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Nonuniversality of the Scaling Exponents of a Passive Scalar Convected by a Random Flow
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We consider a passive scalar convected by a multiscale random velocity field with short yet finite
temporal correlations. Taking Kraichnan’s limit of a white Gaussian velocity as a zero approximation
we develop the perturbation theory with respect to a small correlation time and small non-Gaussianity of
the velocity. We derive the renormalization (due to temporal correlations and non-Gaussianity) of the
operator of turbulent diffusion. That allows us to calculate the respective corrections to the anomalous
scaling exponents of the scalar field and show that they continuously depend on velocity correlation
time and the degree of non-Gaussianity. The scalar exponents are thus nonuniversal as was predicted
by Shraiman and Siggia on a phenomenological ground. [S0031-9007(96)00157-3]

PACS numbers: 47.10.+g, 05.40.+j, 47.27 —i

The most striking feature of turbulence is its intermit- exponents/, of the scalar were universal for the delta-
tent spatial and temporal behavior. Statistically, intermit-correlated velocity.
tency means substantial non-Gaussianity. For developed Now, what is the role of velocity temporal behavior
turbulence, where the correlation functions are scale inin building up intermittency of the scalar field? It was
variant at the inertial interval of scales, the intermittencyargued phenomenologically by Shraiman and Siggia [7]
is manifested as an anomalous scaling of correlation funghat the exponents of the scalar field depend on more
tions. That means that some random field, ) has the details of the velocity statistics “than just exponents.”
structure functionsS,, = (0(t,r;) — 6(t,r)) ") = rl%” Here we consider the simplest possible generalization of
with the exponents,, that are not equal tm{,. As  Kraichnan’'s problem and consistently derive the equations
a result, the degree of non-Gaussianity, which may béor scalar correlation functions in the case of short yet
characterized by the rati§,, /S5, depends on the scale. finite velocity correlation timer,, which is supposed to
Experiments and simulations show that the anomaloube a power function of the scale The behavior of the
scaling of the scalar field passively convected by a fluid igatio 7, /¢, is important, wherer, is the turnover time
much more strongly pronounced than the anomalous sca#t the scaler. If the ratio tends to zero at decreasing
ing of the velocity field itself [1—3]. It is in the problem r then we return to theS-correlated case. If the ratio
of a passive scalar where consistent analytic theory of aimcreases at decreasing we encounter the problem of
anomalous scaling starts to appear [3—7]. It is intuitivelythe quenched disorder type, which should be considered
clear that the physical reason for scalar intermittency iseparately. We consider the marginal case of a complete
a spatial inhomogeneity of the advecting velocity. Theself-similarity wheree = 7,/t, does not depend anand
analysis of the velocity field with smooth inhomogeneity formulate the perturbation theory regarding the ratio as
shows, however, that there is no anomalous scaling of théhe small parameter of our theory. We show thiatloes
scalar (actually, no scaling at all since all the correlatiomot depend ore while ¢, for n > 2 are e dependent;
functions are logarithmic) whatever be the (finite) tempo-that is, the set of the exponents is nonuniversal along with
ral correlations of the velocity [4,8,9]. Analytic treatment the prediction of [7]. The principal difference between
of a nonsmooth velocity was possible hitherto only in thethe second and higher correlation functions is naturally
scale-invariant case for the so-called Kraichnan's probexplained in the language of zero modes: There is no
lem of a white advected scalar [4] where the correlatiorzero mode (except constant) for the pair correlator while
functions satisfy closed linear equations of the second oithe zero modes of the high correlators depend on the
der [8]. It has been shown [5,6] that, even without anyprecise form of the operator of turbulent diffusion which
temporal correlations, spatial nonsmoothness of the vdas e€ dependent. This is formally similar to what has
locity provides for an anomalous scaling of the scalarbeen discovered by Kadanoff, Wegner, and Polyakov in
The anomalous parts appeared as zero modes of the de theory of phase transitions: The critical exponents
erator of turbulent diffusion and entered the correlationcontinuously depend on the amplitude of the operator term
functions due to matching conditions at the pumping scalvith dimensiond added to the Hamiltonian [10,11].
[5-7]. The coefficients at the modes were thus pumping Note that the results below cannot be directly applied
dependent while the form of any zero mode was univerto the description of scalar advection by a Kolmogorov
sal, i.e., determined only by the exponent of the veloc{urbulence: Because of the sweeping effect, the different-
ity spectrum and space dimensionality. In particular, theime velocity statistics is not scale invariant in the
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Eulerian frame [12]. Our use of a scale-invariant velocitytegrand of (7) is nonzero far— 7 = 7, and consequently
is intended to establish the general fact of the sensitive exy [+ di’ P(r')] can be expanded over— 7. The zero
dependence of scalar exponents on the velocity statisticsierm gives

