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Definition of the model.

Quantum bit interacting with random
classical field.

H’ = E{qb‘i_q“‘E-!_ﬂgnU

H R

- 1
H(t) —_ —aﬁ& a'z: + %}*¢(t)&z 1
0z, 0, - the Pauli matrixes,

A - the tunneling matrix element between wells,

¢(t) - random classical field with Gaussian statistic:

(6(t1)9(t2)) = (8°) 6(t1 — t2)



The quantities of our interest.

Consider the states of the particle in two-well potential:
|L) -localized in the left well,

|R) -localized in the right well.

|S) = a|L) + b|R) -delocalized state.

We will be interested in quantum-mechanical probabil-

ity for the particle to go from initial state |.S) to either
of the wells at time ¢ averaged over random field ¢(%):
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The probability Ps_,1r)[¢(t)] is @ random quantity ran-
dom field ¢(%).



The calculation scheme.

Let q(t) = %1 is the trajectory of the particle.
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where F'[qy, ¢o] the influence functional:
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Alqi] is the one transition amplitude:

Ald] = z:gi.



The calculation scheme.

There are only four different states of the pair
of trajectories [q:1(t), g2(2)]:

|E, L), LR, IR.1L), R .R).

The state of the pair of trajectories can be de-
scribed by four-dimensional state vector.

Let us introduce the jump matrix to go from
one state E to another En+1

By 3.
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Next let us introduce 4 x 4 matrix for influence
functional:
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The calculation scheme.
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Making the Laplace transform:

o0

(Pr-r(A) = Df (Pror(t)) e dt

(Prp(A) = Ef x [UTY(A) — A]™ x E;
then

(Pp_p(t)) = f Et x [UY(A) — A]™! x EpeMda



The results. (Pr_(t)).
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o (Pt = o0)) =3.
e [' > 2A - the exponential relaxation regime.
o [' < 2A - damped oscillation regime.

e in regime [ 3> A two relaxation times appear:
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The off-diagonal elements of density
matrix.

(W(t)¥R(2)) =
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e Density matrix vanishes at big times
(UL(t = 00)Tp(t = 00)) =0
e In the limit I" 3> A the relaxation time is equal to

T = =.
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The higher moments of P;_,;(t)

(PRi(t = 00)) = ——

This result can be interpreted in terms of distribution
function for Pr_,1(t = 00):
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e The random quantities P,z (c0) has an uniform dis-
tribution:
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e P(Ppr(0c0)) does not depend on initial state of the
particle:
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Sensitivity to initial state of the
particle.

e Sensitivity of the final state to initial can be deter-
mined by the correlator:
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e Sensitivity to variation of external field ¢(¢):
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