
Muratov [20], this term is equal to

Iy, = —/dtd3r5(q>) | V|

Ui (ppic | 0%/ 0] + npi| Vi + Vidr]),
(32)

where the floors, as in (20), designate jumps of the bulk
values on the membrane and i is the potential of the
variable v (30), i.e., the potential part of Vv is equal to
V.

To exploit the contribution (32) for the description of
the surface dynamic phenomena we should express all
quantities entering (32) through their surface values and
derivatives of the values only along the surface. To do it
we have to use a solution of the bulk dynamical equations
which are the extremum conditions for the bulk effective
action (28). This problem is considered in Appendixes B
and C.
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IV. EXPANSION IN U

In what follows we will consider a piece of a membrane,
which may be treated as approximately flat. We will be-
lieve also that in the equilibrium it is arrayed along the
X-Y plane. In this case deviations of the shape of the
membrane from the equilibrium shape can be character-
ized by a displacement u(z,y) of the membrane along
the Z direction. The corresponding function ¢ can be
written in the form

® =2z —u(z,y), (33)
since the condition ® = 0 sets the surface z = u(z, y).

We will derive results concerning the fluctuation dy-
namics of the membrane in the framework of the pertur-
bation theory in . It is a bulky procedure and to make
the text more clear we formulate auxiliary results in the
Appendixes. In Appendix A we present the expressions
derived in the preceding sections in terms of surface vari-
ables, assumed to be functions of z,y like the displace-
ment u. In Appendix B we develop a technique enabling
us to express three-dimensional derivatives entering the
effective action in terms of surface quantities. In Ap-
pendix C we present integral relations for v, v, which we
need to get expressions for these derivatives.

To investigate dynamic fluctuation effects we have to
calculate the integrals of the type figuring in the defini-
tion of the pair correlation function (25). Therefore we
should find the principal terms of the expansion of (A10)
and (A11) in w.

First, we examine the surface effective action (A10).
Taking into account the explicit form (A2) for the compo-
nents of ! and keeping only the principal nonlinear terms
(up to the third order in ) one can find

I, = /dt dz dy [—Bplvzc + Bp||CV2u
4 1 24
+Kp)| (V u— i(Vu) Viu

—%v% [V,yu(Vu)z])} . -

The quantities pjj, p; are defined by (A8) and (A9). Here
and henceforth Greek subscripts designate components
of the vectors along the X and Y axes. Note the symme-
try of this expression with respect to the transformation
u,p| — —U, —P|-

The variables u and ¢ figuring in expression (34) should
be regarded as related to v, v; by the dynamical equation
(A6)

Ou
ot
following from (15) and by the equation following from

(18) and rewritten as (A7). With the accuracy which we
need, the latter equation acquires the form

(35)

=Y
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% = —V2v1 + v"Vzu. (36)

At the derivation of (36) we have used the definition (3)
and have omitted the nonlinear term in the left-hand side
of Eq. (A7). The quantities v and v; are defined by (A4)
and (A5).

The term (A11) supplied by a bulk motion contains the
derivative of the quantity v in the direction perpendicu-
lar to the membrane. Therefore the term (A11) should
be primarily expressed through the surface variables and
their derivatives along the membrane.

First we will consider a region of low frequencies

w < 1ng%/p,

where ¢ is a characteristic wave vector. The expressions
for jumps of the derivatives entering (A11) in this region
are determined by (B19)-(B21). Using these relations
we can find the expansion of (A1l) in u up to the fourth
order. The second-order term is

12 = 4 / dtdz dy (pydy + pid®in + pud®in) . (37)

Here ¢ is the nonlocal operator reduced in the Fourier
representation to the multiplication by an absolute value
q of the wave vector and the components vy, and p;, are
defined by (A5) and (AS8).

Before presenting the third- and fourth-order terms it
is convenient effectively to exclude the variables pi;,vir
from the partition function exp(iI) by its integration over
these variables. Since the variable p;; does not figure in
expression (A10) or (34) for the surface effective action I,
and the variable v;; does not enter the right-hand side of
Eq. (36) for ¢, we should consider only the effective action
I_,. Since I,_, in our approximation is the second-order
function of py;, vir, the integration of exp(iI), is reduced
to minimization of the effective action I,_, over these
variables. After this procedure we get the following terms
of the third and fourth order:

(S — / dt dz dy py (dald, ulda + Vauidad) i

+dn / dt de dy py (i4adV ot + dald, ulda) ), (38)

19 = 2 / dt dz dy (Vu)?p; G- (39)

The square brackets in (38) denote the commutator and
o = —iV4. The arrow in expression (39) means that
on the right-hand side of it we have retained only the
relevant term. The comments concerning selection rules
leading to this expression are given in Sec. V.

Let us discuss now the opposite case, i.e., w > nq%/p.
We will be interested here only in the second-order term
of the expansion of Ij,_.

Using expressions (B31) and (B32) from Appendix B
and substituting these expressions into (A1l) one can
find

3009

I =2 / dt dz dy {/np[pig® (—i®)"/ %5,

+Ptréz(_i&))1/2ﬁtr]
—ipp@§ oy} (40)

Here we introduced the designation & = i9/0t. The first
two terms in (40) originate from the terms with V%; in
(A11) and the last term in (40) comes from the contri-
bution to the effective action (A1l) related to |8y /dt].

The expressions for the effective action given above re-
duce our problem to the conventional field theory prob-
lem. The harmonic part of the effective action deter-
mined by (34), (37), or (40) gives bare correlation func-
tions and the higher-order terms presented by (34), (38),
and (39) give interaction vertices. We should remember
also the relations (35) and (36).

V. BENDING MODE

This section is devoted to the bending mode. Our in-
vestigation is based on the calculation of correlation func-
tions with the partition function exp(:I), where I is the
effective action. Due to the softness of the bending mode
the corresponding effective action I is defined as a sum
of terms (34), (37), (38), and (39), which are correct for
frequencies w < ng?/p.

