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Lecture 2

Lie derivative

At the previous Lecture we introduced the notion of conformal manifold.

Definition 1. Let Mn be a smooth real manifold. Two Riemannian metrics gij(x),
hij(x) belong to the same conformal class if gij(x) = λ(x)gij(x) where λ(x) > 0 is some
scalar function.

Definition 2. Let Mn be a smooth real manifold. Conformal structure on Mn is a
fixed conformal class of Riemannian metrices on Mn.

Of course, one can define a conformal structure on a smooth manifold by defining
a Riemannian metric on it, but infinitely many Riemannian metrics define the same
conformal structure on it, and there is no canonical choice of such metric.

One of important operation in differential geometry is the covariant derivative of
tensor fields. But there is another way how to define differentiation of tensor fields with
respect to vector fields, known as Lie derivative. Let us recall the definition of Lie
derivative.

Let Mn be a smooth manifold. Consider an infinitesimal transformation x⃗ → x̃ = F⃗ (x⃗):

x̃ = F (x⃗) = x⃗+ εv⃗(x⃗).

In is well-known that infinitesimal transformations are generated by vector fields.

For our calculations it is convenient to introduces two independent set of indexes:
{i1, . . . , ip, j1, . . . , jq} and {ĩ1, . . . , ĩp, j̃1, . . . , j̃1}.

Let T = T
i1,...,ip
j1,...,jq

(x⃗) be a tensor field on Mn.

Definition 3. The Lie derivative Lv⃗T of the tensor field T along the vector field v is
defined by

(Lv⃗T )
i1,...,ip
j1,...,jq

(x⃗) = lim
ε→0

(F⃗∗T )
i1,...,ip
j1,...,jq

(x⃗)− T
i1,...,ip
j1,...,jq

(x⃗)

ε
, (1)

where F⃗∗T denotes the pullback of the tensor field T with respect to the map F⃗ :

(F⃗∗T )
i1,...,ip
j1,...,jq

(x⃗) =
∂xi1

∂x̃ĩ1
. . .

∂xip

∂x̃ip
· ∂x̃

j̃1

∂xj1
. . .

∂x̃jq

∂xjq
· T ĩ1,...,̃ip

j̃1,...,̃jq
(F⃗ (x⃗)). (2)

Formula (2) can be found in standard differential geometry textbooks.

Let us calculate Lv⃗T explicitly.

Lemma 1.

(Lv⃗T )
i1,...,ip
j1,...,jq

= vα
∂T

i1,...,ip
j1,...,jq

∂xα
−

p∑
k=1

∂vik

∂xα

T
i1,...,

α
̸ik,...,ip

j1,...,jq
+

q∑
k=1

∂vα

∂xjk
T

i1,...,ip

j1,...,
α
̸jk,...,jq

. (3)
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Here the notations T
i1,···

α
̸ik,...,ip

j1,...,jq
means that we put α to the upper position k instead of

ik, analogously, T i1,...,ip

j1,...,
α
̸jk,...,jq

means that we α to the lower position k instead of jk. For

example,

T i1,i2,
α
̸i3,i4

j1,j2,j3
= T i1,i2,α,i4

j1,j2,j3
; here k = 3.

Proof. Let us calculate (F⃗∗T )
i1,...,ip
j1,...,jq

(x⃗) discarding O(ε2) terms. Since x̃i = xi + εvi(x⃗),
we obtain:

∂x̃ĩ

∂xi
= δ ĩi + ε

∂v ĩ

∂xi
,

∂xi

∂x̃ĩ
= δi

ĩ
− ε

∂vi

∂xĩ
+O(ε2),

and

T
i1,...,ip
j1,...,jq

(x⃗+ εv⃗) = T
i1,...,ip
j1,...,jq

(x⃗) + εvα
∂T

i1,...,ip
j1,...,jq

(x⃗)

∂xα
+O(ε2).

Therefore,
(F⃗∗T )

i1,...,ip
j1,...,jq

(x⃗) =

=

[
δi1
ĩ1
− ε

∂vi1(x⃗)

∂xĩ1

]
· ... ·

[
δ
ip

ĩp
− ε

∂vip(x⃗)

∂xĩp

]
·

[
δ ĩ1j1 + ε

∂vj̃1(x⃗)

∂xj1

]
· ... ·

[
δ
j̃q
jq
+ ε

∂vj̃q(x⃗)

∂xjq

]
×

×

T ĩ1,...,ĩp

j̃1,...,j̃q
(x⃗) + εvα(x⃗)

∂T
ĩ1,...,ĩp

j̃1,...,j̃q
(x⃗)

∂xα

+O(ε2) =

= T
i1,...,ip
j1,...,jq

(x⃗) + ε

[
vα(x⃗)

∂T
i1,...,ip
j1,...,jq

(x⃗)

∂xα
− ∂vi1(x⃗)

∂xĩ1
T

ĩ1,...,ip
j1,...,jq

(x⃗)− . . .− ∂vip(x⃗)

∂xĩp
T

i1,...,ĩp
j1,...,jq

(x⃗)+

+
∂vj̃1(x⃗)

∂xj1
T

i1,...,ip

j̃1,...,jq
(x⃗) + . . .+

∂vj̃q(x⃗)

∂xjq
T

i1,...,ip

j1,...,j̃q
(x⃗)

]
+O(ε2) =

= T
i1,...,ip
j1,...,jq

(x⃗) + ε

[
vα(x⃗)

∂T
i1,...,ip
j1,...,jq

(x⃗)

∂xα
− ∂vi1(x⃗)

∂xα
T

α,...,ip
j1,...,jq

(x⃗)− . . .− ∂vip(x⃗)

∂xα
T i1,...,α
j1,...,jq

(x⃗)+

+
∂vα(x⃗)

∂xj1
T

i1,...,ip
α,...,jq

(x⃗) + . . .+
∂vα(x⃗)

∂xjq
T

i1,...,ip
j1,...,α

(x⃗)

]
+O(ε2) =

Remark 1. For scalar functions the Lie derivative coincides with the ordinary derivative
along the vector field v⃗:

(Lv⃗f)(x) = vα(x)
∂f(x)

∂xα
.

Remark 2. There are two completely different operators acting on tensor fields on
manifolds:
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1) Covariant derivative ∇v⃗.

2) Lie derivative Lv⃗.

The main differences between them are the following:

1) • To define the covariant derivative ∇v⃗ it is necessary to fix an additional struc-
ture – connection, which can be described using Christoffel symbols. There is
no canonical connection on a smooth manifold Mn, unless it is equipped some
additional structure. For example, on Riemannian manifolds Levi-Civitta
connection is canonically defined.

• The Lie derivative is well-defined on arbitrary smooth manifold; no additional
structure is required to introduce it.

2) • For a fixed tensor filed T and a fixed point x0 the value of the covariant
derivative ∇v⃗T is completely determined by the value of v⃗ at this point; no
derivatives of v⃗ appear in the formula for ∇v⃗T .

• The value of the Lie derivative Lv⃗T at a point x0 depends not only on the
value of v⃗(x) at x0, but also at the first derivatives v⃗(x) at the point x0.

The covariant derivative is defined in all standard differential geometry courses. In
contrast, Lie derivative is missing in many good books.

Remark 3. Lie derivative arises naturally in the field theory. Assume that we have a
Lie group of spacial symmetries in our theory. A tensor field T is invariant with respect
to the action of the group if the Lie derivative of LeT = 0 for any field e from the Lie
algebra of the symmetry group.
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