The advection of passive scaléfz,r) by an incom-

pressible flow is governed by the equations No(t) = Wi ()VE vf(O)Vf}. (8)
(9, — P)o = ¢, P(t) = —v*V* + V2, The first and second terms of the expansion produce the
Ty = 0 1 linear in7, contribution

where « is the coefficient of molecular diffusion. The &) = ftdt1|: ftl dtz[v?*(t)V'?‘UZ(tl)VZvﬁ(tz)
advecting velocityv and the sourcep are independent 0 0 - ' -

random functions. A formal solution of (1) is X vfgx(o)vgl + z?(t)V?FZ(h)
, - X VT (1) VEE (0)V4]
0(t,r) = f dnT exp([ dt’P(t’)>¢(t1,r), (2)
= 2 + mgg(zl)v?v@f(owf] 9)

whereT exp designates the chronologically ordered expo-

nent. From (2) it follows where the products 7 andv v should be substituted by
_ the corresponding pair correlation functions.
Fult.r1, ... 10) = (0(1,11) -+ 0(1,120)) For a short-correlated velocity field, the leading non-
(! ! L Gaussian contribution to the correlation functions vof
. dty - Y dton A lj1 ¢(iri) ). () s determined by the irreducible part of the fourth-order
" correlation function ofv. Generalizing the trick leading

A = (D), Ot) = ﬁTexp(ftdtlfﬁ’(t;,ri)). 4) from (5) to (7) we obtain the non-Gaussian tefNj(7):
i=1 ti

t I3
. a a. M mop B
Differentiating A over the current time, one gets j;) dt, ]0 Ao v (Vi v () Viev; () Vv (0)VID,

R R R (10)
0 A = (P00), P = (—viVE+ VD), (5
i where double angular brackets stand for the cumulant.

wherev; = v(t,r;) andV; = 9/dr;. Below summation The operator/A () is exponential in time

over both repeated vector superscripts and subscripts
enumerating points; is implied. The identity (5) can
be brought to the form

A@r) = exfd(t — 10) (kV? + L)] A1) (11)

asymptotically at — 7o > 7,. Substituting (11) into (6),
R R % R R expanding ex@’ L ), and keeping only the principal terms
9, At) = kViA(®) + jo di' N (1) A(t — ¢'), (6) we find the operator of turbulent diffusion

A A 5 = A A A/ A
where N (¢) is to be found. The decay ofN (¢) is L=Lo+ Li+ Li+ L, (12)

determined by the velocity correlation time which is 7 _ °"d X

supposed to be much smaller than the spectral transfer o1nGy = | - df 0.106)(1),

time characteristic of (3). It is the reason why the upper "

limit in (6) can be substituted by infinity. o L] = _] dt tNo(1) Lo .
We shall find the first terms of the expansion &f 0

in 7.. Let us first examine the Gaussian contribution
to 9, A related to reducible correlation functions ef

It is well known that at Gaussian averagikgf(x)) =
(x®y(af/ox). Generalizing the trick for the case of the
operator product we obtain

Using (3) and (11) we obtain an expression §oF,. For
the pumpingé correlated in time, one gets