The bending mode is described by the displacement u
of the membrane in the Z direction and by the auxil-
iary variable p)|. It is. important that the bending mode
is softer than the elastic one. Therefore at the investi-
gation of this mode one may effectively exclude elastic
degrees of freedom from the consideration. Namely, we
should exclude the variables p;, v; and ¢ related to v; by
Eq. (36). To do this we have to integrate the partition
function exp(iI) over these variables. Since this action
and relations (35) and (36) are linear in v; and p;, the
integration of exp(:I) over v;,p;, and < is Gaussian and
gives the partition function exp(il,), where I, is the ex-
tremum of I over p; and v; at the condition (36).

At studying bending mode we may omit the term with
the time derivative in (36). Then we find a relation

G%v = —uV2u. (41)

Since the variable ¢ does not enter the relation (41), we
may find the extremum of I over ¢ without any condition.
As a result, we get a relation between p; and p|. The
explicit form of this relation may be found from (34); it
is

§*pr = —Viup, (42)
analogous to (41).

From (34) and (37) one can find the second-order part
of the effective action I,

I® = —/dtd:z dy (xV2pV3u + 4np49)) . (43)

The substitution of (41) and (42) into (38) does not pro-
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duce essential terms. Therefore the interaction term in
I, originates only from (34) and (39). It is

154) = ——/dt dr dy <2np||(vu)265|,

5B {(Ve)? Vi + vzvauwvaun).
(44)

The sum I,(‘z) + I.(,4) determines the effective action I,
figuring in the partition function exp(:l,). It enables us
to calculate the dynamical correlation functions defined
by (26) and (27).

Namely, we will consider

G = (up”>,

The function D, according to the definition (25), is the
functional integral

D = (uu). (45)

D(t; — t2,r1 —r2)

= /Dqu“ exp (ily) u(ty, 1)y (t2,r2), (46)

and there is an analogous expression for the function G.
The function D is the pair correlation function of dis-
placements of the membrane and G is the susceptibility
determining the value of the average displacement (u)
arising as a response to an external force applied to the
membrane in the [-direction. Namely,

(u(t',rl)) = —i/dt dedyG(t' —t, 7y, — o) fj(t,7a),
(47)

where f| is the surface density of the force.

To determine bare correlation functions we may re-
strict ourselves only to the harmonic part of the effective
action (43). Recall that u is related to v, by Eq. (35).
It is convenient to present a result of calculations for
the Fourier components of the correlation functions (45).
They are

G(w,q) = —(4nqw +irg*) 7}, (48)

8nT
q(16n2w? + £2¢8)

D(w,q) = (49)

Here w is the frequency and q is the two-dimensional
wave vector with the components along the X and Y
axes.

Since G is the susceptibility of the system its poles
must determine the dispersion law of the bending mode.
The function (48) has the pole at the following frequency:

w = —ikg®/4n. (50)

This dispersion law determines an overdamped mode. It

was found in the paper by Broshard and Lennon [22] (see
also the papers [23] and [34]). There is also the relation

D(w) = ~_[G(w) - G(-w)], (51)

which has the meaning of the fluctuation-dissipation the-
orem relating the pair correlation function D to the sus-
ceptibility G.

To investigate fluctuation corrections to the bare ex-
pressions (48) and (49) for the correlation functions (45)
we have to construct the perturbation theory, where in-
teraction vertices are determined by the effective action
(44) [let us also recall the relation (35)]. The first cor-
rections are determined by the diagrams in Figs. 1 and
2. In these figures dashed lines represent the bare cor-
relation functions D and solid lines represent the bare
correlation functions G with the arrow directed from pj,
to u. White quadrangles and dark ones designate the
fourth-order vertices determined by (44).

Using the explicit forms of the functions G and D (48)
and (49) one can find analytical expressions correspond-
ing to these diagrams. The loops in these figures may
be treated as self-energy blocks. After summation of
all diagrams for G and D with these self-energy correc-
tions we find that the functions D and G in this one-
loop approximation are the same as bare functions up
to redefinition of parameters kK — 1,7 — 7; and satisfy
the same fluctuation-dissipation theorem (51) as the bare
functions.

The correction Ak = k; — Kk is

3 dwd?q ,
Ak = —55/ S atD(,a). (52)

The integral in (52) is logarithmic. It can be found ex-
plicitly

3T
Ak = ——1L, (53)
4
where L = In[max(g¢am;wmn)] and @m,,7, are certain

characteristic molecular size and relaxation time, respec-
tively. Note that in the static limit (53) coincides with
(10) for a static renormalization of .

In the same manner one can calculate the renormal-
ization of the coefficient 7. As a result, we obtain

m =n+ An,

where

Tn 1
An= ol =39l

FIG. 1. The first fluctuation correction to the pair correla-
tion function G.
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FIG. 2. The first fluctuation correction to the pair correla-
tion function D.

and g is the coupling constant (7). We have to stress that
such a renormalization of a parameter n does not imply
an increase of the viscosity of the solvent.

Now we can explain selection rules of relevant second-
order terms in u leading to (39) [and consequently to
(44)]. We have taken into account only the terms leading
to logarithmic renormalizations of the parameters « and
7, describing the bending mode, assuming that the value
of the logarithmic factor L is large. Actually, it is not
difficult to perform this selection straightforwardly.

We have investigated one-loop corrections to the bare
correlation functions. The small parameter of the expan-
sion in “loops” is the parameter goL mentioned in Sec. I;
this parameter has to be supposed to be somehow small.
In principle, one can pose a task to renormalize of the
bending mode not for small values of the parameter goL.
If this parameter is of the order of unity, we may not re-
strict ourselves to the first one-loop correction. To take
into account main logarithmic corrections one could hope
to use the renormalization-group theory. Unfortunately
it is not effective in our case, due to the nonlocal form
of the effective action leading to an infinite number of
“charges.”

