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Turbulent Dynamics of Polymer Solutions
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We study properties of dilute polymer solutions. The probability density function (PDF) of polymer
end-to-end extensions R in turbulent flows is examined. We show that if the value of the Lyapunov
exponent l is smaller than the inverse molecular relaxation time 1�t then the PDF has a strong peak
at the equilibrium size R0 and a power tail at R ¿ R0. This confirms and extends the results of J. L.
Lumley [Symp. Math. 9, 315 (1972)]. There is no essential influence of polymers on the flow in this
regime. At lt . 1 the majority of molecules is stretched to the linear size Rop ¿ R0, which can be
much smaller than the maximal length of the molecules due to their back reaction.

PACS numbers: 83.50.Ws, 05.40.–a, 47.27.– i, 61.25.Hq
Dynamics of dilute polymer solutions is an important
subject both from theoretical and practical points of view.
Possible applications rely mainly on the fact that low con-
centrations of polymer molecules can lead to substantial
changes in hydrodynamics. The most striking effect re-
lated to polymers is probably the so-called drag reduction
in turbulent flows. A consistent explanation of this effect
is a long-standing question [1]. One believes that the drag
reduction is related to the effective increase of the viscos-
ity due to the presence of polymers [2]. Here we address
some aspects of this phenomenon.

An important underlying property of polymers is their
flexibility [2–5]. At equilibrium, a polymer molecule coils
up into a spongy ball with a radius R0. For dilute solutions
with concentrations n satisfying nR3

0 ø 1, the influence
of equilibrium size molecules on hydrodynamic properties
can be neglected. When placed in a flow, the molecule is
deformed into an elongated structure of ellipsoidal form
which can be characterized by its end-to-end extension
R. Since the number N of monomers in a long-chain
polymer molecule is large, R can be much larger than R0.
It explains why minute amounts of polymers can produce
an essential effect. It was shown in [3] that in sufficiently
intensive flows polymer molecules get strongly extended
due to stretching. This is the key mechanism providing
an essential back reaction of the polymer molecules on
the flow.

Here we consider turbulent dynamics of polymer so-
lutions. We assume that R is always much smaller than
the viscous length of the turbulent flow ry . Therefore,
molecules can be treated as immersed into a spatially
smooth external velocity field [4]. In this case the dy-
namics of polymer stretching is determined only by the
gradients of the velocity. Since the gradients in turbulent
flows are correlated at the viscous length, all the molecules
inside regions with size of the order of ry are subject to
the same gradient, and therefore are stretched coherently.
0031-9007�00�84(20)�4765(4)$15.00
As long as one can neglect the hydrodynamic interactions
between molecules, the problem is reduced to dynamics of
a single molecule.

We investigate the behavior of polymer molecules with
the extensions R satisfying R0 ø R ø Rmax, where Rmax

is the maximal size of the polymer. Random walk argu-
ments show that the entropy of such molecules is quadratic
in R in this interval, which leads to Hooke’s law (see, e.g.,
Ref. [6]). That is why one can expect a linear dynamics of
the molecules. Even though hydrodynamic interactions of
monomers make polymer’s dynamics inherently nonlinear,
the interactions can be neglected for elongated molecules.
This expectation is confirmed by recent experiments with
DNA molecules [7] where an exponential relaxation of
a single molecule was observed. Numerics and theoreti-
cal arguments presented in Ref. [8] also show the linear
character of the molecule dynamics for R0 ø R ø Rmax.
In experiments [7] a number of the molecule eigenmodes
have been seen. We will take into account only the mode
which has the largest relaxation time t, because the other
modes are harder to get excited in turbulent flows.

A starting point of our theory is the dynamic equation
for the vector R which can be defined, say, via the in-
ertia tensor (per mass of a monomer) RaRb of the elon-
gated molecule. Then R determines the orientation and
the largest size of the molecule. We assume the following
dynamic equation for the vector (cf. Refs. [2,5]):

d
dt

Ra � Rb=bya 2
Ra

t
, (1)

where t is the relaxation time. The velocity gradient must
be taken at the molecule position. The role of nonlinearity
in the extended equation for R (and in the system of equa-
tions for N coupled beads) is examined in Ref. [9]. For
our purposes this nonlinearity as well as the thermal noise
is irrelevant (see the discussion below).
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To get rid of inessential degrees of freedom respon-
sible for the orientation of the molecule we write R � Rn
passing to the absolute value R of the vector R. Then we
obtain from Eq. (1) (cf. [10])

dr

dt
� z 2

1
t

,
dna

dt
� nb=bya 2 zna , (2)

R � R0 exp�r�, z � nanb=bya . (3)

We see that the evolution of r is determined by the scalar
function z which is a functional of the velocity field.

