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Outline:

e Counting Statistics - A simple setting.

Full counting statistics.

Convergence and Regularization:
¢ Thermodynamic limit

¢ Linear dispersion .

e Interpretation, Comparison between a continuous measurement of cur-
rent and measurement of charge.

e Elaboration on the first moments.

e [ he many cycle limit: When is the pumping " extensive” in time?



Setting:

e T he system consists of reservoirs: R1 , Ro, ...
The reservoirs are coupled at time ¢t = 0 and decoupled at time T'.
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Measured quantity: charge at the reservoirs in the end compared to the
initial charge.

For simplicity consider just the charge entering and leaving reservoir 1,
and denote @ the projection on Ri1.

A problem of a quantum field coupled to " classical’ controlled external
potential. The setting applies also to other processes involving transfer
of electrons.

Full counting statistics was introduced in:
L.S. Levitov and G.B. Lesovik, (1993) JETP Lett., 58, pp. 230—235

D.A. Ivanov and L.S. Levitov, (1993) , JETP Lett., 58, pp. 461-468

D.A. Ivanov, H.W. Lee and L.S. Levitov, (1997) Phys. Rev., B56,
pp. 6839—6850

L.S. Levitov, H.W. Lee and G.B. Lesovik, (1996), JMP, 37, pp. 4845—
4866



Full counting statistics

e T he statistics of charge transferred is described by derivatives of:

x(X) =) _P(chargeinR; changed by n)e™"

e For adiabatic change, and short scattering time Levitov and Lesovik,
obtained the following expression for x:

y(\) = det(1 + n(STe!*Se~* — 1)) (1)

Where n is the occupation number operator and S is the scattering ma-
trix.

It was remarked that " this expression requires careful understand-
ing and regularization” .



e Assume that:

— «,3 are a basis for the Fock space which are eigenstates of the
second quantized charge operator Q of reservoir 1.

— U(T) is the evolution in Fock space
— p is the initial density matrix, which is assumed diagonal in a.

Then:
X T) =3, 5 P(a(t = 0),8(t = T))eN@II-QlD (2)

— < alpla > | < a|UT|3 > [2erMQIB]1-Qla])
a,B 1Y ¢

= Tr(pUN(T)e?U(T)e Q)



Non interacting particles:

e For a single particle operator e define the second quantized operator

M(e?) = ea:p(z Aijalaj)

o M(eMr(eP) = (edeP) this can be verified by checking:
[Aijajaj,BklaLal] = [A, Blmnahan (3)

e For particles this reflects that:
FMeMDN=ce'd (" eND ('R @eN) P ...
on the Fock space &,Sym(Asym)(R"H)

e For example, for non interacting particles, Bosons or Fermions, U is
obtained from the single particle evolution U by:

U=Tr0)=UsUU)s(UURU)® ..
It is evident that I'(U1U>) = M (U)IM(U»)



e \We will use the following formula
Tr(r(C)) =1,(1 — €er)=¢ = det(1 — &e¥) ¢ (4)

Where £ = 1 for bosons and & = —1 for fermions.

e T his is just the partition function of non interacting particles, with Hamil-
tonian C/g.

e For non interacting particles:

Tr(r(eMHr(e?)...) = det(1 — ceteP..)¢ (5)



e All the operators appearing in (2) are of the form I'(...) so:

1 A A
Y\, T) = ETr(I’(e_ﬁHOUT ePRUe M) (6)

e Formally x is similar to a partition function, and log x to a thermodynamic
potential with respect to A and the extensive parameter T

Xx(\) = L det(1 + e (UTeiQUeM?)) = (7)
det(1 4+ n(UtTe*QRUe 2@ — 1))

Where Z = det(1+4e~#™) and n is the occupation number operator -

14e 7o
at the initial time (Hp is the initial Hamiltonian).
e The adiabatic limit: S = lim;_ o etU(t, —t)eot, Since Q commutes
with Hg, one obtains in the limit of T' — oo:
x(A) = det(1 4 n(STe??S5e=Q — 1)) (8)



Convergence and Regularization

e A determinant of the form det(1 4+ A) is well defined if the operator A
has a well defined trace (A € Ji=trace class). Then

1
logdet(1+ A) = TrA + 5TrA2 + ..

What about the operator ng(Ute?QUe=Q — 1)7

e T wo basic problems: "IR”, and "UV":
¢ Thermodynamic limit - large system, log VVol charge fluctuations.

¢ For linear dispersion - energy unbounded bellow.