VI. ELASTIC DEGREE OF FREEDOM

In the preceeding section we have considered the bend-
ing degree of freedom of a membrane. Let us now take
the elastic degree. First we cite the results of a linear
analysis. The linear dispersion law of the elastic mode is
practically identical to the dispersion law for the analo-
gous mode of a Langmuir film [21]

_i\/i—i(Bz)”?‘ 4/
w=——\ 2" q".

i (54)

The difference in the numerical factor is accounted for by
the fact that the membrane is surrounded by a liquid on
both sides. It should be borne in mind that this mode ex-
ists only if the number of molecules constituting the film
is conserved. Apparently, this condition is violated only
for very low frequencies, when the exchange of molecules
between the solution and the membrane becomes rele-
vant.

It stands to reason to study fluctuation corrections to
the dispersion law (54). For the elastic mode the high-
frequency region w > n¢%/p is relevant, where ¢ is a
characteristic wave vector. On the other hand, the fluc-
tuation corrections are related to bending fluctuations,

and therefore (at the same frequency) a characteristic
wave vector of the bending mode estimated from (50) is
k ~ (nw/k)'/3. Comparing k and g one can see that
actually in the whole region of the applicability of the
hydrodynamical approach k& > ¢. Indeed for this in-
equality to be true it should be w <« n°/p3x2, which is
not a strong restriction.

In Sec. V at the investigation of the bending mode we
have exploited the conditions (41) and (42) for variables
p1 and v;. The characteristic frequency of the bending
mode w < nk?/p, and therefore actually we have im-
plied low-frequency components of these variables. In
the high-frequency region the conditions (41) and (42)
are not valid, and we should perform a new procedure.
Namely, the variable ¢ has to be expressed in terms of
other hydrodynamical variables entering the effective ac-
tion. To do this we can use the formal solution of Eq.

(36)

¢ = (%) - (§%v1 + v V2u). (55)

Substituting this expression into the effective action
(34) we get up to fourth-order terms

I = /dt dz dyB(Vzpl + Vap”Vau)B[l
X (Vzv, + %&(Vu)z). (56)

Here we have omitted the terms V,(pVau) and
Va(v) Vau) since they are small over the parameter g/k.
Let us consider now the second part of the surface ef-
fective action coming from the bulk (A11). The analysis
of this term shows that with the same accuracy as at
the derivation of (56) we may restrict ourselves to the
second-order action (40). For our investigation only the
term

I_, = ZW/dt dzdyV.p ﬁvaﬁl (57)

is needed.
The dynamics of the elastic degree of freedom is char-
acterized by the following correlation functions:

('Wpl)wq = Gla (58)

<’U1’U1)wq = Dl. (59)

The bare values of Gy, D; are determined by the harmonic
part of the effective action I = I, + I,—,. Fluctuation
corrections to the bare values are determined by the in-
teraction terms in I). It is convenient to represent these
correlation functions introducing as usual the self-energy
function ¥; and the polarization operator II;, related to
the interaction. In the Fourier representation one can
write

Gi = [Brq*/w — 2i/mp(—iw)/%¢%] 71, (60)

where we have included the self-energy function ¥; into
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FIG. 3. The first contribution to the self-energy function
1.

the quantity Bgr
Bgr = B +iwg™*%;. (61)

The pair correlation function is

Dy(w) = —Gi1(w)[2T v/ 2np|w|¢® + I (w)]|Gi(—w), (62)

where the first term in the square brackets is induced by
the harmonic part of I.;.

The first fluctuation contributions to X;,II; are pre-
sented in Figs. 3 and 4. The dashed and solid lines in
these diagrams have the same meaning as in Sec. V (D
and G functions); the white and dark circles designate
third-order vertices whose structure is determined by the
term (56).

The main contributions to ¥; are represented by the
ladder series of diagrams, depicted in Fig. 5, where quad-
rangles designate the fourth-order vertices determined by
(56). Performing the summation of this ladder series one
can find

B

Bp= —— .
R=1_uBF

(63)
The function F corresponds to a loop in the diagram
constructed from G and D (as is depicted in Fig. 5)

dvd’k ,
= [ — : 4
F / e 1" DWIC( + ) (64)

Using expressions (48) and (49) we find this function
explicitly

F(w) (65)

w

iTV/3 (i)z/“'

= 2r4/3(20)2/3

At the derivation of (65) we assumed that the condition
k& > 1 is fulfilled, which means w > k/(n¢?). Note also
that for a strong renormalization of B to be possible we
have to suppose

£ > «*/(TB), (66)

which ensures that the condition BF > 1 is satisfied for
frequencies w 2 k/(n€3).

'~

FIG. 4. The first contribution to the “polarization opera-
tor” II;.

O+ OO

FIG. 5. The “ladder” sequence of diagrames determining
the principal contribution to ¥;.

In the same manner one can find the main contribution
to II;. It is determined by the ladder sequence of the
diagrams of the type depicted in Fig. 4. The sum of this
series is

H;(w) = %FD(W)BR(LU)BR(—UJ), (67)

where the function Fp corresponds to a loop constructed
from two D lines

dvdk ,
FD(UJ) = / —(§7r)—3q D(v)D(w + v). (68)
There is a relation for the functions F' and Fp following
from (51)

Fp(w)=—-— [F(w) = F(-w)]. (69)

One can check that (62), (67), and (69) supply the
fluctuation-dissipation theorem for G; and Dy,

Dy(w) = —iT [Gi(w) + Gi(—w)]. (70)

The dispersion law for the elastic mode should be de-
termined by the poles of the renormalized Green’s func-
tion G;. If w > (T B)3/?/(k%n), then the renormalization
of B is not relevant, i.e., Bg ~ B, and we obtain from
(60) the bare dispersion law (54) for the elastic mode.
In the region w < (T'B)*/%/(x%n) the renormalization of
B is strong and the renormalized value of B does not
depend on the bare value

Br ~ i/F. (71)

In this case the condition for the Green’s function G; to
have a pole follows from (60) and (71),

2/np(—w)* 2 F = ¢*. (72)

However, Eq. (72) has no solutions on the physical sheet
of the complex plane w. This rather unusual phenomenon
does not lead to any catastrophic consequence since the
response function has the physical meaning only at real
frequencies, and there are no restrictions on types of sin-
gularities at complex w. Therefore the disappearance of
poles of the response function G; does not essentially
change the physical behavior.

