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Outline

• Electron energy and phase relaxation in a Fermi
liquid

• The effect of magnetic impurities on electron 
momentum and phase relaxation

• Electron energy relaxation facilitated by magnetic 
impurities

• Quenching the impurity dynamics by a magnetic 
field or RKKY interaction: consequences for 
conduction electrons

Preprint cond-mat/0305240; PRB 67, 115310 (2003); PRL 86, 2400 (2001)



Electron in a Fermi-liquid

1. Electron relaxation in a “clean” Fermi liquid

“form-factor”
(3D metal)



Electron in a Fermi-liquid

2. Electron energy relaxation in a “dirty” Fermi liquid

Particles diffuse instead of moving ballistically, 
stay together and interact for a longer time

1979 Schmid; 
Altshuler, Aronov

1D wire:



Electron in a Fermi-liquid

3. Evolution of an electron distribution: kinetic equation

collision integral kernel



Electron in a Fermi-liquid

d=1 or 2: e-e collisions are quasi-elastic, phase is lost faster than energy

(Altshuler, Aronov, Khmelnitskii 1982)

: Temperature dependence of magnetoresistance

: Relaxation of out-of-equilibrium electrons

4. Electron phase relaxation in a “dirty” Fermi liquid



Experimental layout: Results:

Cu wire

Experiments on Energy Relaxation: Cu



Silver Cu

“

”

Experiments on Energy Relaxation: Ag vs. Cu



Energy Relaxation in Ag, Cu, and Au wires
F. Pierre et al., JLTP 118, 437 (2000) and NATO Proceedings (cond-mat/0012038)
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Electron Phase Relaxation in Ag, Cu, and Au wires

MSU-SACLAY collaboration
Gougam et al., 
JLTP 118, 447 (2000)
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Effect of magnetic impurities on the electron transport

1. Interaction of a conduction electron with a magnetic impurity

Anderson impurity model Exchange interaction model, νJ0=Γ/|H0|

Ud�|ε0|�Γ

2. Scattering off a magnetic impurity (Born approximation)

Scattering is elastic, but scrambles electron spin 

Contribution to the momentum 
and phase relaxation rates:

(saturates at low T)



3. Scattering in the leading logarithmic approximation

Effect of magnetic impurities on the electron transport

[Kondo (1964)]

(1)

es
(2)Sum of the leading log-terms (Abrikosov; Suhl, 1965):

Kondo temperature:

Scattering is still elastic!

Contribution to the resistivity and phase 
relaxation rate:

L
aborde, SSC

om
. 71’



Inelastic scattering off a magnetic impurity

1. Simplest inelastic process in a toy model

only two electrons in the band,
el.1 el.2 imp

Born
2nd order

T-matrix:



Inelastic scattering off a magnetic impurity

Energy transferred in the collision:

Scattering cross-section:

2. Full 2nd order perturbation theory result

Total cross-section
averaged over : 



Inelastic scattering off a magnetic impurity
3. Dressing the bare diagram: relaxation of the impurity spin

= + + …

, depends on the electron distribution
(generalized Korringa relation)

Scaling is 
preserved



Inelastic scattering off a magnetic impurity
4. Kondo renormalization of the inelastic scattering

+ + …

Leading log approximation:

,

The dependence on         is weak, and the kernel can be simplified, if 
the electron distribution          is smooth



Inelastic scattering off a magnetic impurity

Scaling is intact at eU� TK, where the ln-factors are almost const

At E,eU� TK: back to FL behavior,

(energy-independent)



Energy relaxation:experiment vs. theory

Experiment:
Observed scaling of f(ε)
suggests K(E)} 1/E2.

Theory:
Magnetic impurities lead to
K(E)} 1/E2.
For Fe impurities in Au, it is
sufficient to have  n} 10ppm

Experiment:
SACLAY samples did contain Fe impurities with n up to } 30ppm



SACLAY vs MSU Au samples
Pierre et al., in Kondo Effect and Dephasing in Low-Dim. Metallic 

Systems (cond-mat/0012038)
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Kondo effect: R(T) = A - B log(T) ⇒ nFe≈ 50 ppm (courtesy N. Birge)



Energy relaxation:experiment vs. theory

Theory:
Prediction: Magnetic field should suppress electron energy relaxation 
at Ey gµBB.