Sketch of validity proof for quadratic dispersion.

e Show that
ng(UTe?PUe ¢ — 1)
has a well defined trace if
n(U(];e")‘Qer_MC2 —1)

has a well defined trace.
Where Up is free, connected evolution.

e Assume that the system is driven by a Hamiltonian H(t) = p? + V(t)
where V(t) is a local potential supported at the pump.

e For quadratic dispersion there is finite density of particles.

e Note that if A € J1 and B is a bounded operator then AB € J1. In our
case all of the operators appearing are bounded.

e Show that one can replace ng by n (i.e. (n —ny) € J1) Avron et. al.
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Birman-Solomyak criterion: If A is diagonal in the p representation and
B diagonal in z representation then TrAB = [dpA(p) [dxzB(x) if the
integrals exist.

n(U(T) — Uo(T)) € J1 where Ug(T) = e #T:

Tr(jn(U — Uo)|) < fy [InUo(T — t)VU(8)||1dt <
fon|“(p)|dpf|V(x,t)|da:dt

Thus the statement is equivalent to proving validity for free connected
evolution.

Last step: prove
n(Uge“‘Qer_i’\Q —1)e T
All operators are well known, standard estimates.
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Regularized determinant for the linear dispersion case.

e Note particle - hole symmetry: (n,\) = (1 —n, —)),
det(1 + (1 — n)(e P@etir@ _ 1)) (9)
Where Qr = UTQU.
e T his suggests to look for a formula that involves particles and holes:

e Regularized formula by subtracting and adding the first moment:

X(A)reg —

det(l + n(eiAQTe—iA(l—n)Qe—iAnQT . 1) + (n o 1)(ein>\Qe—i)\nQT o 1))6i>\Tr{(UnUT—n)Q}

— Note e~ #n@r js not unitary because nQr is not hermitian. this can be
amended by taking instead e~ iAn@m

— An equivalent result, valid only at zero temperature appeared in
B. A. Muzikantskii and Y. Adamov, cond-mat/0301075.
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Interlude: Classical picture

e Classical particles in a box:

Number of particles leaving a box which is opened for a time ¢t. Let p be the
single particle probability of leaving.

B

x(\) = Z P(n particles left the box)e™"
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Assume particles are statistically independent. if yx, is the characteristic func-
tion for a single particle ,

xM = 1] x)=(@+e*p" (10)

particles

Where N is the number of particlesand p+g¢=1 =
we get a binomial distribution.

Let B — 00, N — oo and N/B = n = const. (i.e. the density of particles
remains const).

As we enlarge the box p — &. thus

XN = liMyoo(1 — &+ BN = (11)
M oo(1 A+ (€2 = 1) )N = el -Dm

Which is a poisson distribution.
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e In the quantum statistical mechanics world the picture is different:

Example: occupy just the quantum state |1 > then n = |1 >< 1| and

x(A\) =det(1 + |1 ><1|(A—1)) =< 1|A]1 >
Where A = UTeirRU e~ AR

e if we occupy also |2 > then n= |1 >< 1|+ |2 >< 2| and

< 1AL > < 1|IA2>
Y(\) = det(14n(A—1)) = det ( < QI/\Il > S 2}/\}2 > ) £< 1AL >< 2|A2 >

e Note however, usually for open systems decay of non-diagonal in time.
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Direct Current Measurements:

e \We start of with the wrong option:

prong(A) :< eiA(QT—Q) >:< ei)\fj(t/)dt, >

Qr — Q is not a good quantum mechanical observable:
Doesn’'t measure the state of the system but contains the future - you
can't measure it again.

While @ has integer spectrum, Q7 — Q has continuous spectrum = not
a good measure of charge transfer.

e Measurement using an auxiliary quantum mechanical detector such as
a spin or other device:

Ndoteator(X) =< <?eu/zfo I(t’)dt’?eiA/Qﬁ) 1@dr (12)

Where 7 is time ordering. A general approach:
Yu.V. Nazarov, and M. Kindermann,(2001), cond-mat/0107133
Difference between statistics schemes:

G. B. Lesovik and N. M. Shelkachev cond-mat/0303024 (in Russian!)
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e Relation to the expression
Y(A\) =< AN =Q(0) 5 (13)

Write in path integral language the same quantities:

AT = / £1(0) = £(0) DIEIDIE0(€1(0), £2(0))eSIeNSTEN [, e (er
62(T) = &1(T)

If for example Q = 0(x), then:

X = / £1(0) = £4(0) DIEIDIEI(61(0), £2(0)) eI SN, [, crdewaar
§(T) = &(T)

Substitution of i9,£1(¢') = H&:1 (), we get [ I(¢')d(¢') instead of fg Op|E1 () |2dt!
= By definition of the path integral will get a time ordered exponent of
current operators.