The correlation function D is associated with a high-
frequency motion of a liquid, concentrated near the mem-
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FIG. 6. The typical diagram determining a relevant contri-
bution to II;.

brane. Perhaps physically it is more reasonable to exam-
ine the correlation function (¢¢)wq = D.. The expression
for this function can be found directly by means of the
representation (55), but technically it is easier to express
the effective action I in terms of the variables ¢ and
p. conjugated to it. Then the interaction with bending
fluctuations will be determined by I, (57). To find the
main fluctuation contribution to D; we should sum up
the ladder series of diagrams of the type depicted in Fig.
6. We omit the calculations and give only the result for
the region of frequencies w® > g®nx2q'2/p®, where the
fluctuation contribution dominates

_ Fp(w)
" 2(1-iBF(w)[1 —iBF(~w)]’

D (w) (73)
Here the function F(w) is defined by (65) and the func-
tion Fp(w) is defined by (68) being related to F' by (69).

VII. FLUCTUATION CONTRIBUTION
TO VISCOSITY

Above we have examined a separately taken mem-
brane. Now we are going to investigate long-range dy-
namic effects in dilute lyotropic systems related to mem-
branes. We believe that there is a long-wavelength mo-
tion in the liquid and will investigate a response of a
system of membranes to the motion.

For a separate membrane it means that we have to
regard the variables p; and v; in the effective action (34)
as the following sum:

pi > pi+Pi, vi v+, (74)
where the quantities p; and ¥; represent the long-
wavelength motion, and p;,v; describe the motion con-
centrated near the membrane. Let us stress that the
variables p; and ¥; do not enter the contribution I_,
into the effective action related to the bulk motion near
the membrane.

Note that at a description of the long-wavelength mo-
tion we could not use the variables v;, p; which are com-
ponents in the coordinate system referred to the bending
membrane. The fact is that it should be described in the
external (laboratory) Cartesian reference system.

After the substitution (74) we find in the main ap-
proximation from (34) the following contribution to the
effective action containing v, p:

I, = / dt dz dy B(Vapa + VauVep))8; !

x (V,,ﬁa + %a,(vgu)z) . (75)

There are no “cross” terms proportional to pp and so
on in this effective action (75). The fact is that 5 and
o are related to the long-wavelength motion, whereas p
and v are related to the motion of the membrane with
the wave vectors k = £~ !. Therefore these cross terms
vanish at the integration over space coordinates. The
term V,uV,p| entering (75) should be treated as hav-
ing a small wave vector, which is possible for large wave
vectors of u,py.

Above we omitted a term with components ., and 7.
This term originates, for example, from the x-dependent
part of the effective action (31). However, contributions
to viscosity coefficients, induced by this term, are higher
order in g than those related to ps,v, components and
therefore are not relevant.

To characterize the long-wavelength motion we should
find the response function

Gik(t1 — t2,r1,T2) = (Ti(t1,1)Pr(t2, T2))- (76)

This function can be directly related to viscosity coeffi-
cients which we are looking for. Indeed using the defini-
tion (27) and the second-order part of (28) one can derive
the following equation for Gx:

7 ((6t — szzat—l)&ik - [T]Vzts,;k + (%77 + C)V,Vk])

XGrn(ty — t2,r1,T2)

+/dt3 d®r3 Tik(t1 — t3,r1,73)Gin(ts — t2,13,T2)

= —6in5(t1 — tz)(s(rl - 1‘2)- (77)

Here the self-energy function X;; represents fluctuation
contributions caused by the surface term (31). In our
case this term is reduced to (75) related to bending fluc-
tuations.

To find the contribution to ¥;; determined by (75) we
have to sum up the same ladder series of diagrams as is
depicted in Fig. 5. As a result, we find

Sap(w,71,72) = SR 5(21)6(22)
xVaVg[6(z1 — 22)6(y1 — 2)], (78)

where the membrane is believed to be arrayed along the
plane z = 0. More accurately this function ¥,5 should
be associated with a piece of the membrane (with a char-
acteristic size £) which can be considered as roughly flat.

To find a contribution to the long-wavelength charac-
teristics due to membranes we should average expression
(78) over these pieces of membranes. As a result, we
obtain the average self-energy function f)ag (w,r1 —r2),
carrying the information needed for us. The real part of
this function determines corrections to the sound veloc-
ity (or velocities if there are more than one sound mode).
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The imaginary part of £ determines fluctuation contri-
butions to the viscosity coefficients. For dilute systems
corrections to the sound velocity are small (and we will
not consider them), whereas contributions to the viscos-
ity prove to be relevant.

This averaging procedure is most simple for isotropic
phases (sponge or solutions of vesicles). Then

78 ImBR

__ 7 SmBg 7
M=V W (79)

where the factor S/V represents the density of mem-
branes and the numerical factor arises at averaging over
angles. Analogously one can find the fluctuation contri-
bution to the second viscosity coeflicient (. We present
here the expression for the combination of the first and
second viscosity coefficients determining the sound atten-
uation

4 8
-na+Ca = =na- (80)

3 7
Combining the given above expressions for the renor-
malization of the module B one can find fluctuation vis-
cosities in different frequency regions (remember that
in the expressions given below the numerical factors
are associated with the isotropic case). In the region
w > (BT)%/?/(k?n), where Bg ~ B + iB%F we get

7 TB2S

- - =% —5/3
20 R4/3(27])2/3V l w | . (81)

na

Note that, strictly speaking, there is one more inequality
which should be satisfied for expression (81) to be valid.
Namely, we have to suppose w < B%/2/(kn)/2 to neglect
nonlinear terms in the effective action provided by the
surface stress tensor (22) related to Helfrich’s energy (1).
The second region w < (BT)/?/(x?n) is probably more
realistic from the experimental point of view. If (66) is
fulfilled, it is consistent with the inequality w >> x€3/n.
In this region B ~ i/F and

