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UANTUM COMPUTATION AND
SPIN ELECTRONICS
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Figure 1. Above: Two coupled gquantum dots, between which electrons can tunnel with
amplitude t. This tunneling leads to an effective spin interaction .J ~ t* /7 (where 7 is the
on-zsite Coulomb repulsion) between the excess spins 51 and S2 in the dots, which can be
controlled by a number of external parameters. In principle

, any type of tunnel-coupled

1itum computing proposal. E.g.,
nal electron gas (as suggested by
this drawing), or they can be vertically coupled dots, or even atoms, ete. Below: Concept
for quantum-dot array device.

Lo BN Bat




 We concentrate on sufficiently resistive superconducting
constrictions  “X”  where individual Bogolybov
guasiparticles can be trapped in discrete Andreev bound
states. We refer to such system as Andreev Quantum
Dots (AQD). An AQD resembles a common quantum dot
as long as discreetness of a (quaisi)particle number,
spectrum and spin is concerned. Albeit in contrast to a
common quantum dot the charge of the AQD is not fixed.
This allows for superconducting current In the
constriction and makes electron-electron interaction
negligible. We propose to utilize spin states of the
AQD's. We show that an AQD can be brought to the
state with spin-1/2 that persists over a long time...



In general, Andreev levels are spin-dependent...

Bogoliubov eigenfunctions are made of two spinors [17]
u®, v [coefficients of the Bogoliubov transformation [16]

W(r,o) =3, (un(r,0)vn + g7"v} (r, n)y))] that satisfy
cu® = H®

o a3 2 (1)
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Here “hat” denotes an operator over orbital degrees
of freedom. We make explicit the spin structure of
the single-particle Hamiltonian H and pair potential A,
gap = to? being metric tensor in spinor space [17],

(ﬁ*)o‘ﬁ = g’/o‘([?[’/u)*guﬁ. By virtue of Eq. (1) quasipar-
ticle energy levels always come in pairs: each eigenstate
with energy = has a counterpart with energy —e. This
is due to a double-counting: there are two quasiparticle
eigenfunctions per each state of H. Should H possess no
spin structure, Andreev levels are spin-degenerate.




 From Eq. (1) follows:

e a) Andreev levels are symmetric with the respect
to the Fermi energy, so in equilibrium at zero
temperature there are as many empty Andreev
levels above as occupied levels below;

* b) Andreev levels in superconducting junctions

satisfy the relation:

they are even functions of f if spin orbit
Interaction Is disregarded.



 spin splitting of Andreev levels by
magnetic/exchange field in a ballistic
superconducting junction with few open orbital
channels:

COS [{. Ene — TG, o i h — 2 arccos iF Xej A ?] = COS ‘ e ?

whereo =+land 7, . =L/vp



We concentrate on a short constriction, such that the
typical time for an electron 7. . to traverse the junc-
tion satisfies the condition 7., < fi/A. In the limit

Tosene 2/ — 0, and in the absence of magnetic field An-
dreev levels are spin-degenerate and can be universally

expressed [19] through eigenvalues T,, of the transmission

fl ght

matrix square, €y, n,: o = sign(ng)A\/l — Ty, sin®(p/2).
Here the integer index n; labels orbital channels, ny =
+1, 0 = +£1 is spin-index and ¢ stands for the supercon-
ducting phase difference between the leads.




SXS: Andreev levels

e Andreev levels that are relevant for electron

transport, and for manipulation of spin states,
originate from T, =1. These levels are distributed In
energy strip ?cos(f /2)<|e|<?. Their typical
spacing is given by dE~G4R, R being the normal
state resistance of the constriction, G,R being the
conductance quantum. In the ground state of the
dot, quasiparticles occupy Andreev levels with
negative energy. The f -dependent part of the
ground state energy reads E;=1/2?7 .e.. ?(€. ).



Stabllity of the AQD Y2-state

The spin-1/2 state of an AQD with the lowest energy (that
corresponds

to the most
transparent
transport
channel)

IS of particular
Interest

because it is very
stable.
The transition

to ground state require the %2 change of spin. This means
that a quasiparticle must either leave or enter the AQD. The
probabilities of these processes contain exponentially small
factors exp(-?/T), this means that at zero temperature the
AQD would remain in spin-1/2 forever.




How to set the AQD to spin-1/2
state?

e Possibilities include microwave irradiation and

guasiparticle injection.
D+e, <Aw < 2D.