Effect of spin polarization on the energy relaxation



Zero-bias anomaly at 
fixed U and three 
different B

Effect of spin polarization on the energy relaxation: Ag[Mn]

Experiment: Ag[Mn], Anthore et al. (SACLAY), cond-mat/0301070

Electron distribution function 
at fixed U and different B

U>gµBB

Remaining questions:
1. Why g≠ 2
2. Relaxation is too fast at ns=1.8ppm



Energy Relaxation in Ag, Cu, and Au wires
F. Pierre et al., JLTP 118, 437 (2000) and NATO Proceedings (cond-mat/0012038)
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Effect of spin polarization on the energy relaxation: Cu

Cond-mat/0109279

U>gµBB

U<gµBB

Getting corroborating 
evidence…
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Can saturation be removed by a 
polarization of localized spins?

Effect of spin polarization on the phase relaxation



Effect of spin polarization on the phase relaxation

1. Weak localization in a wire

Cooperon spin: S=1, Sz=i 1 S=1, Sz=0 S=0

(Hikami, Larkin, Nagaoka, 1980)

spin relaxation rate:

SO scattering rate in metals (Li g Ag):

(Gershenson, Sharvin, }1980)

Case of B=0:



Effect of spin polarization on the weak localization

Cooperon spin: S=1, Sz=i 1 S=1, Sz=0 S=0

Not affected by polarizationAffected by polarization (               )

Vanish at τSO=0
(no use for Cu)
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Complete crossover function for ∆σWL vs. B/T
in the absence of SO scattering (“light” metals):



Effect of spin polarization on the phase relaxation

2. Effect of the magnetic impurities on mesoscopic conductance 
fluctuations

Landauer formula for DC conductance:

WL: spin polarization may change 
the statistics of random transmission 
amplitudes Tαβ .

Mesoscopic Conductance Fluctuations: 
spin dynamics � imp. configuration 
changes with time, S(t�)≠ S(t) at |t-t�|� τK. 
The difference between samples vanishes:

Polarization � no spin dynamics �
mesoscopic fluctuations restored (at any τSO)

: the change does occur,

: the change does not occur,



2R At B=0 the spin orientation varies faster than the dc 
measurement — averaging over spin orientation:

Strong magnetic field aligns all 
impurity spins — no spin 
fluctuations. 

AB oscillations at gµΒ B� T are 
restored (no effect of magnetic 
impurities).

[Bobkov, Falko, Khmelnitskii, 1990; 
Falko, 1992] 
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h/e Aharonov-Bohm oscillations in a Cu ring

Data: Pierre&Birge, PRL2002



h/e Aharonov-Bohm oscillations – full crossover function

Relaxation rate Γ depends on B/T only; valid for arbitrary spin.
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Remaining questions:
1. Why g=0.44? What is S?
2. Rate τφ disagree with τε



Effects of interaction between magnetic impurities

1. Inelastic scattering off impurity pairs

elastic: inelastic
:

Evolution of f(ε)

V



2. Resisitivity and 1/τφ vs. T

Effects of interaction between magnetic impurities
La
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Contradictory data at τφ, R for
ns� 3g 60 ppm:
F. Schopfer, C. Bäuerle et al. PRL (2003).

(virial expansion, valid at T� Tsg)



Conclusions

• Magnetic impurities help to re-distribute energy between the 
conduction electrons

• Small energy transfers are favored by this mechanism, K(E)� 1/E2

• Energy relaxation at ε<gµBB is suppressed by Zeeman splitting

• Spin polarization affects the WL correction only at small 1/τSO

• Spin polarization enhances the mesoscopic conductance fluctuations

• The discrepancy between the data on energy and phase relaxation is 
not resolved yet