T RIS e

= 82
15 TV (82)

il

For frequencies w < €7 3/n expression (65) for the

function F is not valid, since in this case the region of in-

tegration over k is determined by the characteristic wave

vector of the order of £ 1. If for the characteritic scale £
the condition (66) is fulfilled, then

ReF

Otherwise (when ¢ is smaller than x/vTB)

ReF
B2’

ImB R "~ (84)
The imaginary part of the function F in this low-

frequency region does not depend on w and the real part
can be estimated from (69) and (64)

w w
ReF = ——Fp ~ —n&3ImF
e 7D ﬁnﬁ m (85)
and
ImF ~ T¢%k 2. (86)

Using these estimates and expressions (83) and (84)
we can find the fluctuation viscosity in the low-frequency
region. If the renormalization of B due to bending fluc-
tuations is small we have from (84)

;! S 5,3

— ~ =T .

v ng” /K (87)
If £2 > k%/(TB), i.e., fluctuations strongly renormalize
B, then the ratio of g to the viscosity of the solvent 7
will be of the order of

o KSE
n TV

(88)

For sponge phases the quantity S{/V is of the order of
unity. Therefore the ratio 7g/n ~ g~! and 75 exceeds
the bare value 7 (let us recall that g is a small parame-
ter of the theory). Note also that (87) reveals a rather
unexpected phenomenon of an increase of the fluctuation
viscosity at the dilution of lyotropic systems.

Above we have discussed only isotropic systems. For
other cases our results are also qualitatively correct. For
example, in cubic phases the fluctuation contributions to
the viscosity coefficients will be of the same order as the
ones for the sponge phase (and at g < 1 they exceed the
bare value 77), but the numerical factors in the expressions
for the contributions differ from the ones for the sponge
phase. Lamellar phases need a separate consideration
which we present below.

In the lamellar phases orientations of different pieces
of membranes are not random. They have a preferred
direction characterized by a unit vector n analogous to
the director in thermotropic smectics A. Since the vector [
orthogonal to the pieces is on the average directed along
n after averaging of (78) over the pieces, we obtain a
contribution to the viscosity coefficient 755 determining
the following contribution to the viscosity tensor:

Nag1(8i5 — ning) (6t — nimu). (89)

We use the conventional notation for the viscosity coef-
ficient of a system with uniaxial symmetry [35]. It is not
very difficult to connect the value of 745 with the value
nga found for the sponge phase. Namely,

S ImBpg 15
= —— = —n4. 90
N4fl TV Z nf (90)

w

The fluctuation contribution to 74 is the leading one; it
exceeds the bare value 7. But there are also fluctuation
contributions to other viscosity coefficients of the lamel-
lar phase arising at averaging over the pieces since they
are oriented not precisely along the Z axis. The simplest
way to find the contributions is to use expression (89) and
to take into account fluctuations of the vector n. Apart
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from these fluctuation contributions, there are bare con-
tributions determined by the viscosity of the solvent [co-
efficients 7 and ¢ in (21)]. Using the explicit expressions
for the viscosity tensor of the isotropic liquid and defini-
tions of the viscosity coefficients for the lamellar phase
(see [35]), one can find

4
T)1=§77+C+4N714ﬂ, m2=1n, n3=n+ Nmnas,

2
ms=¢—3n+ 2N a4, (91)

and, of course, 74 ~ 744.

The factor N entering these expressions is related to
averaging over fluctuations of n. It is easy to estimate
this factor using a conventional expression for the elas-
tic energy of smectics and inserting the values of elas-
tic constants of the lamellar phase (see, e.g., review [6]).
Performing this procedure one can find

dq.d’q.  Tqaqp
N5aﬁ = (”anﬁ) = / (21r)3 Bsmq? + in'

(92)

The smectic elastic modules Bsy, and K entering (92)
can be expressed in terms of x and £ [6]

Bsm ~T?/6€3, K ~ k/¢. (93)
The integral in (92) is determined by the characteristic
wave vectors ¢ S €71 and can be estimated by means
of (93) as N ~ g. Therefore this factor is small due
to g < 1, which is the condition of the applicability of
our consideration. But the fluctuation contributions into
viscosity coefficients presented in (91) are of the order
of the bare coefficients 7, (, since they originated from
the large (proportional to g~') fluctuation contribution
to the coefficient 7.

The fluctuation viscosity coefficients we have inves-
tigated in this section directly determine relaxation of
shear motions (since it is the first viscosity that enters
the corresponding dispersion law), sound attenuation,
and other reological and acoustical properties in lyotropic
systems.

CONCLUSION

Let us sum up the results of our paper. We theoreti-
cally investigated dynamical properties of dilute lyotropic
systems for the case when molecules constitute a system
of membranes. The presence of membranes determine
the main peculiarities of these systems including dynam-
ical ones. A membrane possesses two soft degrees of free-
dom associated with its bending deformations and with
variations of the surface density of molecules n, consti-
tuting the membrane. Correspondingly, there are two
characteristic surfacial modes where the motion of the
solvent is localized near the membrane. In the linear ap-
proximation these modes prove to be overdamped (50)
and (54).

We investigated the role of nonlinear fluctuation effects
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in the framework of the mode-coupling theory; bending
fluctuations proving to be most important. We developed
the perturbation theory over a dimensionless parameter
g ~ T/k (T being the temperature and  being the Hel-
frich module) describing the “strength” of the bending
fluctuations, g assumed to be small. These fluctuations
produce only small logarithmic corrections to the char-
acteristics of the bending mode whereas they essentially
modify the dynamical behavior of the elastic degree of
freedom. Namely, the fluctuations drastically change the
frequency dependence of the susceptibility describing the
relaxation of n, to the equilibrium. This renormalization
of the elastic mode manifests itself particularly in a rather
complicated frequency dispersion of the corresponding re-
sponse function. For example, due to fluctuations poles
of this response function in the lower half plane of w dis-
appear. We would like to stress that physically it does
not create any problem since the response function is di-
rectly observable only at real frequencies.

