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the Coulomb blockade

» accommodation of a single electron costs energy
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» a quantum dot » capacitance




the Coulomb blockade

» coupling to external leads

» dot coupled to leads by M channels with
transmission coefficients: 0< t, < 1.
M
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dimensionless conductance: g =@a |t; |
s=1

» alternative interpretation: g=G/d
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» for << 1, the dot is in a state of
‘Coulomb blockade’: total conductance
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Scattering channels



the Coulomb blockade

» gate voltage as an external probe

» gate electrode controls electrostatically
preferred charge on the dot.
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» generic values of V: transport blocked
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... however,

» the phenomenon is extremely susceptible to the tunneling conductance, Q.

» for g<<1, exponential suppression of the conductance.

»however, for g>>1, the Coulomb blockade diminishes down to a small

correction: dg ~ exp(-Q)
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This contribution exists in parallel to all sorts of other quantum corrections
(Altshuler-Aronov, weak localization ...) and is, therefore, nearly invisible.



guestion addressed in this talk:

» what happens if we consider an array of many strongly coupled (g>>1) dots ?
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» the Coulomb blockade drives the system into an insulating phase.

main results:

» the corresponding charge gap is given by
A = E_.exp(—g/4)
» at temperatures T<D, both the conductance, and diff. capacitance show activated behavior:
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the system
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» tunneling incoherent (effects of quantum interference negligible) for T> g d.

» mechanisms relevant to the physics of the system:
» charging: E.; and gate voltage: g=V/E,

> interface scattering: @



strategy

AES model of dissipative quantum tunneling:

pro: many channels; microscopic; generalizable

con: not so easy to analyze
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>1 sine-Gordon model

extended Matveev model:
_ _ _ Frenkel-Kontorova model:
pro: convenient starting point

describes absorption of atoms on solids

con: few channels; semi-phenomenological

l

random gate voltages, conductances ...

disordered model:




extended Matveev model

» Flensberg 93, Matveev 94: semi-phenomenological model of the Coulomb blockade
in few channel quantum dots.

» generalization to an array: :
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> charge displacement field: Q,(t).  Physical meaning: Q,,(t) - Q(t) = N;(t) = charge
sitting on grain no. |.

S10] = S.|0] + Sscatt|?)] ‘

» reflection coefficient;

Sscatt]0] = Dr ) / dr cos(0;(T))

N
» for many channels: r 34® O r,<<1
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> high energy cutoff



analysis of Matveev model

» a major simplification: physics controlled by temporal zero mode Q_, . Dynamic
modes give rise to inessential renormalization factors :
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» action of the static sector:

S6] = 753" (0541 — 05 — 0" + rcos(9;)]

j=1

> interpretation I. lattice version of the classical sinrGordon model

> interpetation Il: action of Frenkel-Kontorova (1932) model of atomic absorption on substrates



Frenkel-Kontorova model
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S[0] = — Z [(93;_31 — 0,)® + rcos(0; + qj)}

> atoms follow substrate, Q=-Cj, energy: MKXAAMMM
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» ground state of the chain, QJ:O, energy: WW

Fl6] =0

» phase transition at critical value: q* ~r 12,

> excitations of the system: long solitons. MWW



implications

» in an interval of width ~g*, centered around =0,
the ground state of the system is g-independent (a)).

» for g>Q*, reentrance into g-dependent state (b)).
However, plateau formation around other rational
values of Q.

» thermal fluctuations create (Q-dependent excited
states (c)) that cost energy D ~ E,r /2

translation to the metallic context

» for zero gate voltage (and other rational values of | b) WMWVW

(), the system is in an insulating state. :

> the charge gap is given by: D~ Eg 12 oo C) Wm

» one can show that the insulating state survives
generalization to random values of g, however, with a
lower gap: D~ E.r.




the real thing

» shortcomings of the previous discussion
» limitation to few channels.
» unclear how quantum interference (localization, dephasing, etc.) can be built in.

» connections to other approaches are unclear.

» alternative approach: for g>>1, large charge fluctuations. Description in terms of the
phase f; conjugate to the charge N, ([f;,N, ]=-i d;) is favorable.

» effective action: Ambegaokar, Eckern, Shoen 1984 S[‘;b] =S C [ﬁf’} + 5 scatlt [‘ﬂ I

» gate voltage
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warmup: single grain
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(Fazio & Schoen, 91, Golubev & Zaikin, 96, Efetov & Tschersich, 02, ...) small for



Instantons
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» topologically nontrivial excitations - instantons: Korshunov (87)

EE?E"E"."T — o

io(r) _
< o 1 — zemirT’ |Z| =1

» instantons extremize scattering action

» responsible for gate voltage dependence

» action: S = ¢+ ;-—4' 2piqg
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Instanton formation in the array
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» consider phase fluctuation of the type: I \
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» action: S=g+—|L|+2pigL
EC
> re-interpret instanton configuration as a dipole of two opposite charges:

» interacting by one-dimensional Coulomb interaction: (T/E ) [X,- %] ;

» ina uniform external field: 2piq """"""""""""""""""" I 1
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» fluctuation determinant



Instantons in the array cont'd

» key to solving the problem is equivalence of the Coulomb gasto the sine-Gordon model:

N

510l = 3. [("%H ~lly—g) — g t*f'*ﬁ(ﬁj)}

» fugacity ( = pinning strength):
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dynamics and conductivity

> real time classical Langevin dynamics, g; --> ¢(t):

~ L = FE. 001 —20j+60,_1 — e 9% sin(6; +:fq)} e &i(t)

» external field
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the noise correlator: a(j (t)Xj'(t )n: Edj,j'd(t - )

> soliton - antisloliton creation as an “under-barrier” process: n = I;texp(-DIT),

where | = exp(+g/4) is the soliton length and D = E_exp(-g/4) is the charge gap,

> moving solitons, ¢;(t) = g(J-Vd), where the soliton velocity: vs= | gE

> current density: J= en,vg conductivity: s = gexp{-D/T}.



disorder

» random gate voltages: ( --> )

. _ — -g/2 Y
> pinning energy: Epin = E, (e )

— -g/2
> charge 920 Do = 4/ EcEpin » E€°

» role of rare events and relation to Burgulence, Feigelman 1980.



» for N dots -- 2N links:

N soft modes (placket rotations)

E
» single charge soliton energy: A —_— \HECTQ_Q/Q |Og (?C eg)

» conductivity g,,=exp(- DIT)



conclusions:

» physics of arrays is equivalent to a classical pinned charge density wave.

» activation behavior with the charge gap D~ exp(-g/4).

g— (D)4

» partition function is dominated by the instanton configurations.

open questions:

» inclusion of quantum interference, i.e. how does this mechanism
compete/cooperate with effects of localization ?

» role of disorder and rare events.