Theirradiation quanta takes place in the constriction only.
. Both quasiparticles appear in bound Andreev states
. lil. One quasipartilce appears in a bound state whereas another one
acquires energy >D and gets to the extended state. The latter
guasiparticle leaves the AQD amost immediately and never comes
back.
The outcome of 11) isthus one extra quasiparticle in the AQD. Therefore, at a give
moment of time there is either odd or even number of quasiparticles in the AQD.
Let us now switch off the irradiation. If there is an even number of quasiparticles
in the AQD, the subsequent energy relaxation will drive the system to the ground
state. For an odd number of particles, the relaxation will result in a single
guasipartice occupying the lowermost Andreev level. This means that with roughl
50% probability the system ends up in the spin-2 state.




How to detect the spin-¥2 state?

 The energy of a spin-1/2: e .>0.
 The current equals to:

 The change from the ground to spin-1/2 state is manifested as a change
of supeconducting current by a value of

« The detection of such current jumps in superconducting constrictions
would amount to the direct experimental observation of the spin-1/2
state.



How to detect spin in the spin-Y
state?

EY = Aler, - o) sin(y

t] 11'

~ A/h |a| 21

flight —



Spln manlpulatlon In the AQD

Zeeman sllttlng
H — E(Z)(}y + ESQ)s, ) — (],‘ T> I b‘ l>

1) (C(i)S(Qt) + i sin(Qt) (B9 /m)) _
—| 1) sin(Qt) (E%) /hQY),

he) = \/(E(‘--C"OJ)Q_F(E(Z))Q

£(2)
Q)

I.(t) = 2sin?(Qt) (



How the Andreev gquantum dots
can be utilized for universal
guantum computations.

 An AQD In the spin-1/2 state would be a
gubit.

 XOR operation.
« The XOR operation does the following:
given two qubits in the states |[x>, |y>, It

leaves the |y> state unchanged if |x>=|?>,
while flipping it when |x>=|7>.



How the Andreev quantum dots can be utilized for
universal quantum computations.

 The basic idea is to
organize the
Interaction between
AQD's via inductive
coupling between
SQUID loops
containing these

AQD’s. I192 = 17 5+17 557 5




How the Andreev quantum dots can be utilized for
universal guantum computations.

Thi= simple Ising-tvpe form of Hamiltonian brings as
to the old-fashioned but solid BRI EL 1eal” cuaIbnIn conr-
puter [26]. In this approach. the one-bit operations are
performed at Hys (0 by pulses at resonant frequen-
cies Hy/h or Ha/h, the pulse duration being tuned to
achieve the spin flip. The XOR operation is performed al
H1a # 0 by the same pulse with frequency (Hy + Ha )/ k.
An alternative way 1s to nse non-oscillating pulses of
J'rl'rjg_".ﬁ. Sueh |||||:~'w-. wiottld shif ||||:|m'r~' ol two states with
antiparallel spins with respect to the phases of the states
with |3"rl.|"rl.||"| :»‘|-'|||-= this I'L'il.“.-’.ill_:, oIt |I|I'rl.'=i' shif
gate” [27]. The XOR operation can be performed by
combining two such phase shifts with two rotations of

the tarcet spin.




advantages

e This approach of organizing two-qubit interactions has
two important practical advantages.

 First, In contrast to other spin-based proposals, the
Interaction does not have to be organized at microscopic
level. To exaggerate, one can use inch-scale
transformers to vary inductive coupling between the
AQD's. To make a practical suggestion, one can use the
well-developed techniques of SQUID circuitry to couple,
array, bias, and measure many AQD qubits.

« Second advantage is the simple Ising form of the
resulting interaction that prevents undesired phase shifts
and simplifies design of complicated quantum circuits.



conclussions

« To conclude, we analyze prospectives of
Andreev  quantum dots for spin
manipulation and quantum computing. Our
theoretical results seem to be promising
enough to launch detailed experimental
Investigations and design efforts In this
direction.

e N.M. Chtchelkatchev and Yu. Nazarov,
Phys. Rev. Lett., 90, 226806 (2003)



PRL referees about SXS AQD:

e Spin-orbit interaction breaks time-reversal
symmetry and Cooper pairs. Thus, “for a
material made of heavy nuclei” one may

nave pair breaking in the superconducting

panks. This issue should be addressed, at
east briefly.







Subgap tunneling in a system of
two coupled N-S (F-S) contacts.
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Assumptions of Falci et al:
1) the bias is much smaller than the superconducting gap.