9 F,(t,ry,...,r) — an(t,rl,...,Qn)

t t = M[x12F,_1(t,13,...,12,) + permutationd. (13)
. a a 1D (4 BB A7

[ divi )V <T exp{f; drP()]u; 0V QU)DG’ Here the functiony(r2) = [dt{¢(t,r))¢(0,r,)) decays

(7)  on the pumping scalé and x(0) is the production rate

of #?. The operator’M in (13) can be estimated as

where the producy?(t)gf(i) should be substituted by A(r.). The account of temporal correlations of the
the pair correlation functiofw®(z,r;)v?A(7,r;)). The in- pumping (which can be done perturbatively as long as

3708



VOLUME 76, NUMBER 20 PHYSICAL REVIEW LETTERS 13 My 1996

the pumping correlation time is much less than the timg2 — y)/z — 1. Their normalization is fixed by expres-
of scalar transfer) results in extra renormalization of thesions (15) and (18) below. The main term in (12) is [8]
M operator. Its explicit form is unimportant for what
follows. Indeed, the balance equation (13) contains the Lo =— ZK()“B(W)V?“VE
renormalization (due to velocity temporal correlations and 7 A
non-Gaussianity) of all three relevant quantities: pumping, o
turbulent diffusion, and molecular diffusion (the last term  &(g” = 2[ dtK*R (1), (14)
in 2N7). We discuss here only the scaling exponents 0
in the convective interval of scales (see below) that are «f ry(d 1=y g ror
determined solely by the form of the operator of turbulent XKo" = Dr y(ﬁfs ) ) (15)
diffusion L.

Let us consider the pair correlation function of the Expressions (14) and (15) lead to the turnover time=

velocity to be scale invariant: (2 — y)r*/Dyd(d — 1) obtained for the delta-correlated
case [4,6]. Our marginal case corresponds te y and
[w*(t,r) — v*(0,0)][v (t,r) — v*(0,0)]) the small parameter of the perturbation theory is thus
= 2K*P(t.1), e =Dr L 7ydd — 1)/2 —y) < 1. (16)
Ka,B_Dr_ aaﬁ_rarﬂ m . . .
I 2 81 7 Note thate containsd?, which tells us that the space di-
mensionality should not be very large for the approxima-
+5a,8g”(m>] tion of a short correlation to be valid: The characteristic
Tr time of the scalar transfer (proportionaldo?) should be

larger than the correlation time.
with the correlation timer, = 7,(r/L)*. Dimensionless Starting from the expression for the pair velocity
functions g, and g satisfy the incompressibility con- correlator we can obtain the first Gaussiarcorrection
dition (d — 1)g, (x) = zx*d[x'"“g)(x)]/dx wherea =  to (14) by calculating (9) and then integrals in (12)

1 . 1
L+ Li=- > KelLKEOVEVEY — EZB[;VV,”VJ? - % > vixiivev?,
i,j,k i,j i,j,k
B() = KPR~ KIGRE 2

dt VﬁVf[l dt, Ka’g(tz;l') ] dt; K’lw(t3; l')
0 I3t 1

- f dt Ka“(lz;l’)f dt; Kﬂv(t3;l'):|, (17)
13 L
I
wherek i ?* = VEKSP Ky = V#V;’Kﬁfﬁ,and tion £, has the same scaling too. The first consequence
o is that the exponent of the pair correlation function
Klaﬂ(l’) = 2[ dt K*B(t,r) is y at arbitrary finite order ine for any y and d.
0 Indeed, there is no zero mode of the two-paihtwith a
, d+1 Fo B nonzero positive exponent that could provide an anomaly.
= Dr VT,( 5%F — 2 ) Contrary, forn > 2 the account of thes contributions

