Dynamics of two level system (qubit) interacting with random and deterministic classical field.

G. B. Lesovik, <u>A. V. Lebedev</u> and A. O. Imambekov.

Landau Institute for Theoretical Physics, Russia

Definition of the model.

Quantum bit interacting with random classical field.

$$\hat{H} = \hat{H}_{qb} + \hat{q}\hat{E} + \hat{H}_{env}$$

$$\hat{H}(t) = -\frac{1}{2}\hbar\Delta\,\hat{\sigma}_x + \frac{q_0}{2}\phi(t)\hat{\sigma}_z ,$$

 $\hat{\sigma}_x$, $\hat{\sigma}_z$ - the Pauli matrixes,

 Δ - the tunneling matrix element between wells,

 $\phi(t)$ - random classical field with Gaussian statistic:

$$\langle \phi(t_1)\phi(t_2)\rangle = \langle \phi^2\rangle \,\delta(t_1-t_2)$$

The quantities of our interest.

Consider the states of the particle in two-well potential:

- $|L\rangle$ -localized in the left well,
- $|R\rangle$ -localized in the right well.
- $|S\rangle = a|L\rangle + b|R\rangle$ -delocalized state.

We will be interested in quantum-mechanical probability for the particle to go from initial state $|S\rangle$ to either of the wells at time t averaged over random field $\phi(t)$:

$$\langle P_{S \to L(R)}[\phi(t)] \rangle_{\phi} = ?$$

$$\langle P_{S \to L(R)}^{n}[\phi(t)] \rangle_{\phi} =$$

$$= \langle P_{S \to L(R)}[\phi(t)] \times ... \times P_{S \to L(R)}[\phi(t)] \rangle = ?$$

The probability $P_{S\to L(R)}[\phi(t)]$ is a random quantity random field $\phi(t)$.

The calculation scheme.

Let $q(t) = \pm 1$ is the trajectory of the particle.

$$\langle P_{L\to L}(t)\rangle_{\phi} =$$

$$\int \int Dq_1(t) \quad Dq_2(t) \ A[q_1]A[q_2]^*F[q_1, q_2]$$

where $F[q_1, q_2]$ the influence functional:

$$F[q_1, q_2] = \left\langle \exp\left[-\frac{i}{\hbar} \int_0^t \phi(\tau)(q_1(\tau) - q_2(\tau))d\tau\right]\right\rangle_{\phi}$$
$$= \exp\left[-\Gamma \int_0^t (q_1(\tau) - q_2(\tau))^2 d\tau\right]$$

$$\Gamma = \frac{q_0^2 \langle \phi^2 \rangle}{2\hbar^2}$$

 $A[q_1]$ is the one transition amplitude:

$$A[q] = i\frac{\Delta}{2}.$$

The calculation scheme.

There are only four different states of the pair of trajectories $[q_1(t), q_2(t)]$:

The state of the pair of trajectories can be described by four-dimensional state vector.

Let us introduce the jump matrix to go from one state \vec{E}_n to another \vec{E}_{n+1} :

$$\mathbf{\Lambda} = i\frac{\Delta}{2} \begin{bmatrix} 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

Next let us introduce 4×4 matrix for influence functional:

$$\mathbf{U}(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & e^{-\Gamma t} & 0 & 0 \\ 0 & 0 & e^{-\Gamma t} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The calculation scheme.

$$\langle P_{L\to L}(t)\rangle = \vec{E}_L^t \times \left[\sum_{n=0}^{\infty} \int_0^t dt_n \int_0^{t_n} dt_{n-1} ... \int_0^{t_2} dt_1\right]$$
$$\mathbf{U}(t-t_n) \mathbf{\Lambda} \mathbf{U}(t_n-t_{n-1}) \mathbf{\Lambda} ... \mathbf{\Lambda} \mathbf{U}(t) \times \vec{E}_L$$

Making the Laplace transform:

$$\langle P_{L\to L}(\lambda)\rangle = \int_{0}^{\infty} \langle P_{L\to L}(t)\rangle e^{-\lambda t} dt$$

$$\langle P_{L\to L}(\lambda) \rangle = \vec{E}_L^t \times [\mathbf{U}^{-1}(\lambda) - \mathbf{\Lambda}]^{-1} \times \vec{E}_L$$

then

$$\langle P_{L\to L}(t)\rangle = \frac{1}{2\pi i} \int_C \vec{E}_L^t \times [\mathbf{U}^{-1}(\lambda) - \mathbf{\Lambda}]^{-1} \times \vec{E}_L e^{\lambda t} d\lambda$$

