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RANDOM MATRIX THEORY
IN CONDENSED MATTER PHYSICS

closed disordered
metal grain
or
quantum dot

d
hD
Thouless energy: E. = >
Universality:

In the frequency range |E — E'| < FE. the spectral statistics
is proven to be that of the RMT of the corresponding symmetry:
GOE, GUE, GSE (Efetov, 1982)

Follows from consideration of the 0D SUSY o-model.



ROUTE TO TIME-DEPENDENT
RANDOM MATRICES

e Eigenvalue statistics: HV = FV — everything is known

e Parametric eigenvalue statistics: H[p|V = E[p| U

E

2|

T~
RSaVa ¢

Parameters of the spectrum:
e A — mean level spacing

e 0 — mean level velocity:

o? = ((0F;/0¢)?)

e Time-dependent problem. Let ¢(t) be a function of time.

DU (t)
ot

= Hlp(t)] ¥ (2)

Energy is not a conserving quantity anymore

(B(t)) = 777



WHAT IS TO LOOK FOR?

Spreading of the wave function due to interlevel transitions
[math]| Evolution of the initial state W,,(0) = 6,0

[phys]| Evolution of the distribution of noninteracting fermions

ﬁ f(E)
RN

Pauli principle + interlevel transitions — Growth of (E(t))

Energy absorption + inelastic relaxation — Energy dissipation

4
Heating



TWO BASIC PHENOMENA

e Adiabatic & Kubo regimes of dissipation

* distinguished by v = dp/dt
x local property

e Dynamical localization in the energy space due to interference

* for re-entrant ¢(t)

* global property



TWO REGIMES OF DISSIPATION
IN CLOSED SYSTEMS

What is the meaning of adiabatic spectrum
for a time-dependent perturbation?

N4 N
E

v
Levels acquire a width I', ~ A, /—, with the critical velocity:
UK

A2
Vg ~ —
o)

e v K vy —— discrete spectrum

e v > v — continuous spectrum



LANDAU-ZENER TRANSITION

Avoided crossing

e oOp
op —€

H[w]—( ) Eylp] = £ve? + o%p?

Probability to jump to the other branch:

ne?
Wi—f = €XpP T ou



I, /A

open
system

Kubo

closed
system

>

|

0 1 V/V,

Adiabatic regime: Kubo regime:

e discrete spectrum continuous spectrum
o Landau-Zener transitions Kubo formula is valid
e dissipation rate depends on Ohmic dissipation

the spectral statistics Wik = ngv?



RESULTS FOR THE RANDOM-MATRIX ENSEMBLES
(Wilkinson, 1988)

W = dE/dt = nv*

7T0'2

e In the Kubo regime, 7y = AT for v > vg.

e In the adiabatic regime, to find W one has to average
the probability of Landau-Zener tunneling over the distribution of
avoided crossings. At ¢ < A, it is given by the pair correlation
function Ry(g) oc e” (where 8 = 1,2, 4 for GOE, GUE, GSE):

/eXp (-%) Ro(e)de  —  cocy/m

In this way Wilkinson found 7 ~ ng <i) for v < vg.
VK

F =nv | Friction force




LOCALIZATION IN THE ENERGY SPACE

(Handwaving arguments in the adiabatic regime)

e Monotonous ¢(t) — interference is ineffective

|A+ B> = |A]> + |B|? + 2Re(AB*)—|A|* + | B|?

e Re-entrant ¢(t) — interference may be important

|AA+ AB + BA + BB|* = |AA|* + |BB|* + 4|AB|?

. E(p)dp [ E(p)dy
! /dsO/dt _/ dp/dt

_> <_

Enhanced return probability = Localization
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THE MODEL
We consider a time-dependent matrix Hamiltonian
H(t) = Hy+ V(t),
where H; and V' are random /N X NN matrices from the Gaussian

Orthogonal Ensembles (H? = H) with the variances

NA?
2

((Ho)mn(Ho)mn') =

'A
<anvm’n’ > — 7 [5mn’ 5nm’ + 5mm’ 5nn’]

[5mn’ 5nm’ + 5mm’ 5nn’ ] ’

The DOS for an instant Hamiltonian (with ¢ = 0) is given by
the Wigner semicircle:

__2NA 0 2NA

™ ™

The parameter [' determines the sensitivity of the spectrum to

(52)) -2

variation of ¢:
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oc-MODEL IN THE KELDYSH FORMALISM
Outline of the derivation

e Keldysh partition function via the functional integral over Grass-
mannian fields W(¢):

7z - / DYDY exp {z /:) dt Wi (1) [2'73% _ H(t)] \If(t)}

e Averaging over Hy and V' generates the quartic term

{wlowm} { i@y}

e Decoupling by the Hubbard-Stratonovich matrix field ),

e Evaluation of the resulting Gaussian integral over W:

N s N 0 ,
S[Q) =~ Trln | 780t — ¢) 0 + 7(6,)Qu

N
+ n / dt dt’ y(t, ') tr QuQu

where

7l

(L) = 1= 51 le®) — @)

e Expansion of the action S[Q] over 1/N
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KELDYSH o-MODEL

The low-energy effective theory is formulated in terms of the
matrix Q-field (Q* = 1).

e time space — t is a continuous index
Qz,ﬁ acts in: ¢ 2 x 2 Keldysh space (o)
e 2 x 2 Particle-Hole space (7;)

The o-model action (e~°)

e A [
S[Q] = o Tr E13Q + 7 / dt dt' [p(t) — ()] tr Quw Qs
E-term kinetic term
responsible for the RMT en- accounts for interlevel tran-
ergy level statistics sitions of the time-dependent

(encoded in the rich structure Hamiltonian He(t)]
of Qgg, Altland & Kamenev,
2000)

e In the stationary case (¢ = const), the Keldysh Green function
() is diagonal in the energy representation:

1 2F O
A = (O . >®7‘3,

F(FE)=1-2f(F), and f(F) is the fermion distribution function.
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QUANTUM KINETIC EQUATION

Variation of the action with the constraint Q> = 1 yields the
saddle point equation [Q),05/dQ] = 0:

<% " %) Qu = g / dr [(p(t)—¢(7))’=(p(T) =o(t)*] Qe Qe

e In the non-stationary case, one can seek the solution using the
stationary ansatz, but with the distribution function £} depending
on both of its time indices. Then the saddle point equation becomes
the quantum kinetic equation:

o 0 ,
(a + 37) F' = =T(p(t) = ¢(t))" Fy

The Wigner-transformed function
F(E,t) = /dTeiETF(t +7/2,t —7/2)

after averaging over fast oscillations in ¢ obeys the diffusion
equation in the energy space:

OF (B, t) D32F<O>(E, t)

ot OFE?

where D = I'(dy/dt)? is the diffusion coefficient.
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ENERGY DISSIPATION RATE

The energy absorption rate is determined by Fj;:

E 1 F(E)dE  in. O0*Frypm,
W(t)E_a<t> _§/Ea (B dE iy O Fren2on2

o A A 1—=0 ot On

SRR

In the saddle-point approximation employing the diffu-
sion equation we get
D *F 0 D [oF0

D
W=—x| P2 ¥®=n| 38 ¥ =2

Thus we obtain Ohmic dissipation

I' [dy ’
We = — [ =X
K A(ﬁ)
coinciding with the result in the Kubo regime (Wilkinson, 1998).
Valid provided v > vx and NO interference.

Where are Landau-Zener and interference?

They are in the fluctuation
corrections to the saddle point
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STRUCTURE OF THE Q-MANIFOLD

The symmetries of the () matrix:
e the ()-manifold is compact <— fermionic system
o Q) = 0ymQmo, +— PH symmetry

can be naturally implemented by

F(0)
Q = Uy PUp, UF:((l) _1)

The matrix P obeys: Pl =P, PT = o,mPno;.
e The saddle point corresponds to Py = o373.

e The whole manifold can be parametrized as

1+ W/2

P— A
BT W2

where

0 b0*|—a*
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SOFT MODES: DIFFUSONS AND COOPERONS

§ A
Cooperons: (a;.,/2—y/2 at’+77’/2,t’—77’/2> s o(t —t') Cy(n,n')

. ) 2A
Diffusons: <bt+77/2,t—77/2 bt/+77//2at’—77l/2> — ? 5<n — 77’) D77<t, t/>

/

Ci(n,n') = 0(n—n') exp {—g /n[w(t +7/2) — ot — 7/2)]° dT}

Dy(t,1') = 0(t — 1)) exp {—r [otrn/2) — otr = a2 df}
f

Dephasing
by the time-dependent perturbation
(Vavilov, Aleiner, 1999 & Yudson,
Kanzieper, Kravtsov, 2001)