to the bare operator, should produce obviously-
BB (r) = 6Dr2y|:b”5a,8 + bi<5ag _ r“gﬂ>:|. dependent corrections to the exponents of zero modes
r and consequentlg-dependent anomalous scaling. This
(18) is similar to exponent nonuniversality due to marginal
variables in renormalization group [10,11,13].
To illustrate the above conclusion about thedepen-
Now we can analyze Eq. (13) faF,. At the con- dence of the scalar exponents, let us give an example
vective interval of scaled > r > [«(2 — y)/D(d — where the calculation can be done explicitly. We consider
1)]"/2=7), the molecular diffusion term can be dropped:a large dimensionality [the limity > (2 — y)/d solved
It is enough to requird”, = 0 atr = 0 [5,6]. Here, the in [6,14] for 7 = 0] while assuming that, in addition to
zero modes ofL are responsible for the anomalous scal-(16),1/d > € (it will be seen below how the parametgr
ing of F,,. The scaling exponents of the bare operatorenters the condition). The leading @i terms of the bare
£, and the perturbation operatdr; + £ coincide. For and Gaussian perturbative operators in terms of relative
self-similar velocity statistics, the non-Gaussian contribudistances-;; are as follows [multiplied by2 — vy)/dD]:
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R 1=y A -y 5 1 2—yTipLjg
Lop = dzrij rips Loy = Zrij (rijog; — v0ij) — > Z rij dipdjq
i>j i>j ij.p. FipTiq
A €d2 — y) 0) 1-
£1,() = 7|:Z rdy +y — 1+ 2b rij 78,‘]‘,
Y k>l i>j
A e(y — 2)|: <r,pr]p 2 1= TipTig >
L, = Y9.,0,0y + —24 Y k00100
1,1 8’)’ Z FipTiq ij Ty ipOjpOkl TipTlq rljrkl kpOlqOij
LipPik (( 2—y 2 — v (0) 2-yLipLjq 1—y
+ 4 ——\r + }’”}”lk a,,,a,k + 4b|| Z + 16 Z Tij }"klal‘jakl
TikFjp 2 TipTijq i>j k>l
(1) (0) (0) 1-
+ [16 - 4’)’ - S(b” + bj_ b” )]Zrij ya,‘ji|. (19)

i>j

I
The summation is performed over(n — 1)/2 dis-
tances, which are independent variablesdif> n —
2. For the chosen form ok*A(z,r), by — (2 — y) X
b)"a> + b a?, b, — 2 — y)pd* at d — o, with

d-independent constanb%)l. First, we calculate the cor-

rections to the exponents related to (19) and then discuss

the corrections due to non-Gaussianity.

Solving the equation for the pair correlation function
one can check that, = vy independent ofe and d.
Then we consider the four-point correlation function. To
get the main contribution at << L one has to perturb
the bare zero mode ofo,o + fo,l- In the limit under
consideration, it is enough to consider the mode

Z(rt?;_rkyl)z_1/22(7‘2;_"1‘)]/()2’

{i.j.k.1} {i.j.k}
with the leading exponent\4(0) = 4(2 — y)/d found
in [6] by the 1/d expansion. The firste correc-

(20)

Now let us discuss the non-Gaussian contribution. We
denote bye, the ratio of the cumulant to the fourth-order
correlator and consider > 1/d > e;d*. Using (10),
(12), and (13) we conclude that the contributionXtg is
proportional ton(n — 1)e4d? for n < yd.

To conclude, we learned that the scalar exponents are
¥ensitive to the details of the velocity statistics. The
existence of two different contributions (due to temporal
correlations and non-Gaussianity of the velocity) makes it
possible that there exist some classes of the statistics with
special relations between the contributions their analysis
is left for future studies. Hopefully, real turbulent flows
belong to those classes and analytic expressions for the
scalar exponents can be found some day.
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tion to (20) can be obtained by applying the opera-

tor —£00(£10£00 L()l + .£01.£00 .E]()) to Z,. The

correction to the exponent is determined by the coefficient

at In(L/r) in the firste contribution toZ,

€2 -y 2

—_— = 2y9).
dy YY)

We can also calculate-related corrections for the high-

Ay(e) = A4(0) + (4 + 6y (21)

order functions by using the technique developed in [14]

for finding the largest exponent. For< yd,

Azy(€) = n(n — 1)A4(€)/2. (22)
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