From the experimental point of view eigenmodes of
the system manifest themselves in the behavior of the
dynamical structure factor, which can be measured by
x-ray or neutron scattering. Of course, it is not an easy
problem to observe a motion corresponding to bending
and elastic modes of the membranes due to the pres-
ence of the bulk motion. However, both these contri-
butions (from the bulk and surfacial motions) can be
distinguished, since they have different dependences on
frequencies and wave vectors.

We have also studied the influence of dynamical fluc-
tuations of membranes on macroscopic characteristics of
a system such as viscosity coefficients. The main part of
the fluctuation contribution 75 to viscosity coefficients is
associated with the elastic part of the membrane stress
tensor but strongly renormalized by bending fluctuations.
The value of g possesses a complicated frequency disper-
sion. In the high-frequency region it behaves as w=5/3,
in the intermediate frequency region it behaves as w=1/3,
and for small w it remains constant. The ratio of this
constant to the viscosity of the solvent is of the order of
g71, i.e., na exceeds the viscosity of a pure solvent. For
this assertion to be correct the inequality (66) should be
fulfilled. Owur results are in agreement with the experi-
ment [36] where the ratio nq/7 exceeding unity has been
observed in the limit of a very dilute sponge phase.

An attempt to estimate a membrane contribution
to the low-frequency viscosity of lyotropic systems was
taken in the paper by Onuki and Kawasaki [37]. But
their estimates (giving a fluctuation contribution of the
same order as the viscosity of the pure solvent 7) are in
fact related to the linear coupling between the membrane
modes and long-wavelength degrees of freedom, which is
actually nonexistent. There are only fluctuation contri-
butions to viscocity, the principal one (which we have in-
vestigated in this paper) being of the order of g~'7n and,
besides, there are contributions to the viscosity related to
the x-dependent part of (22), these contributions are of
the order of gn and therefore small. The authors of paper
[38] using some qualitative arguments discussed fluctu-
ation contributions to the viscosity for lyotropic phases
and found the frequency dependence analogous to our ex-
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pression (82). But the coefficient figuring in their expres-
sion contains a small dimensionless factor dg/€ (where d
is the thickness of a membrane) in comparison with our
result (82), and therefore their term is negligible.

Note also that the contribution to the viscosity coef-
ficient 13 of lamellar phases (which is the same order as
the viscosity of the solvent) found in Sec. VII is the most
plausible reason for the discrepancy between the values
of k, found in the paper [39] from the relaxation times
of the long- and short-wavelength modes characteristic of
lamellar phases.

We believe that our predictions can be checked more
clearly in acoustic experiments. The problem is that the
fluctuation contribution to the viscosity we have found di-
rectly determines the attenuation of the sound. Another
favorable circumstance is the hardness of a sound, at a
given frequency w the sound wave possesses a small wave
vector ¢ = w/c (c being the velocity of sound). There-
fore in acoustic experiments it is possible to measure a
wide region of frequencies without breaking the condition
g€ < 1 employed at the derivation of the expressions for

A
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APPENDIX A: PARAMETRIZATION
OF SURFACE QUANTITIES

In this appendix we give relations for the surface quan-
tities derived in Secs. I-III in the reference system where
the position of a membrane is characterized by the dis-
placement u of the membrane in the z direction. Let us
stress that the use of u does not mean that we have to
confine ourselves to small displacements u. All relations
given below in this appendix are formally exact ones. The
only restriction is that the function z = u(z,y) must be
single valued.

At the taken parametrization all the functions charac-
terizing the membrane should be treated as functions of
z,y. For example, we will assume that the quantity n,
is a function of z,y. The velocity v, of the membrane in
this case is related to the three-dimensional velocity v of
a liquid by the following way:

'Usi(x»y) = vi(:l:vy’u)‘ (Al)

Note that now only the derivatives along the X,Y direc-
tions appear in terms determined by the surface quanti-
ties.

Since the function ® is now determined by expression
(33), the components of the unit vector (14) perpendic-
ular to the membrane are

Vau 1

a = T T T lz:

V1t (Vu)?

(A2)
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With the use of the introduced quantities the energy (1)
can be rewritten as

Q, = /da:dy V1+(Vu)?

x (g (Vala)® + g[(vala)2 - valﬁvﬁza])
(A3)

Instead of Cartesian components of v, it is convenient
to introduce new variables according to the following def-
initions:

v = 1+ (Vu)zlivsi = Vg7 — Vol Vgqa, (A4)
1
= ———(’U“la + VQ'U[ + GQﬂV[BUtr)- (A5)

Here we have used the subscript || to label the compo-
nents of the corresponding quantities along the unit vec-
tor I, the subscript ! labels the components longitudinal
and the subscript tr labels the components transverse to
the wave vector and €,g is the two-rank antisymmetric
tensor
€zy = —€yg = 1.

Using these definitions and Eqgs. (15) and (19) one can
easily find that

and % - (A6)
6—n‘3+v Van :—L(Vzv + v Vala)-
ot saValls \/1_"”—(—'7)2 all IVata

(AT)

Note that the component v, does not enter the right-
hand sides of exprssions (A6) and (A7). Actually it was
a motivation for such definitions of v; and vy, in (A5).

It is also convenient to determine components of p,
analogously to definitions (A4) and (A5),

P = 1+ (Vu)zlipsi = Psz — Vaupsou (AS)

1
s = T/ la + Va + €x v r)-
p (V) (7 Pt + €apVPir)

Then the surface contribution to the effective action (31)
can be rewritten as

(A9)

I, = /dt dzdy | -BpVis =P BsVala

-}-h'/p“ (—ViVJW
HalgVaVaValy + ValalgVaV, 1,
1
~ValaVsl,Vyig + 5(v(,la)3)}. (A10)

Note that the component p;; does not enter expression
(A10). This fact is related to the isotropy of the mem-
brane. The contribution (32) in the new terms is written
as
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Fooe = — / dt o dy [opy|99/0t] + 20| Vy3:] + 1(Byle + Va1 + asVapie) (1Y) 3] + Vaul Vi ))],  (A1D)

where V|| = IV and the floors as before, designate the
jumps of the corresponding variables on the membrane.