Each impurity line carries a nonzero frequency = both diffusons
and cooperons decay with time.
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ONE-LOOP QUANTUM CORRECTION

Fluctuations induce corrections to the distribution function Fj;:

Q) G

vanishes due to
causality [#(t = 0) = 0]

One-loop interference correction to the Kubo ab-
sorption rate W, for arbitrary ¢(t):

Wt = [ 0uplt) e — ) e, €)
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THE CASE OF THE LINEAR BIAS ¢ =t

The cooperon and diffuson have the form

Q3

Ci(n,m') = 60(n—n') exp {—;(773 — 77’3)}

D,(t,t") =0t —1t) exp{—Vn*(t—1t)}

and decay at the time scale Q™! where Q3 = I'v?.

For a monotonous perturbation, there is no interference and
quantum corrections are responsible for the crossover from the
Kubo to adiabatic regimes of dissipation.

. A VK 2/3
LOOp expansion parameter: 5 =T (—)

small in the Kubo
regime v > Vg
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RESULTS FOR THE LINEAR BIAS ¢ = vt

Dissipation rate vs. velocity

W/Wk 4-
] (UK) 1/2
3- v
2- \\\ GOE (U_K)2/3
e o .
1
GUE
0 I | I |
0 1 2 3 4
v/vk
Analytic expressions at v > vg
4% F(%) VK 2/3
for GOE: g =14 i () -
for GUE: K =1
K
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WEAK DYNAMIC LOCALIZATION

1. Monochromatic perturbation

@(t) = 6(t) sinwt

To study the long-time, period-averaged dynamics at ¢,& > 1/w
we can approximate

Ci_g/a(€, =€) ~ exp { —2T¢ cos’[w(t — £/2)]}
The cooperon is equal to unity at no-dephasing points

& =2t — (2k + D) /w

Performing Gaussian integration near &, and summation over
&, we obtain a growing in time quantum interference correction to
the ohmic absorption rate in the limit ¢ > 1/w, 1/T":

e [F e
WK_ t, o 9A2

e Role of the phase relaxation time ¢,

e Remarkable correspondence to the weak localization correction
to the conductivity in a quasi-1D disordered wire.

SW(t) < doy(t,)
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WEAK DYNAMIC LOCALIZATION

2. General periodic perturbation

p(t) = 0(t) Y Aysin(nwt — )

At long times the cooperon becomes

Cregal,—€) m 61062 (1) =20 57 A2 cos’ut — ]

Existence of the no-dephasing points is equivalent to the gener-
alized time-reversal symmetry of the perturbation:

p(—t+7)=p(t+7) p(—t+7)# ot +7)
(t) (t)
0 t 0 t
a regular array of zeros a gap
U U
one-loop correction as for one-loop correction is small;
the monochromatic case two-loop correction as for GUE
U U
SW (t) t oW(t) t
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WEAK DYNAMIC LOCALIZATION

3. d incommensurate frequencies

d
o(t) = Z Ay sin(wpt — o)
n=1

a pseudo-gap

Result for the case when all A, = 1:

W (t) A g1 dIy(2)
PV 12 dze il
Wi el A L

where Iy(2) is the modified Bessel function.

W (t) A
d=?2 — L — — Inl't
Wg 2721 N
W (t
d > 2: L o —t1%2  __y const
Wk

e Complete analogy with the behavior of the WL correction in

d dimensions.
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APPLICATIONS

e Quantum dot whose shape is being changed by a
low-frequency gate voltage

e Quantum dot in a microwave electric field

e Vortex motion in impure superconductors
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CONCLUSION

e Keldysh o-model approach to study energy pump-
ing in the parametrically-driven random-matrix en-
sembles.

e We calculated the leading quantum correction to the
Ohmic absorption rate.

x Linearly growing perturbation: Quantum correction
to the Kubo formula, which reveals the discreteness
of the spectrum of the stationary Hamiltonian.

x Weak dynamic localization: For d incommensurate
frequencies it behaves similar to the WL correction
to conductivity of d-dimensional samples.
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