The results. $\langle P_{L\to L}(t) \rangle$.

$$\langle P_{L\to L}(t)\rangle = \frac{1}{2}$$

$$+ \frac{\exp\left\{\frac{t}{2}(-\Gamma + \sqrt{\Gamma^2 - 4\Delta^2})\right\}(\Gamma + \sqrt{\Gamma^2 - 4\Delta^2})}{4\sqrt{\Gamma^2 - 4\Delta^2}}$$

$$+ \frac{\exp\left\{-\frac{t}{2}(\Gamma + \sqrt{\Gamma^2 - 4\Delta^2})\right\}(-\Gamma + \sqrt{\Gamma^2 - 4\Delta^2})}{4\sqrt{\Gamma^2 - 4\Delta^2}}$$

- $\langle P_{L\to L}(t=\infty)\rangle = \frac{1}{2}$.
- $\Gamma > 2\Delta$ the exponential relaxation regime.
- $\Gamma < 2\Delta$ damped oscillation regime.
- in regime $\Gamma \gg \Delta$ two relaxation times appear:

$$\tau_1 = \frac{1}{\Gamma}, \quad \tau_2 = \frac{\Gamma}{\Delta^2}$$

The off-diagonal elements of density matrix.

$$\begin{split} \langle \Psi_L^*(t) \Psi_R(t) \rangle = \\ \frac{i\Delta}{2\sqrt{\Gamma^2 - 4\Delta^2}} \exp\left\{ -\frac{t}{2} (\Gamma + \sqrt{\Gamma^2 - 4\Delta^2}) \right\} \\ -\frac{i\Delta}{2\sqrt{\Gamma^2 - 4\Delta^2}} \exp\left\{ \frac{t}{2} (-\Gamma + \sqrt{\Gamma^2 - 4\Delta^2}) \right\} \end{split}$$

Density matrix vanishes at big times

$$\langle \Psi_L^*(t=\infty)\Psi_R(t=\infty)\rangle = 0$$

• In the limit $\Gamma \gg \Delta$ the relaxation time is equal to

$$\tau_1 = \frac{1}{\Gamma}.$$

The higher moments of $P_{L\to L}(t)$

$$\langle P_{L\to L}^n((t=\infty)\rangle = \frac{1}{n+1}$$

This result can be interpreted in terms of distribution function for $P_{L\to L}(t=\infty)$:

$$\langle P_{L\to L}^n \rangle = \int_0^1 (P_{L\to L})^n \mathcal{P}(P_{L\to L}) dP_{L\to L} = \frac{1}{n+1}$$

• The random quantities $P_{L\to L}(\infty)$ has an uniform distribution:

$$\mathcal{P}(P_{L\to L}(\infty)) = 1$$

• $\mathcal{P}(P_{L\to L}(\infty))$ does not depend on initial state of the particle:

$$\langle P_{S\to L}^n(t=\infty)\rangle = \frac{1}{n+1}$$

$$|S\rangle = a|L\rangle + b|R\rangle \quad |a|^2 + |b|^2 = 1$$

Sensitivity to initial state of the particle.

Sensitivity of the final state to initial can be determined by the correlator:

$$\langle (P_{S \to L}(\infty) - P_{S' \to L}(\infty))^2 \rangle = \frac{|ab' - a'b|^2}{3}$$
$$|S\rangle = a|L\rangle + b|R\rangle \quad |S'\rangle = a'|L\rangle + b'|R\rangle$$

• Sensitivity to variation of external field $\phi(t)$:

$$\phi(t) = \phi_{ran}(t) + \delta\phi(t)$$

$$|S'\rangle = \exp\left[\frac{i}{\hbar} \int d\tau \delta\phi(\tau) \,\hat{\sigma}_z\right] [a|L\rangle + b|R\rangle]$$

$$|S'\rangle = ae^{-i\Phi}|L\rangle + be^{i\Phi}|R\rangle$$

$$\Phi = \frac{1}{\hbar} \int \delta\phi(\tau) \,d\tau$$

$$\langle (P_{S\to L}\{\phi(t)\} - P_{S\to L}\{\phi(t) + \delta\phi(t)\})^2\rangle =$$

$$= \langle P_{S\to L}P_{S\to R}\rangle \frac{4\sin^2(\Phi)}{3} = \frac{2}{9}\sin^2(\Phi)$$