However: substitution is legitimate only for classical trajectories in the
path integral, thus describes only the saddle point of the integral.
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Moments

e \We are interested in the cummulants defined by

<< QF >>=i*a¥1og x(\)|r=0
e Representation of the differentiations:

Consider words over Z,, with cyclic permutations identified, and the
operator D defined by the rules:

A) D(1) = —(11) + (0)

B) D(0) = —(10) — (1)

C) D satisfies the Leibniz rule: D(ab) = (Da)b + a(Db),

D(1) = —(11) + (0) (14)
D2(1) = 2(111) — 3(10) — (1)
D3(1) = 6(1111) — 12(110) — 3(00) + (11) — (0)

Then the (k4 1)-th cummulant is related to D*(1):

Replace 1 — n(Qr — Q) and 0 — n((Qr — Q)% + [Qr,Q]), and trace the
resultant operator.
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Transport: First moment

e DO(1)=(1) =
<< Q>>= —iTr(ng(Qr — Q)) = —iTr(UnyU — nq)Q) (15)

e In the adiabatic limit:

<< Q>>= —iTr((S™ngS — ng)Q) (16)
Now we use that

ihSq = [Ho, S4] (17)
So that

SqHoS) = Ho — & (18)

e Where £ = z’hS'del is called the energy shift.
A conjugate notion to Wigner time delay 7 = z‘h(&ESd)S(E

e It follows that
San(Ho)S! = n(Ho — &) (19)
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e In the limit of adiabatic variation of the scattering we have
£ =ihSSl << 1
and

< Q>=Tr(n(Hog—E&)—n(Hp))Q ~ Tr(n'(Hg)EQ) = q/dt/dEn’(E)&l(t)

e Note n/(Hp) is localized at the fermi energy.

e Equivalent to the result of

M. Biuttiker, A. Prétre and H. Thomas, Phys. Rev. Lett. 70, 4114
(1993).
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Noise: Second moment

e Noise is the variance per unit time of the transfer distribution :

<(AQ)* >= - << Q*>>= Tr(n(QT — Q)(l - n) (Qr — Q))) =
Tr(n(1 —n) (Qr — Q)?) + 5 Tr([n, (Qr — NI [(Qr — Q), n]).

It splits into two positive terms:

e Johnson-Nyquist noise is the first term, proportional to temperature:
Qin = Tr(n(1 —n) (Qr — Q)*) = -T Tr(n'(Qr — Q)*) > 0, (20)

e T he quantum shot noise involves correlations at different times and
survives at T' = 0 is the second term:

QB = 5 Tr([n, Q1 [QT), n]) = = Tr(n, Q11Q,6nl) > 0 (21)

Classical limit of the commutator is order h = Q%S — 0 in this limit.
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Noise: third moment

e Importance of the third moment:
L. S. Levitov and M. Reznikov, cond-mat/0111057.

e The third cummulant is obtained from D?(1) = 2(111) — 3(10) — (1)

<< Q3 >>= —AiTr(and(QT — Q)W(QT - Q)ng(@:r - Q) (22)
+3n4(Qr — Q)na(Qr — Q)? — na(Qr — Q))

e Odd moments always have a term proportional to the first moment.

e Motivation to study the Fourth momgnt:A Until now all of the mo-
ments didn't contain explicitly the term [Qr, Q].

A check reveals that << Q% >> does contain this term.

This term measures an "uncertainty” between measuring a particles side
and the knowledge of where it originated.
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The many cycle limit:
When is the pumping "’ extensive” in time?

e Notion of extensivity - all moments?

For periodic driven systems we denote A,, = U™erQU™Me~X where U is
a one cycle evolution, and denote x,, = det(1 + n(A,, — 1)).

e Quantities averaged over many cycles are computed from % |09 X'm -

e The equation for extensivity iS Xm+1 ~ XmXi:

det(1 + n(Apm — 1)) ~ det(1 4+ n(A; — 1)) det(1 + n(Am — 1)) (23)

This equation doesn’'t imply an equation for the operators. Let's guess:

14+ n(Apm — 1) ~ U™ (1 + n(A = 1)UL 4+ n(Am — 1)) (24)

23



e Extensivity in time is a property of steady state pumping.
Under the condition: [n,U] = 0, extensivity is equivalent to:

U™(N — 1)U™ (A — 1)) n(n — 1) (25)

B A

e n(n — 1) is a function localized at the Fermi energy =
contribution only from states travelling approximately at Vg.

A is non-vanishing on states that reach the pump during m cycles.
B is non vanishing on states that reach the pump between cycles m,l+4+m.

B A

Fi & )

The overlap is a "boundary” term.
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Further projects:

Meaning of the fourth moment.
Interactions
Non adiabatic problems (microwave radiation)

Statistics of Spin transport
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