For turbulent flows where the velocity randomly varies
in time one should use a statistical approach. A natural
first step is to take the polymers being passively embed-
ded into the fluid, disregarding their back reaction on the
flow. We will demonstrate that there is a wide region of
applicability of this approximation. Neglecting the back
reaction we can treat the velocity dynamics as independent
of polymers. Then z , defined by Eq. (3), is independent of
r. We will not specify the velocity statistics. Irrespective
of its character one can use the large deviation theory (see,
e.g., Ref. [11] devoted to different aspects of Lagrangian
dynamics in turbulent flows). The scheme presented be-
low is valid for any random flow. Integrating Eq. (2)
we get

r�t� � r0 1 z 2
t
t

, z �
Z t

0
dt0 z �t0� , (4)

where r0 is the value of r at t � 0. One should keep in
mind that the expression (4) for r is correct if one can
neglect the presence of the boundaries R0 and Rmax where
Eq. (1) is violated.

The integral z in Eq. (4) possesses some universal prop-
erties for times much larger than the correlation time tz of
the random process z . For turbulent flows tz can be esti-
mated as the characteristic time of the Lagrangian motion
on the viscous scale, which coincides with the characteris-
tic inverse strain on this scale. For t ¿ tz the variable z
can be considered as a sum of a large number of indepen-
dent variables. Then in order to establish the statistics of
z for fluctuations near its mean value one can use the cen-
tral limit theorem. If we are interested in large deviations
from the mean, a more general formulation is needed (see,
e.g., [12,13]). Namely, the PDF of z can be written as the
homogeneous function

G �t, z� �
1

p
2pDt

exp

∑
2tS

µ
z 2 lt

t

∂∏
, (5)

l � �z �, D �
Z

dt0 ��z �t�z �t0�� 2 l2� . (6)

“The entropy density” S is a functional of the velocity sta-
tistics. It is impossible to calculate S without knowing
the statistics explicitly. Fortunately, only general proper-
ties of S (such as positivity and convexity) are needed for
us. The central limit theorem is reproduced by Eq. (5)
if to consider a vicinity of the entropy maximum where
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S�x� � x2��2D�. The constant l defined in (6) is the prin-
cipal Lyapunov exponent of the turbulent flow, which is the
average logarithmic rate of growth of the distance between
two initially close Lagrangian trajectories.

As follows from Eq. (4), G�t, z� determines the condi-
tional probability that r�t� has the value r0 1 z 2 t�t

provided r�0� � r0. Therefore one can write the equa-
tion

P �t, r� �
Z

dr0 G�t, r 2 r0 1 t�t�P �0, r0� (7)

for the PDF P �t, r�. In the stationary case P is t in-
dependent and Eq. (7) can be treated as a relation de-
termining the PDF. Writing P as the Laplace integral
P �r� �

R
da exp�2ar�P̃ �a� we observe that the con-

volution in Eq. (7) becomes a product and the equation
can be easily resolved. The value of P̃ �a� is nonzero ifZ dx

p
2pDt

exp

∑
ax 2 tS

µ
x
t

1
1
t

2 l

∂∏
� 1 . (8)

Apart from the trivial solution a � 0 this equation defines
a uniquely.

Since t ¿ tz , one can use the saddle-point approxima-
tion in calculating the integral (8). It gives the condition

a � S0�b 1 1�t 2 l� , (9)

where b is the saddle-point value of the ratio �r 2 r0��t.
Equating the integral in the left-hand side of Eq. (8) (cal-
culated in the same approximation) to unity we get the
equation for b

S

µ
b 2 l 1

1
t

∂
2 bS0

µ
b 2 l 1

1
t

∂
� 0 . (10)

It is important that b is independent of t and r. Solving
Eq. (10) and substituting the result into Eq. (9) we find
the exponent a. The trivial solution b � l 2 1�t of
Eq. (10), corresponding to a � 0, should be discarded.

