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Lecture 1

Introduction to conformal geometry

Conformal geometry naturally arises when one deals with the phase transitions of the
second order. When one approaches the phase transition point, the correlation length
increases, we have scale invariance. Polyakov stated at critical point one the theory is not
only scale invariant, but it is also conformal invariant. The conformal invariance allows
to calculate explicitly critical indexes using representation theory for infinite-dimension
Lie algebras.

Definition 1. Let Mn be a smooth real manifold. Two Riemannian metrics gij(x),
hij(x) belong to the same conformal class if gij(x) = λ(x)gij(x) where λ(x) > 0 is some
scalar function.

Definition 2. Let Mn be a smooth real manifold. Conformal structure on Mn is a
fixed conformal class of Riemannian metrices on Mn.

Of course, one can define a conformal structure on a smooth manifold by defining
a Riemannian metric on it, but infinitely many Riemannian metrics define the same
conformal structure on it, and there is no canonical choice of such metric.

Definition 3. Let (Mn, gij(x)), (Nn, hij(x)) be 2 smooth Riemannian manifolds. A map
f : Mn → Nn is called conformal if gij(x) = λ(x)(f∗h)ij(x). Here

(f∗h)ij(x) =
∂yk
∂xi

∂yl
∂xj

hkl(y(x))

By analogy with conformal mapping of Rimannian manifolds, one can define conformal
mappings of conformal manifolds.

Definition 4. Let Mn, Nn be a pair of smooth manifolds equipped with conformal
structures, gij(x), hij(x) be some Riemannian metrices, representing the conformal
structures on Mn, Nn, respectively. A map f : Mn → Nn is said to be conformal
if gij(x) = λ(x)(f∗h)ij(x).

It is clear that this definition is correct, i.e. it does not depend on the choice of the
metrics within they conformal classes.

Lemma 1. A map f : Mn → Nn is called conformal, if it preserves the angles between
two curves.

Let us now discuss the conformal maps in different dimensions.

1) For n = 1 the situation is trivial: any regular map is conformal.

2) For n = 2 we can treat the real plane R2 as the complex plane C1. If a map
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f : U ⊂ C → V ⊂ C is conformal and preserve the orientation, then f(z) is
holomorphic. Hence, the space of local conformal maps is infinite dimensional.
The global conformal maps of Riemann sphere S2 = CP 1 form the Möbius group.

3) For n > 2, the space of local conformal maps is finite-dimensional. For conformally
flat manifolds is coincides with the Möbius group. Equivalently, any conformal map
f : U → V from an open set U ⊂ Rn to an open set V ⊂ Rn is the restriction of
some Möbius map f : Rn → Rn to U .

Let us consider 2-dimensional sphere S2 = CP 1. We have the following basic Möbius
maps:

1) Shifts z → z + a,

2) rotations z → eiφz, φ ∈ Z,

3) dilations z → λz, λ ∈ R, λ > 0,

4) inversion: z → 1
z
,

5) complex conjugation: z → z

The subgroup of Möbius group preserving the orientation coincides with the group of
fractional-linear complex transformations

z → az + b

cz + d
, where ad− bc ̸= 0.

This group can be also interpreted as the group of projective transformations of CP 1.

The Möbius group is defined for arbitrary n. It is natural to consider elements of Möbius
group as conformal maps from Sn to Sn. Elements of Möbius group can be written in
the following form:

x⃗ → b⃗+ α
A(x⃗− a⃗)

||x⃗− a⃗||ε
, (1)

where a⃗, b⃗, are arbitrary vectors from Rn, α ∈ R, α ̸= 0, ε = 2 or ε = 0, A ∈ O(n), i.e.
A is orthogonal, but not necessary preserve the orientation.

For Rn we have the following basic Möbius transformations:

1) Translations x⃗ → x⃗+ a⃗,

2) rotations x⃗ → Ax⃗, A ∈ O(n),

3) dilations x⃗ → λx⃗, λ ̸= 0,

4) inversions: x⃗ → x⃗
||x⃗||2 .

5) reflections: x⃗ → x⃗− 2(x⃗, n⃗) n⃗, ||n⃗|| = 1.
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