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Comment on “Exact Results on Scaling Exponents is simply convected rather than grows in 2D guarantees
in the 2D Enstrophy Cascade” that at any realization there are no fast instabilities that
may destroy the validity of linear approximation before
In an interesting recent Letter [1], Eyink establishedthe logarithmic tail appears. The relative share of the per-
some inequalities imposed on short-distance exponentsrbation in any vorticity correlation function thus grows
{, of the vorticity field in 2D,{[w(r) — w(0)]?) « ré.  downscales. That means that the hypothetical solution
This is important because the 2D Navier-Stokes equatiowith ¢, > 0 is structurally unstable with respect to the
may allow for many statistical steady solutions providingpumping variation. Note that the possibility of having so-
for a direct vorticity cascade. The analysis of decayindutions steeper than Kraichnan's, yet with the main strain
turbulence presented in [1] is thus interesting because bgue to small scales discussed in Eyink’s Reply [9], seems
preparing different initial data one may hope to observeo be rather slim yet probably worth exploring (the above
different exponents at the small-scale limit. However, theBatchelor argument could not be applied to such an exotic
discussion of forced turbulence in [1] seems to be outdatedase yet the general approach with the structural instabil-
as far as the universality of the short-scale asymptotics igy should be applicable: There should exist some corre-
concerned. In our paper [2] (published before submissiotation function of the perturbation that decreases slower
of [1]), the new yet rather simple physical argument isthan that of the main spectrum). The stable solution could
presented which shows that the asymptotics are universdie found among the logarithmic regimes with= 0, Vp,
Moreover, not only are al, shown to be zero (i.e., wherew(r) — w(0)]?) =« (Inr)Br. By discovering a hid-
the regime is logarithmic), also the new formalism thatden small parameter (ratio of stretching time to correla-
has been developed gives the powers of logarithms fation time of the stretching), the controllable formalism has
all correlation functions [2]. Let us explain here why a been developed in [2] for the description of a logarith-
general large-scale pumping produces a universal smalinic regime. By requiring self-consistency of the solution,
scale logarithmic regime. we show thaiB,, = 2p/3 (for p = 1, that has been con-
The idea of the proof is to show that the logarithmicjectured earlier by Kraichnan [3]). Such logarithmically
regime is the only solution structurally stable with re-renormalized Kraichnan’s spectrum is neutrally stable with
spect to the pumping variations. The absence of less steepspect to the pumping variations (see Appendix A in [2])
spectra (with, < 0) trivially follows from the fact that and it represents the universal small-scale asymptotics of
such solutions would be local, i.e., their exponents wouldhe steady forced turbulence.
be possible to obtain from dimensional analysis which This work was supported by the Rashi Foundation and
gives{, = 0 nevertheless. Therefore, all the spectra sugby the Minerva Center for Nonlinear Physics. We are
gested as an alternative to Kraichnan's logarithmic regimgrateful to G. Eyink for the useful discussion.
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