Formally exact expressions (A10) and (A11) derived
above will be a starting point of our investigation of fluc-
tuation dynamics of membranes.

APPENDIX B: EXPRESSIONS
FOR DERIVATIVES

In this appendix we derive expressions for derivatives
of the quantity v defined by (30) near the membrane.
These relations have been used in Sec. IV in the analysis
based on expression (A1l). To derive these expressions
we must use an equation for v which is the extremum
condition of the bulk effective action (28). This equation
should be solved for a given shape of a membrane and at
a given surface value of v. We will derive formally exact
relations enabling us to find the relations by expansion
in the displacement of the membrane u along the Z axis.

It is convenient to represent v as

0; = Vi + a;. (B1)
Here 9 is the potential of ¥ and & is the rotational part of
v. The bulk motion for the problem may be investigated
in the linear approximation. In this case the extremum

conditions which we need may be written in the following
form (see [20]):

V2 =0, (B2)
Via = d,a, (B3)
where
_ro
@_n&.

Note that these equations are formally identical to the
bulk hydrodynamical equations for the velocity v.
First we will consider the case of low frequencies w

w < ng*/p, (B4)
where ¢ is a characteristic wave vector. Although, as a
consequence of (B4), the term on the right-hand side of
Eq. (B3) is small, it may not be omited. The problem
is that at d; — 0 Eqs. (B2) and (B3) for ¢ and a lead
to an equation V2V = 0, the solution of which for an
arbitrary surface value of v does not possess the property
of “incompressibility” V - ¥ = 0 following from (B1) and
(B2). Therefore we should take into account the terms
proportional to d;, but we may keep only the terms linear
in dt'

_ We are going to exploit relations for the derivatives of

v and & near the membrane in terms of surface operators
L, M,

l

| Vot s = La Y]+, (B5)

|V.a]|y =Li|a)s + My|dia)s. (B6)
Here | |+ designates the value of a corresponding variable
“above” the membrane and | |- — “below” the membrane
with the vector I [components of which are defined by
(A2)] marking the “top” of the membrane. These quan-
tities (e.g., |#]+) are believed to be functions of z,y and,
consequently, the operators L, M in (B5) and (B6) should
be regarded as acting on such functions as well.

The method of the deriving explicit expressions for
Ly, M. is described in Appendix C. It should be stressed
that for the derivatives dtﬁ,Vinl;,dgé, V;a the same re-
lations as (B5) and (B6) for 9,a are valid. The prob-
lem is that the equations controlling the dynamics of the
derivatives of 1,a are the same as (B2) and (B3) for these
quantities themselves. For example,

(V20 |s = Ly |V, 9] 4. (B7)
From (B1), (B5), and (B6) it follows that
|Vabi)s = L | 9]+ + M| dedis ]+ (B8)

Relations for the derivatives V, along the X and Y
axes will be also needed for us. Using the definition
|A]+ = A(z,y,2 = u £ 0) we find the relation

|[Vad |t =Vq4|A|+ — Vau|V AL, (B9)

valid for any function A. Applying the relation to the
variables 1,a, we find

|Vat]+ = N4, (B10)

|Vad)s = NE|a)|s — VouMy|dia) 4, (B11)
where

NE=V,-V,uls. (B12)

The relations (B10) and (B11) enable us to deduce from
(B1),

|Vabi|+ = NI 5]+ — VouMy |ded; ] +. (B13)

It is not difficult to check that at the condition (B4)
there is an estimate ¥/a ~ nw/(pg?), which is the conse-
quence of an almost degeneracy of Egs. (B2) and (B3).
Therefore #; < V;4,a;, i.e., a; ~ V¥ and with the ac-
curacy needed for us from (B8) and (B13) we get

|Vati)e = La|8i)a — My |Vidith )+, (B14)
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|Vadi)+ = N5 |+ + VouMy | Vidith] 4. (B15)

Exploiting the relations (B5) and (B10) for d;% we derive
from (B14)

|Vob, )+ = La |9, )e — MeLi|deh)s, (B16)
| Vi)t = L |Pa)t — MeNE|ded) . (B17)

Taking into account the incompressibility condition
V.0, + Vabe = 0, we find from (B15) and (B16)

(MiLly — VouMoNE)d| s = Lo |0, )s + NE|5a) 2.
(B18)

This relation enables us to express Ldn/:]i and then
|V.9;]+ through the value |¥;]+ figuring on the right-
hand sides of (B16)—(B18).

Substituting expressions (C5) and (C6) into (B18) [re-
member the definition (B12)] and solving the result-
ing relation, we may find the expression for I_dt'/.’Ji up
to the second order in w. This expression is bulky
enough. We present here an expression for the differ-
ence |dip|y — |diyp|_ figuring in the effective action
(A11). Keeping only relevant (namely producing loga-
rithmic renormalization; see Sec. V) terms of the second
order in u we find

.
(/) {a—’fJ = —440, + 4GV uie

—4i4q [(i: u]ﬁa + 4Vﬂquaéﬁ‘j_lﬁa
—2(Vu)?§v,. (B19)

The arrow in this expression means that we restrict our-
selves to the relevant second order terms. Remember
that | | designates the jump | |+ — | |-. Substituting
this expression into (B16) and (B17), we find in the same
approximation

l_V“i}zJ = —2Vgugig — ZV;;Uéa(qu_lﬁa, (B20)

|V 98] = —2G0p — 2Gadsd ™ 'Ta + 214a§ ' Vauidad.
+24[q_1a u]iéﬁéﬁz + 26_1 [qA, u]iqﬁdﬁz
—247 'V 5ug?s,