We conclude that a single component P̃ �a� is nonzero
and therefore P �r� ~ exp�2ar�. Recalculating this dis-
tribution of r into that of R we obtain the power tail of the
PDF of the molecule size R

P �R� � Ra
0 R2a21. (11)

For positive a the normalization integral
R

dR P �R� is
determined by small R, which means that the majority of
molecules has nearly equilibrium size. On the contrary, the
normalization integral diverges at large R if a , 0. Then
the majority of molecules is strongly stretched.

Another way to obtain the result (11) is to consider the
typical fluctuation making the largest contribution into the
tail of the PDF. Starting from a nearly equilibrium shape,
that is from r0 � 1, the velocity stretches the molecule up
to r ¿ 1. The contribution of fluctuations with stretching
period t is equal to G�t, r 1 t�t�. It has a sharp maxi-
mum at time t� determined from dG�t, r 1 t�t��dt � 0.
This condition gives t� � r�b. The probability density
is thus dominated by fluctuations with stretching period
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t�. It is proportional to G�t�, r 1 t��t� which reproduces
Eq. (11) with a given by Eq. (9). Note that the character-
istic value of the velocity gradient for the relevant fluctua-
tions is given by z � r�t� 1 1�t and is of the order 1�t.

Let us establish the dependence of a on the control pa-
rameter, which is the strength of velocity fluctuations at
the viscous length measured by the Lyapunov exponent l.
As l tends to zero, the function S�x� contracts to x � 0
and therefore a tends to infinity, which implies strong sup-
pression of the tail. It is quite natural since in a weak flow
the molecules are only weakly stretched. Note that even
for intense flows the Lyapunov exponent l is suppressed
in the regions where the rotation rate dominates the strain
rate. As l increases, the exponent a decreases and at a
certain level of fluctuations approaches zero. If l is close
to 1�t then one can use the quadratic approximation for S
which leads to the law

b �
1
t

2 l, a �
2
D

µ
1
t

2 l

∂
. (12)

We see that a changes its sign at l � 1�t. Thus the
majority of molecules becomes stretched when l . 1�t.
This can be interpreted as the criterion for the coil-stretch
transition in turbulent flows discussed in [2,3,14].

We can use Eq. (7) only if r and r0 belong to the
asymptotic region between zero and rmax, where Eq. (1)
is valid. The saddle-point approximation used above gives
r0 � r 2 bt. Thus the above scheme works only if t ,

t� � r�b (here we assume b . 0, i.e., a . 0). Then
the polymer molecules spend most of the time fluctuating
near the equilibrium shape, occasionally getting stretched
by strain fluctuations which overcome the elastic reaction.
The fluctuations leading to a given R have the duration
t� � r�b. Since b tends to zero when l ! 1�t one
should observe a critical behavior t� ~ jl 2 1�tj21 in
accordance with Eq. (12). We see that in the vicinity of
l � 1�t the time t� is much larger than tz which justifies
our scheme. Similar considerations are valid for a , 0.

One can generalize the scheme taking into account a
number of molecular eigenmodes. Since the critical value
of l is determined by the inverse relaxation time, then in
the vicinity of the critical value corresponding to the prin-
cipal mode, the other modes are at most weakly excited.
However, they can be important at larger l.

The rest of the paper is devoted to the discussion of the
back influence of the polymers on the flow. A consistent
investigation should be based on the complete system of
equations coupling turbulence with polymers. One of these
equations is the modified Navier-Stokes equation

�≠t 1 y=�ya � 2=ap 1 n=2ya 1 =bPab , (13)

where Pab is the polymer contribution to the stress tensor.
Equation (13) should be supplemented with the equation
describing dynamics of Pab . In the considered case, Pab

can be defined as a sum of stresses of polymer molecules
in a volume divided by the mass of the fluid inside the
volume [15]. We are interested in the situation when the
molecules are strongly elongated. Then due to Hooke’s
law the stress of such a molecule is proportional to RaRb .
Next, taking the volume smaller than the viscous length
we deal with coherently elongated molecules. Therefore
the stress tensor can be written as

Pab � P0 exp�2r�nanb , (14)

where na is a unit vector, P0 exp�2r� is the principal
eigenvalue of Pab , and the elongated molecules corre-
spond to r . 0. Then from Eq. (1) we get the same
Eqs. (2) for r and n, where d�dt should be understood
as the material derivative ≠t 1 y=. Thus the velocity y is
now coupled to r and n via Eqs. (13) and (14). Note that
the constant P0 in Eq. (14) is proportional to the concen-
tration of the polymer molecules.