. (5. Falei, D, Feinberg, F.W.J. Hekking. Europhysics
2) The superconductor is clean. g O b e

kR, Melin, J. Phyvs.: Condens. Matter 13,

G. Deutscher, D). Feinberg, Applied Physics Letters 76,
LET (20007, Geds (20071);

Result of Falci et al: G12 — 3x..f-'1I2(I/]_gO)‘X..ﬁ:() =0

Our assumptions:
1)  The bias is smaller than the superconducting gap.

We find analytically I, ,(V,,V,) more or less in any tree-terminal layout with
two terminals weakly coupled to the superconductor.

I,(Vy,Va = 0) = 0 for [V4] < A

in particular :
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charge current

spin current +
charge current




solution of 8 x 8 linear system
equations. Analytical progress can be made. It fol-
lows that if there is no barrier at NS boundaries (ex-

cept A) T.,(0)/T..(0) < (A/Eg)? for any thickness d

krdcos(0,) = mn,

NS boundaries in addition to A (i.e., insulating layers)

However if there are barriers at

then the situation changes completely: at certain choice
of #, when quasiparticle energies are much below A:
L., ~1.., and

(2)

1., o
(...)dcos? 0.

where (...
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- the hamiltonian: H=H 1+ H o + H s + H 7. where
H, 5 refer to the electrodes N; and No, and Hg to the
superconductor. The tunnel Hamiltonian Hyp, which
we u:-11»~1df:-1 as a pﬂtml:.-atmu is given by two terms
Hp = H ¥ % H 5 " corresponding to one-particle tun-
neling t.iu-:_ﬂ_.lg,il ea.n,h tunnel junction. These terms are
oiven by:

¥ {a;“' Dby + h.c. } (4)

.I\'-.I_]'

where indices ¢ = 1, 2 refer to normal (ferro) electrodes;
(%)
tf* )

iy

k = (k,o) in normal lead N; to the state p = (p,o’)

is the matrix element for tunneling from the state

. A1) I

in the superconductor. The operators @, and b, cor-
respond to quasiparticles in the leads and in the super-
conductor, respectively.




Fig.5 a) Direct Andreev tunneling (Andreev reflection).
b) Crossed Andreev tunneling (Andreev transmission).,
and ¢) Elastic Cotunneling (normal transmission).
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Calculation of Z¢4:
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E(CA) (f) —

/d'ﬁLz /dXLQP(XlJﬁ;XQ?ﬁQj)X

~ 8n%etug
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0(X1, X
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Spin current




Finally we consider a FISIF junction. 1t was
shown in [5] that in this junction I5(V;,0) # 0 and
I5(V1,0) changes its sign when the ferromagnetic ter-
minals change their orientation from parallel to an-
tiparallel. It was also noted in [5] that the cross
conductance Gio = 0Oy, I5(V1,0)|y, =0 1s suppressed as
1/(kpr)? when the characteristic distance between the
ferromagnets r < £. In dirty regime there is no con-
ductance suppression at Ap-scale. Consider, for in-
stance, the layout sketched in Fig. 1b; the width d

5. . Falel. DL Feinberg, F.W.J. Hekking., Europhysics
Letters 54, 225 (2001); K. Alélin, D. Feinberg, cond-
mat /01063289; R, Melin, J. Phys.: Condens. Matter 13,
G445 (2001 );



T

hus 1t 15 practically more convenient to measure finite

ef

minal to the other through the superconductor when 1t

1S

ects related to subgap current injection from one ter-

dirty rather than clean. In dirty case the terminals

are not restricted to be as close as Ap like in clean case
but closer then ¢ > Ap.




Conclusions (XSX)

Consider two normal leads coupled to a superconductor; the first lead is biased while the second one and
the superconductor are grounded. In general, a finite current I3(V].0) is induced in the grounded lead 2 it
magnitude depends on the competition between processes of Andreev and normal quasiparticle transmission

from the lead 1 to the lead 2. Tt is known that in the tunneling limit. when normal leads are weakly coupled to
the superconductor, Ia(Vy.0) =0, if |V /A — 0 and the svstem is in the clean limit. In other words, Andreev

and normal tunneling processes compensate each-other. We consider the general case: the voltages are below
the gap, the syvstem is either dirty or clean. It is shown that f2(V7,0) = 0 for any distance between the normal
leads; if the first lead injects spin polarized current then fs = 0. but spin current in the lead-2 is finite. Thus
XISIN structure, where X 1s a source of the spin polarized current, can be applied in spintronics as a filter
separating spin current from charge current. We do an analvtical progress calculating the current-voltage
characteristics: fy(Vy, Va). Ta(Vy. Va).