+2(Vu)2§is + 3(Vu)?Gadsd 'va. (B21)

In the conclusion of this appendix we will consider a
situation occuring at “high” frequencies defined by the
condition

w > nqg®/p, (B22)

opposite to (B4). Then, in contrast to the previous con-
sideration, near the membrane
a~ VY~ v, (B23)

but

V,a> Vta, (B24)
where V; is defined in (17) and V| =1 - V. The reason
is that V+&a ~ ga, and therefore a solution of Eq. (B3)

at the condition (B22) gives

Via= FV/d:a,

(B25)

where the upper sign corresponds to points above the
membrane and the lower sign to points below the mem-
brane. The operator v/d; in the Fourier representation is
reduced to a multiplier

V —iwp/n,

where the function /—iw is positive on the positive imag-
inary semiaxis and has a cut along the negative imagi-
nary semiaxis. We see now that the condition (B24) is a
consequence of (B22).

The inequality (B24) together with the conventional
relation V - a = 0 leads to a condition

l-a=0. (B26)

Therefore | - v = Vm];. The derivative LV”J;Ji may be
expressed through |4 ]+ by means of the relation

[ViA)e = I+ (V)| VAl +laValAls, (B27)
valid for any function A. This relation is a consequence

of the definition V|, = I -V and of (B9). Note that

the expressions for Lz in the frequency region (B22) are
the same as above, since Eq. (B2) does not contain d;.
Therefore

9]+ = (v1 + (Vu)2ls + lava)’lu v]i, (B28)

which is a consequence of (B5) and (B27).
At the condition (B22) there is Vv = V| a and, con-
sequently,

LV ¥]x = FVde|a) 2. (B29)

Here we have taken into account the softness of the bend-
ing mode, which enables us to neglect terms with d,u
arising at deriving (B29) from (B25). Formulas (B28)
and (B29) solve the problem, since, as a consequence of
(B1) and (B26) we find

I.aZJi =U,, — L+ L‘l/)J:ta
@)+ = Vsa — Va W;J:}: (B30)

Here v, is the surface value of the variable v, which is
continuous on the membrane.

Let us consider the term |V V)1 zero order in u. In
this case from (B26) one can deduce that @, = 0 and
from (C5) and (B28) it follows that

|P]+ = F4 9. (B31)
Then from (B30) we find

laa)+ = Tea £ Vad ™ 9.
Using these relations we find from (B29)
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V)Bal = LV)Tal+ —

= —Vdy(|a)+ + |Ga)-) = - (B32)

The terms of I_V“ﬂi of higher order in u will not be
needed for us at frequencies (B22).

LV)1%a] -

diV,a-

APPENDIX C: INTEGRAL RELATIONS

In this appendix we formulate integral relations for so-
lutions of (B2) and (B3) making it possible to formulate a
procedure for deriving expressions for the operators LM
figuring on the right-hand sides of (B5) and (B6).

For any function ¥ satisfying the Laplace equation
(B2) one can get the following representation:

(C1)

vector normal to the surface. Below we will believe this
surface to be determined by the position of the membrane
and therefore ! is the unit vector determined by (A2).
Recall that | |+ designates the values of a corresponding
variable “above” and “below” the membrane. _

Expression (C1) gives the value of the function % at
any point r’ below the membrane as an integral over sur-
face values of the same function |4]_ and its derivative
I_V“'(/J_]_. In the same manner from (B3) we may derive
a relation

sma(r') = /d.S' (%[V”éj_ + I—{R'—ftaj_)
+%/d$ (RLV”dtéJ_ + %[dﬁaj_), (C2)

valid up to the first order in d;.

swile') = [as (F909)-+ o).

Here the integration is performed over an infinite surface,
r’ is a point “below” the surface, V| =1-V and R =
r —r’, where r is a point of the surface and I is the unit

To derive a relation for the quantity |_1/JJ_, which will
be needed for us, we should take in (C1) the point r’
approaching to the membrane from below. Then after
the Fourier transformation over x,y we find

j
209)-@0) = [dedy [ L expl-iaRa — aR)VIF (V0 [19y0)-+ (L o0) )], (09
where Ry = ra — 1/, and R, = u(ra) — u(r",). Performing the same procedure for (C2) we get
20a)_(z',y) = / de dy / (‘212‘§2 exp(—igoRo — qR.)
xy/1+ (Vu)? [% V&) + (lz + i‘(’1—"1.,) &
_.%[(qu—2 +q7%) |V ded) + Rog2l,|did)
+ (R.q7 % + ¢7%) laiga| dia] _]] . (C4)

To deduce from the relations (C3) and (C4) the expressions for L and M figuring in (B5) and (B6) we should
first perform the substitution (B27). Then the combination |V,0a/8t]_ ensuing from (C4) should be substituted by
L|8a/8t| _, since the term with M may be omitted as a term of the second order in d;. And finally we should express
the integrands in (C3) and (C4) through the left-hand sides of these relations, i.e., to convert the corresponding integral
operators. Unfortunately, in the general case the result of this procedure cannot be represented in the compact form.

We will be interested in the first terms of the expansion of (B5) and (B6) in u. These terms may be derived explicitly
after the expansion of the relations (C3) and (C4) in u and by converting these relations step by step. Keeping only
terms of the zero, first, and second order in u, we find

Ly =% (g, uld + (Vo)*d+ 5dlu, [u,dld, (C3)
e = ;mrl + 5dld ™l + 507l
1 2172V +2(Ve)* " - 47w, [w, 4114 — v, (v, @116 - dlu, [v,47 14} - (Cs)

We have introduced here the operator §, = —iV,, and the nonlocal operator §, which corresponds to the multiplier ¢
in the Fourier representation. The square brackets here designate the commutator (e.g., [§,u] = §u — u§). Formulas
(C5) and (C6) give the expressions for points on the both sides of the membrane.
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