Let us consider the PDF of R not assuming that the
flow is unperturbed by the polymers. We start from the
case lt , 1. One recovers Eq. (11) if the back influ-
ence is small, i.e., P ø n=y for the relevant fluctuations
characterized by =y � 1�t. Since P ~ R2, the polymer
contribution in the stress tensor grows with R and the
inequality P ø n=y is violated for the molecules with
R * Rback. The value of Rback can be found from the
estimate n�t � P0R2

back�R2
0 . For R * Rback the back

reaction switches on and suppresses the velocity fluctua-
tion. Hence, the probability of fluctuations producing
R . Rback is small and therefore at R * Rback the PDF
decays much faster than prescribed by Eq. (11).

Now we study the case l . 1�t. For R ø Rback
the polymer stress tensor is small and as explained above
velocity is decoupled from the elastic degrees of freedom.
Since stretching is stronger than the elastic force, R grows
for any typical velocity realization. On the other hand,
at R * Rback the polymer stress influences the velocity,
suppressing it strongly for sufficiently large R. This leads
to a decrease in R. Therefore, the majority of molecules
has sizes near an optimal size Rop . Rback. The PDF is
an increasing function of R at R , Rop and decays fast
at R . Rop . In this state velocity gradients can be esti-
mated as 1�t [16]. This can be proven, e.g., by aver-
aging Eq. (2). It means that the Lyapunov exponent of
the solution is smaller than that of the solvent at the same
energy input. The energy dissipation is related mainly to
the polymer stress tensor and hence Rop grows as the
input of energy increases [16]. The effective viscosity
defined as the proportionality coefficient between P and
=y, also grows. Note that there exists an interval where
Rop ø Rmax. This contradicts the widely accepted view
that at some level of turbulent fluctuations there is a sharp
transition between the state where most of the molecules
have R � R0 and the state where all the molecules are
stretched up to Rmax.

We conclude that for a . 0 (i.e., l , 1�t) the
end-to-end extensions of the majority of molecules are
of the order of the equilibrium size R0, and there is no
4767



VOLUME 84, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 15 MAY 2000
essential contribution to the stress tensor. For a , 0
(i.e., l . 1�t) extensions of most of the molecules are of
the order of Rop ¿ R0. Then the polymer stress tensor P

is estimated as P0R2
op�R2

0 . Its value can be much larger
than the viscous contribution nl [16].

The above analysis implies that Rback ø Rmax since
at R � Rmax one must consider nonlinear corrections to
Hooke’s law and hence to Eq. (1). The condition Rback ø
Rmax is realized for sufficiently high concentrations of
polymers. Then the fluid displays non-Newtonian prop-
erties. When most of the molecules are stretched up to
Rmax but the back reaction is not switched on, one has a
Newtonian fluid whose properties do not differ signifi-
cantly from the properties of the solvent. This is the case
for very dilute solutions where P ø n=y.

Since a turbulent flow is multiscale, the real picture is
more complicated. We have shown that the main charac-
teristics of the flow that determine the behavior of polymer
molecules is the Lyapunov exponent l, which is defined
at the viscous scale. Hence, the dynamics of a molecule is
sensitive to the fluid motion at the viscous scale whereas
the velocity varies over a wide interval of scales. There-
fore the Lyapunov exponent varies in time and space over
scales from the inertial interval. We thus have an “inter-
mittent picture”: In the regions where l , 1�t one deals
with a Newtonian fluid with the viscosity n of the solvent,
whereas in the regions where l . 1�t the polymers are
strongly stretched and the effective viscosity can be much
larger than n.

As the Reynolds number Re increases, the relative vol-
ume of the regions with l . 1�t increases and the aver-
aged (over space) viscosity grows. The average value of
Rop also grows. After it has reached the value of the order
Rmax, the back influence cannot grow anymore. It means
that the effective viscosity first grows and then decreases
back to the solvent value n. Note that the effective vis-
cosity varies smoothly without onset. As a consequence,
the drag reduction also varies smoothly with Re, having a
maximum at some intermediate value. Experiments seem
to confirm our picture (see, e.g., [17]).

To avoid misunderstanding let us stress that we con-
sider conventional turbulent flows which have the inertial
interval of scales. In the inertial interval the polymer
back reaction is small compared to the nonlinear term
in Eq. (13). In principle, in some region of parameters
the back reaction can be stronger than this nonlinearity
everywhere and the properties of the fluid are dras-
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tically different [18]. This case requires a separate
analysis.
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